1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
|
SUBROUTINE QUAD4D
C
C FORMS STIFFNESS AND MASS MATRICES FOR THE QUAD4 PLATE ELEMENT
C
C DOUBLE PRECISION VERSION
C
C EST LISTING
C
C WORD TYPE DESCRIPTION
C --------------------------------------------------------------
C 1 I ELEMENT ID, EID
C 2 THRU 5 I SILS, GRIDS 1 THRU 4
C 6 THRU 9 R MEMBRANE THICKNESSES T AT GRIDS 1 THRU 4
C 10 R MATERIAL PROPERTY ORIENTATION ANGLE, THETA
C OR I COORD. SYSTEM ID (SEE TM ON CQUAD4 CARD)
C 11 I TYPE FLAG FOR WORD 10
C 12 R GRID ZOFF (OFFSET)
C 13 I MATERIAL ID FOR MEMBRANE, MID1
C 14 R ELEMENT THICKNESS, T (MEMBRANE, UNIFORMED)
C 15 I MATERIAL ID FOR BENDING, MID2
C 16 R BENDING INERTIA FACTOR, I
C 17 I MATERIAL ID FOR TRANSVERSE SHEAR, MID3
C 18 R TRANSV. SHEAR CORRECTION FACTOR TS/T
C 19 R NON-STRUCTURAL MASS, NSM
C 20 THRU 21 R Z1, Z2 (STRESS FIBRE DISTANCES)
C 22 I MATERIAL ID FOR MEMBRANE-BENDING COUPLING, MID4
C 23 R MATERIAL ANGLE OF ROTATION, THETA
C OR I COORD. SYSTEM ID (SEE MCSID ON PSHELL CARD)
C 24 I TYPE FLAG FOR WORD 23
C 25 I INTEGRATION ORDER
C 26 R STRESS ANGLE OF ROTATION, THETA
C OR I COORD. SYSTEM ID (SEE SCSID ON PSHELL CARD)
C 27 I TYPE FLAG FOR WORD 26
C 28 R ZOFF1 (OFFSET) OVERRIDDEN BY EST(12)
C 29 THRU 44 I/R CID,X,Y,Z - GRIDS 1 THRU 4
C 45 R ELEMENT TEMPERATURE
C
C
LOGICAL HEAT,MEMBRN,BENDNG,SHRFLX,MBCOUP,NORPTH,BADJAC,
1 ANIS,NOCSUB,NOGO
INTEGER NEST(45),IEGPDT(4,4),CPMASS,FLAGS,NOUT,ELTYPE,
1 ELID,ESTID,SIL(4),KSIL(4),KCID(4),DICT(9),
2 IGPDT(4,4),IGPTH(4),NAM(2),MID(4),TYPE,NECPT(4),
3 ROWFLG,NOTRAN(4),HSIL(8),HORDER(8)
REAL TSFACT,EPSI,EPST,EPS,GPTH(4),MATOUT,EGPDT(4,4),
1 GSUBE,BGPDM(3,4),GPNORM(4,4),BGPDT(4,4),ADAMP,
2 MATSET,NSM,EPNORM(4,4),KHEAT,HTCP,SINMAT,COSMAT,
3 ECPT(4),SAVE(20)
DOUBLE PRECISION AMGG(1),AKGG,DGPTH(4),BMAT1(384),XYBMAT(96),
1 ZETA,MOMINR,VOL,VOLI,TH,AREA,AREA2,DETJ,
2 PTINT(2),EPS1,XI,ETA,ZTA,HZTA,THK,
3 XMASSO,V(3,3),COEFF,XMTMP(16),XMASS(16),
4 TMPMAS(9),JACOB(3,3),TMPSHP(4),TMPTHK(4),
5 DSHPTP(8),PSITRN(9),PHI(9),SHP(4),DSHP(8),
6 TGRID(4,4),COLSTF(144),TRANS(36),TRANS1(36),
7 COLTMP(144),AVGTHK,TEMP
CWKBD 2/94 SPR93020 DOUBLE PRECISION EIX,EIY,TGX,TGY
CWKBI 9/94 SPR93020
DOUBLE PRECISION VKL, V12DK, VP12L, VJL
CWKBI 2/94 SPR93020
DOUBLE PRECISION DNUX, DNUY
C
C DOUBLE PRECISION PTINTZ(2),BMATRX(144),STRESR(240)
C
C DATA FOR ADDING ELEMENT, USER AND MATERIAL COORDINATE SYSTEMS
C
DOUBLE PRECISION AA,BB,CC,X31,Y31,X42,Y42,EXI,EXJ,UGPDM(3,4),
1 CENT(3),CENTE(3),TBM(9),TEB(9),TEM(9),TUB(9),
2 TUM(9),TEU(9),TBG(9),GGE(9),GGU(9)
C
C DATA FOR ADDING CSUBB, MIDI, MATERIAL TRANS., AND HEAT
C
DOUBLE PRECISION RHO,TS,TSI,REALI,RHOX,THETAM,XM,YM,U(9),A,B,
1 ASPECT,THLEN,XA(4),YB(4),GT(9),GI(36),
2 ENORX,ENORY,GNORX,GNORY,NUNORX,NUNORY,DSUB,DSUB4,
3 PSIINX,PSIINY,TSMFX,TSMFY,CURVTR(3,4),CURVE(3),
4 SINEAX,SINEAY,W1,PI,TWOPI,RADDEG,DEGRAD,
5 HTFLX(12),HTCAP(16),HTCON(16),DVOL,DHEAT,WEITC,
6 BTERMS(32),DETERM
CWKBNB 11/93 SPR 93020
DOUBLE PRECISION VD1(3), VD2(3), VKN(3), VKS(3)
1, V12(3), V41(3), VP12(3),VIS(3), VJS(3)
CWKBNE 11/93 SPR 93020
C
C DATA FOR IRREGULAR 4-NODE
C
DOUBLE PRECISION ZC(4),UEV,ANGLEI,EDGEL,EDGSHR,UNV,VNT(3,4),CONST,
1 ASPCTX,ASPCTY,GFOUR(10,10),DFOUR(7,7),BFOUR(240),
2 CSUBB4,CSUBX,CSUBY,CSUBT,CSUBTX,CSUBTY,OFFSET,
3 SFCTR1,SFCTR2,SFCTX1,SFCTX2,SFCTY1,SFCTY2
CHARACTER UFM*23,UWM*25,UIM*29,SFM*25
COMMON /XMSSG / UFM,UWM,UIM,SFM
C
C ICORE = FIRST WORD OF OPEN CORE
C JCORE = NEXT AVAILABLE LOCATION IN OPEN CORE.
C NCORE = CURRENT LAST AVAILABLE LOCATION IN OPEN CORE
C
COMMON /EMGPRM/ ICORE,JCORE,NCORE,ICSTM,NCSTM,IMAT,NMAT,IHMAT,
1 NHMAT,IDIT,NDIT,ICONG,NCONG,LCONG,ANYCON,
2 FLAGS(3),PRECIS,ERROR,HEAT,CPMASS,LCSTM,LMAT,
3 LHMAT,KFLAGS(3),L38
COMMON /EMGEST/ EST(45)
COMMON /EMGDIC/ ELTYPE,LDICT,NLOCS,ELID,ESTID
COMMON /SYSTEM/ SYS(100)
COMMON /MATIN / MATID,INFLAG,ELTEMP,DUMMY,SINMAT,COSMAT
COMMON /MATOUT/ MATOUT(25)
COMMON /HMTOUT/ KHEAT(7),TYPE
CZZ COMMON /ZZEMGX/ AKGG(1)
COMMON /ZZZZZZ/ AKGG(20000)
COMMON /Q4DT / DETJ,HZTA,PSITRN,NNODE,BADJAC,N1
COMMON /TERMS / MEMBRN,BENDNG,SHRFLX,MBCOUP,NORPTH
COMMON /Q4COMD/ ANGLEI(4),EDGSHR(3,4),EDGEL(4),UNV(3,4),
1 UEV(3,4),ROWFLG,IORDER(4)
COMMON /CONDAD/ PI,TWOPI,RADDEG,DEGRAD
COMMON /COMJAC/ XI,ETA,ZETA,DETERM,DUM2,LTYPFL
COMMON /CJACOB/ TH,VI(3),VJ(3),VN(3)
COMMON /TRPLM / NDOF,IBOT,IPTX1,IPTX2,IPTY1,IPTY2
EQUIVALENCE (SYS(01) ,SYSBUF ), (SYS(02) ,NOUT ),
1 (SYS(03) ,NOGO ), (SYS(55) ,IPREC )
C EQUIVALENCE (SYS(48) ,ICSUB4 ), (SYS(49) ,ICSUBB ),
C 1 (SYS(50) ,ICSUBT ), (SYS(75) ,ICSUB8 )
EQUIVALENCE (FLAGS(1),KGG1 ), (FLAGS(2),MGG1 ),
1 (ADAMP ,DICT(5) ), (IGPTH(1),GPTH(1) ),
2 (EST(1) ,NEST(1) ), (INT ,NEST(25) ),
3 (ELTH ,EST(14) ), (GPTH(1) ,EST(6) ),
4 (ZOFF ,EST(12) ), (ZOFF1 ,EST(28) ),
5 (SIL(1) ,NEST(2) ), (MATSET ,MATOUT(25)),
6 (NSM ,EST(19) ), (AMGG(1) ,AKGG(1) ),
7 (HTCP ,KHEAT(4)), (HTFLX(1),TMPMAS(1) ),
8 (HTCAP(1),XMASS(1)), (HTCON(1),XMTMP(1) ),
9 (NECPT(1),ECPT(1) ),
O (BGPDT(1,1) ,EST(29) ),
1 (IEGPDT(1,1),EGPDT(1,1)),
2 (IGPDT(1,1) ,BGPDT(1,1))
DATA EPS1 / 1.0D-7 /
DATA CONST / 0.57735026918962D0/
DATA NAM / 4HQUAD,4H4D /
C
ELID = NEST(1)
LTYPFL = 1
OFFSET = ZOFF
IF (ZOFF .EQ. 0.0) OFFSET = ZOFF1
C
C CHECK FOR SUFFICIENT OPEN CORE FOR ELEMENT STIFFNESS
C
JCORED = JCORE/IPREC + 1
NCORED = NCORE/IPREC - 1
IF ((JCORED+576).LE.NCORED .OR. HEAT .OR. KGG1.EQ.0) GO TO 10
GO TO 1730
C
C COPY THE SILS AND BGPDT DATA INTO SAVE ARRAY SINCE THE DATA
C WILL BE REORDERED BASED ON INCREASING SILS.
C
10 J = 1
DO 15 I = 1,20
SAVE(I) = EST(I+J)
IF (I .EQ. 4) J = 24
15 CONTINUE
C
NNODE = 4
N1 = 4
NODESQ= NNODE*NNODE
NDOF = NNODE*6
NDOF3 = NNODE*3
ND2 = NDOF*2
ND3 = NDOF*3
ND4 = NDOF*4
ND5 = NDOF*5
ND6 = NDOF*6
ND7 = NDOF*7
C
C FILL IN ARRAY GGU WITH THE COORDINATES OF GRID POINTS 1, 2 AND 4.
C THIS ARRAY WILL BE USED LATER TO DEFINE THE USER COORD. SYSTEM
C WHILE CALCULATING TRANSFORMATIONS INVOLVING THIS COORD. SYSTEM.
C
DO 20 I = 1,3
II = (I-1)*3
IJ = I
IF (IJ .EQ. 3) IJ = 4
DO 20 J = 1,3
JJ = J + 1
20 GGU(II+J) = BGPDT(JJ,IJ)
CWKBD 11/93 SPR93020 CALL BETRND (TUB,GGU,0,ELID)
CWKBNB 11/93 SPR93020
C ADD FROM SHEAR ELEMENT
C
C COMPUTE DIAGONAL VECTORS
C
DO 21 I = 1,3
II=I+1
VD1(I) = BGPDT(II,3) - BGPDT(II,1)
21 VD2(I) = BGPDT(II,4) - BGPDT(II,2)
C
C COMPUTE THE NORMAL VECTOR VKN, NORMALIZE, AND COMPUTE THE PROJECTED
C AREA, PA
C
VKN(1) = VD1(2)*VD2(3) - VD1(3)*VD2(2)
VKN(2) = VD1(3)*VD2(1) - VD1(1)*VD2(3)
VKN(3) = VD1(1)*VD2(2) - VD1(2)*VD2(1)
VKL = DSQRT( VKN(1)**2 + VKN(2)**2 + VKN(3)**2 )
IF ( VKL .EQ. 0. ) WRITE( NOUT, 2070 ) NEST(1)
2070 FORMAT(//,' ILLEGAL GEOMETRY FOR QUAD4 ELEMENT, ID=',I10 )
VKS(1) = VKN(1)/VKL
VKS(2) = VKN(2)/VKL
VKS(3) = VKN(3)/VKL
PA = VKL/2.D0
C
C COMPUTE SIDES -12- AND -41-
DO 25 I = 1,3
II = I + 1
V12(I) = BGPDT(II,2) - BGPDT(II,1)
V41(I) = BGPDT(II,1) - BGPDT(II,4)
25 CONTINUE
C
C COMPUTE DOT PRODUCT, V12DK, OR V12 AND VK, THE VECTORS VP12, VI, VJ
C
V12DK = V12(1)*VKS(1) + V12(2)*VKS(2) + V12(3)*VKS(3)
VP12(1) = V12(1) - V12DK*VKS(1)
VP12(2) = V12(2) - V12DK*VKS(2)
VP12(3) = V12(3) - V12DK*VKS(3)
VP12L = DSQRT( VP12(1)**2 + VP12(2)**2 + VP12(3)**2 )
IF ( VP12L .EQ. 0. ) WRITE( NOUT, 2070 ) NEST(1)
VIS(1) = VP12(1) / VP12L
VIS(2) = VP12(2) / VP12L
VIS(3) = VP12(3) / VP12L
VJS(1) = VKS(2)*VIS(3) - VKS(3)*VIS(2)
VJS(2) = VKS(3)*VIS(1) - VKS(1)*VIS(3)
VJS(3) = VKS(1)*VIS(2) - VKS(2)*VIS(1)
C
C NORMALIZE J FOR GOOD MEASURE
C
VJL = DSQRT( VJS(1)**2 + VJS(2)**2 + VJS(3)**2 )
IF ( VJL .EQ. 0. ) WRITE ( NOUT, 2070 ) NEST(1)
VJS(1) = VJS(1) / VJL
VJS(2) = VJS(2) / VJL
VJS(3) = VJS(3) / VJL
DO 29 I = 1,3
TUB(I) = VIS(I)
TUB(I+3) = VJS(I)
TUB(I+6) = VKS(I)
29 CONTINUE
CWKBNE 11/93 SPR93020
C
C STORE INCOMING BGPDT FOR LUMPED MASS AND ELEMENT C.S.
C
DO 30 I = 1,3
I1 = I + 1
DO 30 J = 1,4
30 BGPDM(I,J) = BGPDT(I1,J)
C
C TRANSFORM BGPDM FROM BASIC TO USER C.S.
C
DO 40 I = 1,3
IP = (I-1)*3
DO 40 J = 1,4
UGPDM(I,J) = 0.0D0
DO 40 K = 1,3
KK = IP + K
40 UGPDM(I,J) = UGPDM(I,J) + TUB(KK)*(DBLE(BGPDM(K,J))-GGU(K))
C
C
C THE ORIGIN OF THE ELEMENT C.S. IS IN THE MIDDLE OF THE ELEMENT
C
DO 50 J = 1,3
CENT(J) = 0.0D0
DO 50 I = 1,4
50 CENT(J) = CENT(J)+UGPDM(J,I)/NNODE
C
C STORE THE CORNER NODE DIFF. IN THE USER C.S.
C
X31 = UGPDM(1,3) - UGPDM(1,1)
Y31 = UGPDM(2,3) - UGPDM(2,1)
X42 = UGPDM(1,4) - UGPDM(1,2)
Y42 = UGPDM(2,4) - UGPDM(2,2)
AA = DSQRT(X31*X31 + Y31*Y31)
BB = DSQRT(X42*X42 + Y42*Y42)
IF (AA.EQ.0.D0 .OR. BB.EQ.0.D0) GO TO 1700
C
C NORMALIZE XIJ'S
C
X31 = X31/AA
Y31 = Y31/AA
X42 = X42/BB
Y42 = Y42/BB
EXI = X31 - X42
EXJ = Y31 - Y42
C
C STORE GGE ARRAY, THE OFFSET BETWEEN ELEMENT C.S. AND USER C.S.
C
GGE(1) = CENT(1)
GGE(2) = CENT(2)
GGE(3) = CENT(3)
C
GGE(4) = GGE(1) + EXI
GGE(5) = GGE(2) + EXJ
GGE(6) = GGE(3)
C
GGE(7) = GGE(1) - EXJ
GGE(8) = GGE(2) + EXI
GGE(9) = GGE(3)
C
C THE ARRAY IORDER STORES THE ELEMENT NODE ID IN
C INCREASING SIL ORDER.
C
C IORDER(1) = NODE WITH LOWEST SIL NUMBER
C IORDER(4) = NODE WITH HIGHEST SIL NUMBER
C
C ELEMENT NODE NUMBER IS THE INTEGER FROM THE NODE
C LIST G1,G2,G3,G4 . THAT IS, THE 'I' PART
C OF THE 'GI' AS THEY ARE LISTED ON THE CONNECTIVITY
C BULK DATA CARD DESCRIPTION.
C
DO 60 I = 1,4
IORDER(I) = 0
HORDER(I) = 0
KSIL(I) = SIL(I)
HSIL(I) = SIL(I)
60 CONTINUE
C
DO 80 I = 1,4
ITEMP = 1
ISIL = KSIL(1)
DO 70 J = 2,4
IF (ISIL .LE. KSIL(J)) GO TO 70
ITEMP = J
ISIL = KSIL(J)
70 CONTINUE
IORDER(I) = ITEMP
HORDER(I) = ITEMP
KSIL(ITEMP) = 99999999
80 CONTINUE
C
C ADJUST EST DATA
C
C USE THE POINTERS IN IORDER TO COMPLETELY REORDER THE
C GEOMETRY DATA INTO INCREASING SIL ORDER.
C DON'T WORRY!! IORDER ALSO KEEPS TRACK OF WHICH SHAPE
C FUNCTIONS GO WITH WHICH GEOMETRIC PARAMETERS!
C
DO 100 I = 1,4
KSIL(I) = SIL(I)
TMPTHK(I) = GPTH(I)
KCID(I) = IGPDT(1,I)
DO 90 J = 2,4
TGRID(J,I) = BGPDT(J,I)
90 CONTINUE
100 CONTINUE
DO 120 I = 1,4
IPOINT = IORDER(I)
SIL(I) = KSIL(IPOINT)
GPTH(I) = TMPTHK(IPOINT)
IGPDT(1,I) = KCID(IPOINT)
DO 110 J = 2,4
BGPDT(J,I) = TGRID(J,IPOINT)
110 CONTINUE
120 CONTINUE
C
C COMPUTE NODE NORMALS
C
CALL Q4NRMD (BGPDT,GPNORM,IORDER,IFLAG)
IF (IFLAG .EQ. 0) GO TO 130
GO TO 1700
C
C DETERMINE NODAL THICKNESSES
C
130 AVGTHK = 0.0D0
DO 160 I = 1,NNODE
IORD = IORDER(I)
DO 140 IC = 1,3
140 CURVTR(IC,IORD) = GPNORM(IC+1,I)
C
IF (GPTH(I) .EQ. 0.0) GPTH(I) = ELTH
IF (NEST(13).EQ.0 .AND. ELTH.EQ.0.0) GPTH(I) = 1.0E-14
IF (GPTH(I) .GT. 0.0) GO TO 150
WRITE (NOUT,2010) UFM,ELID
NOGO = .TRUE.
GO TO 1710
150 DGPTH(I) = GPTH(I)
AVGTHK = AVGTHK + DGPTH(I)/NNODE
160 CONTINUE
C
C NEST(13) = MID1 ID FOR MEMBRANE
C NEST(15) = MID2 ID FOR BENDING
C NEST(17) = MID3 ID FOR TRANSVERSE SHEAR
C NEST(22) = MID4 ID FOR MEMBRANE-BENDING COUPLING
C MID4 MUST BE BLANK UNLESS MID1 AND MID2 ARE NON-ZERO
C MID4 ID MUST NOT EQUAL MID1 OR MID2 ID
C (WHEN LAYER COMPOSITE IS USED, MID ID IS RAISED TO ID*100000000)
C EST(14) = MEMBRANE THICKNESS, T
C EST(16) = BENDING STIFFNESS PARAMETER, 12I/T**3
C EST(18) = TRANSVERSE SHEAR PARAMETER, TS/T
C
C 0.8333333 = 5.0/6.0
C
MOMINR = 0.0D0
TSFACT = .8333333
NOCSUB = .FALSE.
IF (NEST(15) .NE. 0) MOMINR = EST(16)
IF (NEST(17) .NE. 0) TS = EST(18)
IF ( EST(18) .EQ. .0) TS = .833333D0
C
C FIX FOR LAMINATED COMPOSITE WITH MEMBRANE BEHAVIOUR ONLY.
C REQUIRED TO PREVENT ZERO DIVIDE ERRORS.
C
IF (NEST(15).EQ.0 .AND. NEST(13).GT.100000000) TS = .833333D0
C
C SET LOGICAL NOCSUB IF EITHER MOMINR OR TS ARE NOT DEFAULT
C VALUES. THIS WILL BE USED TO OVERRIDE ALL CSUBB COMPUTATIONS.
C I.E. DEFAULT VALUES OF UNITY ARE USED.
C
EPSI = ABS(MOMINR - 1.0)
EPST = ABS(TS - TSFACT)
EPS = .05
C NOCSUB = EPSI.GT.EPS .OR. EPST.GT.EPS
IF (NEST(13) .GT. 100000000) NOCSUB = .FALSE.
C
C THE COORDINATES OF THE ELEMENT GRID POINTS HAVE TO BE
C TRANSFORMED FROM THE BASIC C.S. TO THE ELEMENT C.S.
C
CALL BETRND (TEU,GGE,0,ELID)
CALL GMMATD (TEU,3,3,0,TUB ,3,3,0,TEB )
CALL GMMATD (TUB,3,3,1,CENT,3,1,0,CENTE)
IDENTT = 0
IF (TEB(1).EQ.1.D0 .AND. TEB(5).EQ.1.D0 .AND. TEB(9).EQ.1.D0 .AND.
1 TEB(2).EQ.0.D0 .AND. TEB(3).EQ.0.D0 .AND. TEB(4).EQ.0.D0 .AND.
2 TEB(6).EQ.0.D0 .AND. TEB(7).EQ.0.D0 .AND. TEB(8).EQ.0.D0
3 ) IDENTT = 1
IP = -3
DO 170 II = 2,4
IP = IP + 3
DO 170 J = 1,NNODE
EPNORM(II,J) = 0.0
EGPDT(II,J) = 0.0
DO 170 K = 1,3
KK = IP + K
K1 = K + 1
CC = DBLE(BGPDT(K1,J)) - GGU(K)-CENTE(K)
EPNORM(II,J) = EPNORM(II,J) + TEB(KK)*GPNORM(K1,J)
170 EGPDT(II,J) = EGPDT(II,J) + SNGL(TEB(KK)*CC)
C
C BEGIN INITIALIZING MATERIAL VARIABLES
C
C SET INFLAG = 12 SO THAT SUBROUTINE MAT WILL SEARCH FOR-
C ISOTROPIC MATERIAL PROPERTIES AMONG THE MAT1 CARDS,
C ORTHOTROPIC MATERIAL PROPERTIES AMONG THE MAT8 CARDS, AND
C ANISOTROPIC MATERIAL PROPERTIES AMONG THE MAT2 CARDS.
C
INFLAG = 12
RHO = 0.0D0
ELTEMP = EST(45)
MID(1) = NEST(13)
MID(2) = NEST(15)
MID(3) = NEST(17)
MID(4) = NEST(22)
MEMBRN = MID(1).GT.0
BENDNG = MID(2).GT.0 .AND. MOMINR.GT.0.0D0
SHRFLX = MID(3).GT.0
MBCOUP = MID(4).GT.0
C
C FIGURE OUT PATH OF THE TRIPLE MULTIPLY AND THE NO. OF ROWS IN
C THE B-MATRIX (I.E. STRAIN-NODAL DISPLACEMENT MATRIX)
C
C NORPTH = MID(1).EQ.MID(2) .AND. MID(1).EQ.MID(3) .AND. MID(4).EQ.0
C 1 .AND. DABS(MOMINR-1.0D0).LE.EPS1
C
NORPTH = .FALSE.
C
C DETERMINE FACTORS TO BE USED IN CSUBB CALCULATIONS
C
C IF (.NOT.BENDNG) GO TO 290
DO 210 I = 1,4
DO 200 J = 1,NNODE
JO = IORDER(J)
IF (I .NE. JO) GO TO 200
XA(I) = EGPDT(2,J)
YB(I) = EGPDT(3,J)
ZC(I) = EGPDT(4,J)
VNT(1,I) = EPNORM(2,J)
VNT(2,I) = EPNORM(3,J)
VNT(3,I) = EPNORM(4,J)
200 CONTINUE
210 CONTINUE
C
A = 0.5D0*DABS(XA(2)+XA(3)-XA(1)-XA(4))
B = 0.5D0*DABS(YB(4)+YB(3)-YB(1)-YB(2))
IF (A .GT. B) ASPECT = B/A
IF (A .LE. B) ASPECT = A/B
THLEN = AVGTHK/A
IF (A .LT. B) THLEN = AVGTHK/B
C
C TORSION-RELATED SHEAR CORRECTION FOR 4-NODE-
C PRELIMINARY FACTORS
C
ASPCTX = A/B
ASPCTY = B/A
CSUBB4 = 1.6D0
CSUBT = 71.D0*ASPECT*(1.6D0/CSUBB4)*(1.D0+415.D0*ASPECT*THLEN**2)
CSUBTX = CSUBT*ASPCTX**2
CSUBTY = CSUBT*ASPCTY**2
C
I = 2
J = 2
JJ = 3
SINEAX = 0.0D0
SINEAY = 0.0D0
220 CALL DAXB (CURVTR(1,I-1),CURVTR(1,I),CURVE)
CC = CURVE(1)*CURVE(1) + CURVE(2)*CURVE(2) + CURVE(3)*CURVE(3)
IF (CC .LT. EPS1) GO TO 230
CC = 0.5D0*DSQRT(CC)
230 SINEAX = SINEAX + CC
IF (I .NE. 2) GO TO 240
I = 4
GO TO 220
C
240 CALL DAXB (CURVTR(1,J),CURVTR(1,JJ),CURVE)
CC = CURVE(1)*CURVE(1) + CURVE(2)*CURVE(2) + CURVE(3)*CURVE(3)
IF (CC .LT. EPS1) GO TO 250
CC = 0.5D0*DSQRT(CC)
250 SINEAY = SINEAY+CC
IF (J .NE. 2) GO TO 260
J = 1
JJ = 4
GO TO 240
260 CC = 28.0D0
SINEAX = CC*SINEAX + 1.0D0
SINEAY = CC*SINEAY + 1.0D0
IF (SINEAX .GT. SINEAY) SINEAY = SINEAX
IF (SINEAY .GT. SINEAX) SINEAX = SINEAY
C
C IRREGULAR 4-NODE CODE- GEOMETRIC VARIABLES
C
C CALCULATE AND NORMALIZE- UNIT EDGE VECTORS, UNIT NORMAL VECTORS
C
DO 270 I = 1,4
J = I + 1
IF (J .EQ. 5) J = 1
UEV(1,I) = XA(J) - XA(I)
UEV(2,I) = YB(J) - YB(I)
UEV(3,I) = ZC(J) - ZC(I)
UNV(1,I) = (VNT(1,J) + VNT(1,I))*0.50D0
UNV(2,I) = (VNT(2,J) + VNT(2,I))*0.50D0
UNV(3,I) = (VNT(3,J) + VNT(3,I))*0.50D0
CC = UEV(1,I)**2 + UEV(2,I)**2 + UEV(3,I)**2
IF (CC .EQ. 0.D0) GO TO 1700
IF (CC .GE. EPS1) CC = DSQRT(CC)
EDGEL(I) = CC
UEV(1,I) = UEV(1,I)/CC
UEV(2,I) = UEV(2,I)/CC
UEV(3,I) = UEV(3,I)/CC
CC = UNV(1,I)**2 + UNV(2,I)**2 + UNV(3,I)**2
IF (CC .EQ. 0.D0) GO TO 1700
IF (CC .GE. EPS1) CC = DSQRT(CC)
UNV(1,I) = UNV(1,I)/CC
UNV(2,I) = UNV(2,I)/CC
UNV(3,I) = UNV(3,I)/CC
270 CONTINUE
C
C CALCULATE INTERNAL NODAL ANGLES
C
DO 280 I = 1,4
J = I - 1
IF (J .EQ. 0) J = 4
ANGLEI(I)=-UEV(1,I)*UEV(1,J) -UEV(2,I)*UEV(2,J) -UEV(3,I)*UEV(3,J)
IF (DABS(ANGLEI(I)) .LT .EPS1) ANGLEI(I) = 0.0D0
280 CONTINUE
C
C SET THE INTEGRATION POINTS
C
C 290 CONTINUE
PTINT(1) = -CONST
PTINT(2) = CONST
C PTINTZ(1) = -CONST
C PTINTZ(2) = CONST
C JZTA = 2
C IF (.NOT.BENDNG) PTINTZ(1) = 0.0D0
C IF (.NOT.BENDNG) JZTA = 1
IF (HEAT) GO TO 1790
C
C TRIPLE LOOP TO SAVE THE LAST 2 ROWS OF B-MATRIX AT 2X2X2
C INTEGRATION POINTS FOR LATER MANIPULATION.
C
IF (KGG1 .EQ. 0) GO TO 400
C IF (.NOT.BENDNG) GO TO 360
I = 1
KPT= 1
C
DO 350 IXSI = 1,2
XI = PTINT(IXSI)
C
DO 350 IETA = 1,2
ETA = PTINT(IETA)
C
CALL Q4SHPD (XI,ETA,SHP,DSHP)
C
C IRREGULAR 4-NODE CODE- CALCULATION OF NODAL EDGE SHEARS
C AT THIS INTEGRATION POINT
C
DO 310 IJ = 1,4
II = IJ - 1
IF (II .EQ. 0) II = 4
IK = IJ + 1
IF (IK .EQ. 5) IK = 1
AA = SHP(IJ)
BB = SHP(IK)
C
DO 300 IS = 1,3
EDGSHR(IS,IJ) = (UEV(IS,IJ)+ANGLEI(IJ)*UEV(IS,II))*AA/
1 (1.0D0-ANGLEI(IJ)*ANGLEI(IJ))
2 + (UEV(IS,IJ)+ANGLEI(IK)*UEV(IS,IK))*BB/
3 (1.0D0-ANGLEI(IK)*ANGLEI(IK))
300 CONTINUE
310 CONTINUE
C
C SORT THE SHAPE FUNCTIONS AND THEIR DERIVATIVES INTO SIL ORDER.
C
DO 320 IS = 1,4
TMPSHP(IS ) = SHP(IS )
DSHPTP(IS ) = DSHP(IS )
320 DSHPTP(IS+4) = DSHP(IS+4)
DO 330 IS = 1,4
KK = IORDER(IS)
SHP (IS ) = TMPSHP(KK )
DSHP(IS ) = DSHPTP(KK )
330 DSHP(IS+4) = DSHPTP(KK+4)
C
DO 340 IZTA = 1,2
ZTA = PTINT(IZTA)
C
C COMPUTE THE JACOBIAN AT THIS GAUSS POINT,
C ITS INVERSE AND ITS DETERMINANT.
C
HZTA = ZTA/2.0D0
CALL JACOB2 (ELID,SHP,DSHP,DGPTH,EGPDT,EPNORM,JACOB)
IF (BADJAC) GO TO 1710
C
C COMPUTE PSI TRANSPOSE X JACOBIAN INVERSE.
C HERE IS THE PLACE WHERE THE INVERSE JACOBIAN IS FLAGED TO BE
C TRANSPOSED BECAUSE OF OPPOSITE MATRIX LOADING CONVENTION
C BETWEEN INVER AND GMMAT.
C
CALL GMMATD (PSITRN,3,3,0,JACOB,3,3,1,PHI)
C
C CALL Q4BMGD TO GET B MATRIX
C SET THE ROW FLAG TO 1. IT SIGNALS SAVING THE LAST 2 ROWS.
C
ROWFLG = 1
CALL Q4BMGD (DSHP,DGPTH,EGPDT,EPNORM,PHI,BMAT1(KPT))
340 KPT = KPT + ND2
350 CONTINUE
C
C IN PLANE SHEAR REDUCTION
C
C IF (.NOT.MEMBRN) GO TO 400
C 360 CONTINUE
XI = 0.0D0
ETA = 0.0D0
KPT = 1
KPNT= ND2
C IF (NORPTH) KPNT = NDOF
C
CALL Q4SHPD (XI,ETA,SHP,DSHP)
C
C SORT THE SHAPE FUNCTIONS AND THEIR DERIVATIVES INTO SIL ORDER.
C
DO 370 I = 1,4
TMPSHP(I ) = SHP(I )
DSHPTP(I ) = DSHP(I )
370 DSHPTP(I+4) = DSHP(I+4)
DO 380 I = 1,4
KK = IORDER(I)
SHP(I ) = TMPSHP(KK )
DSHP(I ) = DSHPTP(KK )
380 DSHP(I+4) = DSHPTP(KK+4)
C
C DO 390 IZTA = 1,JZTA
DO 390 IZTA = 1,2
C ZTA = PTINTZ(IZTA)
ZTA = PTINT(IZTA)
HZTA = ZTA/2.0D0
CALL JACOB2 (ELID,SHP,DSHP,DGPTH,EGPDT,EPNORM,JACOB)
IF (BADJAC) GO TO 1710
C
CALL GMMATD (PSITRN,3,3,0,JACOB,3,3,1,PHI)
C
C CALL Q4BMGD TO GET B-MATRIX
C SET THE ROW FLAG TO 2. IT WILL SAVE THE 3RD ROW OF B-MATRIX AT
C THE TWO INTEGRATION POINTS.
C
ROWFLG = 2
CALL Q4BMGD (DSHP,DGPTH,EGPDT,EPNORM,PHI,XYBMAT(KPT))
390 KPT = KPT + KPNT
C
C SET THE ARRAY OF LENGTH 4 TO BE USED IN CALLING TRANSD.
C NOTE THAT THE FIRST WORD IS THE COORDINATE SYSTEM ID WHICH
C WILL BE SET IN POSITION LATER.
C
400 DO 410 IEC = 2,4
410 ECPT(IEC) = 0.0
C
C FETCH MATERIAL PROPERTIES
C
C
C EACH MATERIAL PROPERTY MATRIX G HAS TO BE TRANSFORMED FROM
C THE MATERIAL COORDINATE SYSTEM TO THE ELEMENT COORDINATE
C SYSTEM. THESE STEPS ARE TO BE FOLLOWED-
C
C 1- IF MCSID HAS BEEN SPECIFIED, SUBROUTINE TRANSD IS CALLED
C TO CALCULATE TBM-MATRIX (MATERIAL TO BASIC TRANSFORMATION).
C TBM-MATRIX IS THEN PREMULTIPLIED BY TEB-MATRIX TO OBTAIN
C TEM-MATRIX.
C THEN USING THE PROJECTION OF X-AXIS, AN ANGLE IS CALCULATED
C UPON WHICH STEP 2 IS TAKEN.
C
C 2- IF THETAM HAS BEEN SPECIFIED, SUBROUTINE ANGTRD IS CALLED
C TO CALCULATE TEM-MATRIX (MATERIAL TO ELEMENT TRANSFORMATION).
C
C T
C 3- G = U G U
C E M
C
C
IF (NEST(11) .EQ. 0) GO TO 470
MCSID = NEST(10)
C
C CALCULATE TEM-MATRIX USING MCSID
C
420 IF (MCSID .GT. 0) GO TO 440
DO 430 I = 1,9
430 TEM(I) = TEB(I)
GO TO 450
440 NECPT(1) = MCSID
CALL TRANSD (ECPT,TBM)
C
C MULTIPLY TEB AND TBM MATRICES
C
CALL GMMATD (TEB,3,3,0,TBM,3,3,0,TEM)
C
C CALCULATE THETAM FROM THE PROJECTION OF THE X-AXIS OF THE
C MATERIAL C.S. ON TO THE XY PLANE OF THE ELEMENT C.S.
C
450 CONTINUE
XM = TEM(1)
YM = TEM(4)
IF (DABS(XM).GT.EPS1 .OR. DABS(YM).GT.EPS1) GO TO 460
NEST(2) = MCSID
J = 231
GO TO 1720
460 THETAM = DATAN2(YM,XM)
GO TO 480
C
C CALCULATE TEM-MATRIX USING THETAM
C
470 THETAM = DBLE(EST(10))*DEGRAD
C IF (THETAM .EQ. 0.0D0) GO TO 490
IF (THETAM .EQ. 0.0D0) GO TO 490
480 CALL ANGTRD (THETAM,1,TUM)
CALL GMMATD (TEU,3,3,0,TUM,3,3,0,TEM)
GO TO 510
C
C DEFAULT IS CHOSEN, LOOK FOR VALUES OF MCSID AND/OR THETAM
C ON THE PSHELL CARD.
C
490 IF (NEST(24) .EQ. 0) GO TO 500
MCSID = NEST(23)
GO TO 420
C
500 THETAM = DBLE(EST(23))*DEGRAD
GO TO 480
C
510 CONTINUE
IF (HEAT) GO TO 1810
C
DO 600 M = 1,36
600 GI(M) = 0.0D0
SINMAT = 0.
COSMAT = 0.
IGOBK = 0
C
C BEGIN M-LOOP TO FETCH PROPERTIES FOR EACH MATERIAL ID
C
M = 0
610 M = M + 1
IF (M .GT. 4) GO TO 790
IF (M.EQ.4 .AND. IGOBK.EQ.1) GO TO 800
MATID = MID(M)
IF (MATID.EQ.0 .AND. M.NE.3) GO TO 610
IF (MATID.EQ.0 .AND. M.EQ.3 .AND. .NOT.BENDNG) GO TO 610
IF (MATID.EQ.0 .AND. M.EQ.3 .AND. BENDNG) MATID = MID(2)
C
IF (M-1) 640,630,620
620 IF (MATID.EQ.MID(M-1) .AND. IGOBK.EQ.0) GO TO 640
630 CALL MAT (ELID)
640 CONTINUE
C
IF (MEMBRN .AND. M.EQ.1) RHO = MATOUT(7)
RHOX = RHO
IF (RHO .EQ. 0.0D0) RHOX = 1.0D0
IF (KGG1 .EQ. 0) GO TO 610
C
IF (MEMBRN .AND. M.NE.1 .OR. .NOT.MEMBRN .AND. M.NE.2) GO TO 650
GSUBE = MATOUT(12)
IF (MATSET .EQ. 8.) GSUBE = MATOUT(16)
650 CONTINUE
C
IF (M.EQ.2 .AND. NORPTH) GO TO 670
COEFF = 1.0D0
LPOINT = (M-1)*9 + 1
C
CALL Q4GMGD (M,COEFF,GI(LPOINT))
C
CWKBDB 11/93 SPR93020
C IF (M .GT. 0) GO TO 670
C IF (.NOT.SHRFLX .AND. BENDNG) GO TO 660
C NEST(2) = MATID
C J = 232
C GO TO 1720
C
C 660 M = -M
C ALREADY DELETED BEFORE SPR93020 670 IF (.NOT.BENDNG) GO TO 760
C 670 CONTINUE
C MTYPE = IFIX(MATSET+.05) - 2
C IF (NOCSUB) GO TO 760
C GO TO (760,680,720,760), M
C
C 680 IF (MTYPE) 690,700,710
C 690 ENORX = MATOUT(16)
C ENORY = MATOUT(16)
C GO TO 760
C 700 ENORX = MATOUT(1)
C ENORY = MATOUT(4)
C GO TO 760
C 710 ENORX = MATOUT(1)
C ENORY = MATOUT(3)
C GO TO 760
C
C 720 IF (MTYPE) 730,740,750
C 730 GNORX = MATOUT(6)
C GNORY = MATOUT(6)
C GO TO 760
C
C 740 GNORX = MATOUT(1)
C GNORY = MATOUT(4)
C GO TO 760
C
C 750 GNORX = MATOUT(6)
C GNORY = MATOUT(5)
C IF (GNORX .EQ. 0.0D0) GNORX = MATOUT(4)
C IF (GNORY .EQ. 0.0D0) GNORY = MATOUT(4)
C 760 CONTINUE
C
CWKBDE 11/93 SPR93020
C IF (MATSET .EQ. 1.0) GO TO 610
IF (M .EQ. 3) GO TO 770
U(1) = TEM(1)*TEM(1)
U(2) = TEM(4)*TEM(4)
U(3) = TEM(1)*TEM(4)
U(4) = TEM(2)*TEM(2)
U(5) = TEM(5)*TEM(5)
U(6) = TEM(2)*TEM(5)
U(7) = TEM(1)*TEM(2)*2.0D0
U(8) = TEM(4)*TEM(5)*2.0D0
U(9) = TEM(1)*TEM(5) + TEM(2)*TEM(4)
L=3
GO TO 780
C
770 U(1) = TEM(5)*TEM(9) + TEM(6)*TEM(8)
U(2) = TEM(2)*TEM(9) + TEM(8)*TEM(3)
U(3) = TEM(4)*TEM(9) + TEM(7)*TEM(6)
U(4) = TEM(1)*TEM(9) + TEM(3)*TEM(7)
L = 2
C
780 CALL GMMATD (U(1),L,L,1,GI(LPOINT),L,L,0,GT(1))
CALL GMMATD (GT(1),L,L,0,U(1),L,L,0,GI(LPOINT))
CWKBNB 11/93 SPR93020
IF (M .GT. 0) GO TO 670
IF (.NOT.SHRFLX .AND. BENDNG) GO TO 660
NEST(2) = MATID
J = 232
GO TO 1720
660 M = -M
670 CONTINUE
MTYPE = IFIX(MATSET+.05) - 2
IF (NOCSUB) GO TO 760
GO TO (760,680,720,760), M
CWKBNE 11/93 SPR93020
CWKBNB 2/94 SPR93020
680 IF ( MTYPE ) 690, 700, 710
690 ENORX = MATOUT(16)
ENORY = MATOUT(16)
DNUX = GI( LPOINT+1 ) / GI( LPOINT )
DNUY = GI( LPOINT+3 ) / GI( LPOINT+4 )
GO TO 760
700 ENORX = MATOUT(1)
ENORY = MATOUT(4)
DNUX = GI( LPOINT+1 ) / GI( LPOINT )
DNUY = GI( LPOINT+3 ) / GI( LPOINT+4 )
GO TO 760
710 ENORX = MATOUT(1)
ENORY = MATOUT(3)
DNUX = GI(LPOINT+1)/GI(LPOINT)
DNUY = GI(LPOINT+3)/GI(LPOINT+4)
CWKBNE 2/94 SPR93020
GO TO 760
720 IF ( MTYPE ) 730, 740, 750
730 GNORX = MATOUT(6)
GNORY = MATOUT(6)
GO TO 760
740 GNORX = MATOUT(1)
GNORY = MATOUT(4)
GO TO 760
750 GNORX = MATOUT(6)
GNORY = MATOUT(5)
IF ( GNORX .EQ. 0.0D0 ) GNORX = MATOUT(4)
IF ( GNORY .EQ. 0.0D0 ) GNORY = MATOUT(4)
760 CONTINUE
GO TO 610
C
C END OF M-LOOP
C
790 CONTINUE
IF (MID(3) .LT. 100000000) GO TO 800
IF (GI(19).NE.0.D0 .OR. GI(20).NE.0.D0 .OR. GI(21).NE.0.D0 .OR.
1 GI(22).NE.0.D0) GO TO 800
IGOBK = 1
M = 2
MID(3) = MID(2)
GO TO 610
800 CONTINUE
C
NOCSUB = ENORX.EQ.0.0D0 .OR. ENORY.EQ.0.0D0 .OR.
1 GNORX.EQ.0.0D0 .OR. GNORY.EQ.0.0D0 .OR.
2 MOMINR.EQ.0.0D0
C
MATTYP = IFIX(MATSET+.05)
C
C IF MGG1 IS NON-ZERO AND RHO IS GREATER THAN 0.0,
C THEN COMPUTE THE MASS MATRIX.
C
IF (MGG1 .EQ. 0) GO TO 810
IF (JCORED+144 .LE. NCORED) GO TO 810
810 CONTINUE
C
LIMIT = JCORED + NDOF*NDOF
DO 820 I = JCORED,LIMIT
820 AKGG(I) = 0.0D0
DO 830 I = 1,NODESQ
XMASS(I) = 0.0D0
830 XMTMP(I) = 0.0D0
AREA = 0.0D0
VOL = 0.0D0
C
C
C HERE BEGINS THE TRIPLE LOOP ON STATEMENTS 1310 AND 1300 TO
C GAUSS INTEGRATE FOR THE ELEMENT MASS AND STIFFNESS MATRICES.
C -----------------------------------------------------------
C
DO 1310 IXSI = 1,2
XI = PTINT(IXSI)
DO 1310 IETA = 1,2
ETA = PTINT(IETA)
CALL Q4SHPD (XI,ETA,SHP,DSHP)
C
C SORT THE SHAPE FUNCTIONS AND THEIR DERIVATIVES INTO SIL ORDER.
C
DO 900 I = 1,4
TMPSHP(I ) = SHP(I )
DSHPTP(I ) = DSHP(I )
900 DSHPTP(I+4) = DSHP(I+4)
DO 910 I = 1,4
KK = IORDER(I)
SHP (I ) = TMPSHP(KK )
DSHP(I ) = DSHPTP(KK )
910 DSHP(I+4) = DSHPTP(KK+4)
CALL GMMATD (SHP,1,NNODE,0,DGPTH,1,NNODE,1,THK)
REALI = MOMINR*THK*THK*THK/12.0D0
C REALI = THK*THK*THK/12.0D0
TSI = TS*THK
C
C SKIP MASS CALCULATIONS IF NOT REQUESTED
C
IF (NSM .NE. 0.0) GO TO 920
IF (MGG1 .EQ. 0) GO TO 1020
IF (RHO .EQ. 0.D0) GO TO 1020
IF (RHO .GT. 0.D0) GO TO 920
WRITE (NOUT,2030) UWM,RHO,MID(1),NEST(1)
C NOGO = .TRUE.
C GO TO 1710
C
C COMPUTE S AND T VECTORS AT THE MID-SURFACE
C FOR MASS CALCULATIONS ONLY.
C
920 CONTINUE
DO 930 I = 1,2
IPOINT = 4*(I-1)
DO 930 J = 1,3
V(I,J) = 0.0D0
DO 930 K = 1,NNODE
KTEMP = K + IPOINT
JTEMP = J + 1
V(I,J)= V(I,J) + DSHP(KTEMP)*BGPDT(JTEMP,K)
930 CONTINUE
C
C COMPUTE S CROSS T AT THE MID-SURFACE FOR MASS CALCULATIONS.
C
V(3,1) = V(1,2)*V(2,3) - V(2,2)*V(1,3)
V(3,2) = V(1,3)*V(2,1) - V(2,3)*V(1,1)
V(3,3) = V(1,1)*V(2,2) - V(2,1)*V(1,2)
AREA2 = V(3,1)*V(3,1) + V(3,2)*V(3,2) + V(3,3)*V(3,3)
C
C AREA2 = NORM OF S CROSS T IS THE AREA OF THE ELEMENT
C AS COMPUTED AT THIS GAUSS POINT.
C
CWKBR 11/93 SPR 93015 IF (AREA2 .LT. EPS1) GO TO 1700
IF ( AREA2 .LE. 0.0 ) GO TO 1700
C
AREA2 = DSQRT(AREA2)
AREA = AREA + AREA2
VOLI = AREA2*THK
VOL = VOL + VOLI
C
IF (MGG1 .EQ. 0) GO TO 1020
IF (CPMASS .GT. 0) GO TO 1000
I4 = 1
DO 960 J4 = 1,NNODE
XMASS(I4) = XMASS(I4) + VOLI*RHOX*SHP(J4)
960 I4 = I4 + NNODE + 1
GO TO 1020
C
C COMPUTE CONSISTENT MASS MATRIX
C
C COMPUTE THE CONTRIBUTION TO THE MASS MATRIX
C FROM THIS INTEGRATION POINT.
C
1000 CALL GMMATD (SHP,1,NNODE,1,SHP,1,NNODE,0,XMTMP)
C
C ADD MASS CONTRIBUTION FROM THIS INTEGRATION POINT
C TO THE ELEMENT MASS MATRIX.
C
DO 1010 I = 1,NODESQ
1010 XMASS(I) = XMASS(I) + VOLI*RHOX*XMTMP(I)
C
1020 IF (KGG1 .EQ. 0) GO TO 1330
C
C BEGIN STIFFNESS COMPUTATIONS
C
C SET DEFAULT VALUES OF CSUBB FACTORS
C
SFCTY1 = 1.0D0
SFCTY2 = 1.0D0
SFCTX1 = 1.0D0
SFCTX2 = 1.0D0
TSMFX = 1.0D0
TSMFY = 1.0D0
IF (NOCSUB) GO TO 1090
IF (.NOT.BENDNG) GO TO 1090
C NUNORX = MOMINR*ENORX/(2.0D0*GNORX) - 1.0D0
C NUNORY = MOMINR*ENORY/(2.0D0*GNORY) - 1.0D0
CWKBNB 2/94 SPR93020
NUNORX = MOMINR*ENORX/(2.0D0*GNORX) - 1.0D0
NUNORY = MOMINR*ENORY/(2.0D0*GNORY) - 1.0D0
CWKBNE 2/94 SPR93020
C
C NOTE- THE ABOVE EXPRESSIONS FOR NUNORX AND NUNORY WERE MODIFIED
C BY G.CHAN/UNISYS 1988
C
CWKBDB 2/94 SPR93020
C EIX = MOMINR*ENORX
C EIY = MOMINR*ENORY
C TGX = 2.0D0*GNORX
C TGY = 2.0D0*GNORY
C NUNORX = EIX/TGX - 1.0D0
C NUNORY = EIY/TGY - 1.0D0
C IF (EIX .GT. TGX) NUNORX= 1.0D0 - TGX/EIX
C IF (EIY .GT. TGY) NUNORY= 1.0D0 - TGY/EIY
CWKBDE 2/94 SPR93020
IF (NUNORX .GT. 0.999999D0) NUNORX = 0.999999D0
IF (NUNORY .GT. 0.999999D0) NUNORY = 0.999999D0
CWKBNB 2/94 SPR93020
IF ( NUNORX .LE. 0. ) NUNORX = DNUX
IF ( NUNORY .LE. 0. ) NUNORY = DNUY
CWKBNE 2/94 SPR93020
C IF (NUNORX .GT. .49D0) NUNORX = 0.49D0
C IF (NUNORY .GT. .49D0) NUNORY = 0.49D0
CC = ASPECT
C
C NOTE- THE FOLLOWING 2 FORMULATIONS WERE PUT IN ON 4/30/85 IN
C CONJUNCTION WITH THE OUT-OF-PLANE SHEAR CORRECTION BASED
C ON T.J.R HUGHES. THE FLEXIBLE SOLUTION PROVIDES MORE
C ACCURATE RESULTS FOR PLATES, ALTHOUGH IT MIGHT CONVERGE
C SLOWLY. THE STIFFER SOLUTION (COMMENTED OUT) IS O.K. FOR
C PLATES AND SHOULD HAVE A BETTER CONVERGENCE.
C
C THEY WERE MODIFIED ON 5/3/85
C
C 4-NODE CSUBB FORMULATION AS OF 5/3/85 (FLEXIBLE SOLUTION)
C REPLACES THE ONE COMMENTED OUT IMMEDIATELY ABOVE
C
W1 = 1.0D0 + 4400.0D0*THLEN*THLEN*THLEN*THLEN
IF (CC .LT. 0.2D0) GO TO 1030
DSUB4 = (18.375D0-11.875D0*CC)*W1
GO TO 1040
1030 DSUB4 = (159.85D0*CC-15.97D0)*W1
C
C 4-NODE CSUBB FORMULATION AS OF 5/3/85 (STIFFER SOLUTION)
C
C W1 = 1.0D0 + 2.5D0*THLEN + 1.0D04*THLEN**5
C IF (CC .LT. 0.2D0) GO TO 1030
C DSUB4 = 18.0D0*W1
C GO TO 1040
C1030 DSUB4 = (179.85D0*CC-17.97D0)*W1
1040 IF (DSUB4 .LT. .01D0) DSUB4 = 0.01D0
IF (DSUB4 .GT. 2.0D3) DSUB4 = 2000.0D0
DSUB = DSUB4
COEFT = CONST
AX = A
IF (ETA .LT .0.0D0) AX = A + COEFT*(XA(2)-XA(1)-A)
IF (ETA .GT. 0.0D0) AX = A + COEFT*(XA(3)-XA(4)-A)
PSIINX = 20.0D0*DSUB*REALI*SINEAX*(1.0D0+ASPECT*ASPECT)/
1 (TSI*(1.0D0-NUNORX)*AX*AX)
DSUB = DSUB4
COEFT = CONST
BY = B
IF (XI .LT. 0.0D0) BY = B + COEFT*(YB(4)-YB(1)-B)
IF (XI .GT. 0.0D0) BY = B + COEFT*(YB(3)-YB(2)-B)
PSIINY = 20.0D0*DSUB*REALI*SINEAY*(1.0D0+ASPECT*ASPECT)/
1 (TSI*(1.0D0-NUNORY)*BY*BY)
IF (.NOT.SHRFLX) GO TO 1050
TSMFX = PSIINX/(1.0D0+PSIINX)
TSMFY = PSIINY/(1.0D0+PSIINY)
GO TO 1060
1050 TSMFX = PSIINX
TSMFY = PSIINY
C
1060 CONTINUE
IF (TSMFX .LE. 0.0D0) TSMFX = EPS1
IF (TSMFY .LE. 0.0D0) TSMFY = EPS1
C
C FILL IN THE 7X7 MATERIAL PROPERTY MATRIX D FOR NORPTH
C
IF (.NOT.NORPTH) GO TO 1090
DO 1070 IG = 1,7
DO 1070 JG = 1,7
1070 DFOUR(IG,JG) = 0.0D0
C
DO 1080 IG = 1,3
IG1 = (IG-1)*3
DO 1080 JG = 1,3
JG1 = JG + IG1
1080 DFOUR(IG,JG) = GI(JG1)
GO TO 1150
C
C FILL IN THE 10X10 G-MATRIX WHEN MID4 IS NOT PRESENT
C
1090 DO 1100 IG = 1,10
DO 1100 JG = 1,10
1100 GFOUR(IG,JG) = 0.0D0
IF (MBCOUP) GO TO 1150
C
IF (.NOT.MEMBRN) GO TO 1120
DO 1110 IG = 1,3
IG1 = (IG-1)*3
DO 1110 JG = 1,3
JG1 = JG + IG1
1110 GFOUR(IG,JG) = GI(JG1)
C
1120 IF (.NOT.BENDNG) GO TO 1250
DO 1130 IG = 4,6
IG2 = (IG-2)*3
DO 1130 JG = 4,6
JG2 = JG + IG2
1130 GFOUR(IG,JG) = GI(JG2)*MOMINR
C
IF (.NOT.MEMBRN) GO TO 1150
DO 1140 IG = 1,3
IG1 = (IG-1)*3
KG = IG + 3
DO 1140 JG = 1,3
JG1 = JG + IG1
LG = JG + 3
GFOUR(IG,LG) = GI(JG1)
1140 GFOUR(KG,JG) = GI(JG1)
1150 CONTINUE
C
C IRREGULAR 4-NODE CODE- CALCULATION OF NODAL EDGE SHEARS
C AT THIS INTEGRATION POINT
C
DO 1210 IJ = 1,4
II = IJ - 1
IF (II .EQ. 0) II = 4
IK = IJ + 1
IF (IK .EQ. 5) IK = 1
C
DO 1160 IR = 1,4
IF (IJ .NE. IORDER(IR)) GO TO 1160
IOJ = IR
GO TO 1170
1160 CONTINUE
1170 DO 1180 IR = 1,4
IF (IK .NE. IORDER(IR)) GO TO 1180
IOK = IR
GO TO 1190
1180 CONTINUE
1190 AA = SHP(IOJ)
BB = SHP(IOK)
C
DO 1200 IS = 1,3
EDGSHR(IS,IJ) = (UEV(IS,IJ)+ANGLEI(IJ)*UEV(IS,II))*AA/
1 (1.0D0-ANGLEI(IJ)*ANGLEI(IJ))
2 + (UEV(IS,IJ)+ANGLEI(IK)*UEV(IS,IK))*BB/
3 (1.0D0-ANGLEI(IK)*ANGLEI(IK))
1200 CONTINUE
1210 CONTINUE
C
C TORSION-RELATED SHEAR CORRECTION FOR 4-NODE-
C SET-UP OF EXPANDED SHEAR MATERIAL PROPERTY MATRICES (G OR D)
C
CSUBX = 20.0D0*REALI/(TSI*(1.0D0-NUNORX)*A*A)
CSUBY = 20.0D0*REALI/(TSI*(1.0D0-NUNORY)*B*B)
SFCTR1 = CSUBB4*CSUBX
SFCTR2 = CSUBTX*CSUBX
IF (.NOT.SHRFLX) GO TO 1220
SFCTR1 = SFCTR1/(1.0D0+SFCTR1)
SFCTR2 = SFCTR2/(1.0D0+SFCTR2)
1220 CONTINUE
SFCTX1 = SFCTR1 + SFCTR2
SFCTX2 = SFCTR1 - SFCTR2
SFCTR1 = CSUBB4*CSUBY
SFCTR2 = CSUBTY*CSUBY
IF (.NOT.SHRFLX) GO TO 1230
SFCTR1 = SFCTR1/(1.0D0+SFCTR1)
SFCTR2 = SFCTR2/(1.0D0+SFCTR2)
1230 CONTINUE
SFCTY1 = SFCTR1 + SFCTR2
SFCTY2 = SFCTR1 - SFCTR2
C
C FILL IN THE EXPANDED MATERIAL PROPERTY MATRIX
C
IF (NORPTH) GO TO 1240
GFOUR( 7, 7) = 0.25D0*SFCTY1*TS*GI(19)
GFOUR( 8, 8) = 0.25D0*SFCTY1*TS*GI(19)
GFOUR( 8, 7) = 0.25D0*SFCTY2*TS*GI(19)
GFOUR( 7, 8) = GFOUR(8,7)
GFOUR( 9, 9) = 0.25D0*SFCTX1*TS*GI(22)
GFOUR(10,10) = 0.25D0*SFCTX1*TS*GI(22)
GFOUR(10, 9) = 0.25D0*SFCTX2*TS*GI(22)
GFOUR( 9,10) = GFOUR(10,9)
GFOUR( 7, 9) = DSQRT(TSMFX*TSMFY)*TS*GI(20)
GFOUR( 9, 7) = GFOUR(7,9)
GO TO 1250
C
1240 DFOUR(4,4) = 0.25D0*SFCTY1*TS*GI(19)
DFOUR(5,5) = 0.25D0*SFCTY1*TS*GI(19)
DFOUR(5,4) = 0.25D0*SFCTY2*TS*GI(19)
DFOUR(4,5) = DFOUR(5,4)
DFOUR(6,6) = 0.25D0*SFCTX1*TS*GI(22)
DFOUR(7,7) = 0.25D0*SFCTX1*TS*GI(22)
DFOUR(7,6) = 0.25D0*SFCTX2*TS*GI(22)
DFOUR(6,7) = DFOUR(7,6)
DFOUR(4,6) = DSQRT(TSMFX*TSMFY)*TS*GI(20)
DFOUR(6,4) = DFOUR(4,6)
1250 CONTINUE
C
C DO 1300 IZTA = 1,JZTA
DO 1300 IZTA = 1,2
ZTA = PTINT(IZTA)
IBOT = (IZTA-1)*ND2
C
HZTA = ZTA/2.0D0
C
C TORSION-RELATED SHEAR CORRECTION FOR 4-NODE-
C SET-UP OF POINTERS TO THE SAVED B-MATRIX
C
IPTX1 = ((IXSI-1)*2+IETA-1)*2*ND2 + IBOT
IPTX2 = ((IXSI-1)*2+2-IETA)*2*ND2 + IBOT
IPTY1 = ((IXSI-1)*2+IETA-1)*2*ND2 + IBOT
IPTY2 = ((2-IXSI)*2+IETA-1)*2*ND2 + IBOT
C IF (NORPTH) IBOT = IBOT/2
C
C FILL IN THE 10X10 G-MATRIX IF MID4 IS PRESENT
C
IF (.NOT.MBCOUP) GO TO 1290
DO 1260 IG = 1,3
IG1 = (IG-1)*3
DO 1260 JG = 1,3
JG1 = JG + IG1
JG4 = JG1 + 27
1260 GFOUR(IG,JG) = GI(JG1)
C
DO 1270 IG = 4,6
IG2 = (IG-2)*3
DO 1270 JG = 4,6
JG2 = JG + IG2
JG4 = JG2 + 18
1270 GFOUR(IG,JG) = GI(JG2)*MOMINR
C
DO 1280 IG = 1,3
IG4 = (IG+8)*3
KG = IG + 3
DO 1280 JG = 1,3
JG4 = JG + IG4
JG1 = JG4 - 27
LG = JG + 3
GFOUR(IG,LG) = -GI(JG4)*ZTA*6.0D0+GI(JG1)
1280 GFOUR(KG,JG) = -GI(JG4)*ZTA*6.0D0+GI(JG1)
1290 CONTINUE
C
C COMPUTE THE JACOBIAN AT THIS GAUSS POINT,
C ITS INVERSE AND ITS DETERMINANT.
C
CALL JACOB2 (ELID,SHP,DSHP,DGPTH,EGPDT,EPNORM,JACOB)
IF (BADJAC) GO TO 1710
C
C COMPUTE PSI TRANSPOSE X JACOBIAN INVERSE.
C HERE IS THE PLACE WHERE THE INVERSE JACOBIAN IS FLAGED TO BE
C TRANSPOSED BECAUSE OF OPPOSITE MATRIX LOADING CONVENTION
C BETWEEN INVER AND GMMAT.
C
CALL GMMATD (PSITRN,3,3,0,JACOB,3,3,1,PHI)
C
C CALL Q4BMGD TO GET B-MATRIX. SET THE ROW FLAG TO 3.
C IT WILL RETURN THE FIRST 6 ROWS OF B-MATRIX.
C
ROWFLG = 3
CALL Q4BMGD (DSHP,DGPTH,EGPDT,EPNORM,PHI,BFOUR(1))
C
C REPLACE ABOVE Q4BMGD BY THE FOLLOWING LINE IF TRPLMD IS NOT USED
C CALL Q4BMGD (DSHP,DGPTH,EGPDT,EPNORM,PHI,BMATRX)
C
C TORSION-RELATED SHEAR CORRECTION FOR 4-NODE -
C SET-UP OF B-MATRIX AND TRIPLE MULTIPLY
C
C
CALL TRPLMD (GFOUR,DFOUR,BFOUR,BMAT1,XYBMAT,MATTYP,JCORED,DETJ)
C (TRPLMD CAN BE REPLACED BY NEXT 40 (APROX.) LINES)
C
C ND63 = ND6
C ND74 = ND7
C IF (.NOT.NORPTH) GO TO 1291
C ND63 = ND3
C ND74 = ND4
C1291 DO 1292 IX = 1,NDOF
C BFOUR(IX) = BMATRX(IX)
C BFOUR(IX+NDOF) = BMATRX(IX+NDOF)
C BFOUR(IX+ND2 ) = XYBMAT(IX+IBOT)
C BFOUR(IX+ND5 ) = XYBMAT(IX+IBOT+NDOF)
C BFOUR(IX+ND63) = BMAT1(IX+IPTY1)
C BFOUR(IX+ND74) = BMAT1(IX+IPTY2)
C BFOUR(IX+ND74+NDOF) = BMAT1(IX+IPTX1+NDOF)
C1292 BFOUR(IX+ND74+ND2 ) = BMAT1(IX+IPTX2+NDOF)
C
C IF (NORPTH) GO TO 1294
C DO 1293 IX = 1,NDOF
C BFOUR(IX+ND3) = BMATRX(IX+ND3)
C BFOUR(IX+ND4) = BMATRX(IX+ND4)
C1293 CONTINUE
C NNX = 10
C CALL GMMATD (GFOUR,NNX,NNX,0,BFOUR,NNX,NDOF,0,STRESR)
C GO TO 1295
C
C1294 NNX = 7
C CALL GMMATD (DFOUR,NNX,NNX,0,BFOUR,NNX,NDOF,0,STRESR)
C1295 NNY = NNX*NDOF
C DO 1296 KBAR = 1,NNY
C1296 BFOUR(KBAR) = BFOUR(KBAR)*DETJ
C
C COMPUTE THE CONTRIBUTION TO THE STIFFNESS MATRIX FROM THIS GAUSS
C INTEGRATION POINT. NOTE THAT THE -1 IN THE GMMATD CALL KEEPS A
C RUNNING SUM ON AKGG.
C
C CALL GMMATD (BFOUR,NNX,NDOF,-1,STRESR,NNX,NDOF,0,AKGG(JCORED))
C
1300 CONTINUE
1310 CONTINUE
C
C EQUALIZE THE OFF- DIAGNOAL TERMS TO GUARANTEE PERFECT SYMMETRIC
C MATRIX IF NO DAMPING INVLOVED
C
IF (GSUBE .NE. 0.0) GO TO 1330
IJ = JCORED - 1
NDOFM1 = NDOF - 1
DO 1320 II = 1,NDOFM1
IP1 = II + 1
IM1 = (II-1)*NDOF + IJ
DO 1320 JJ = IP1,NDOF
I = IM1 + JJ
J = (JJ-1)*NDOF + II + IJ
TEMP = (AKGG(I) + AKGG(J))*.5D0
IF (DABS(TEMP) .LT. 1.0D-17) TEMP = 0.0D0
AKGG(I) = TEMP
AKGG(J) = TEMP
1320 CONTINUE
C
C END OF STIFFNESS LOOP
C
C ADD NON-STRUCTURAL MASS
C
1330 CONTINUE
IF (MGG1 .EQ. 0) GO TO 1410
IF (RHO.EQ.0.D0 .AND. NSM.EQ.0.0) GO TO 1410
C IF (CPMASS .GT. 0) GO TO 1410
IF (NSM .EQ. 0.0) GO TO 1410
IF (VOL.EQ.0.D0 .OR. RHOX.EQ.0.D0) WRITE (NOUT,2060) SFM,ELID,
1 AREA,VOL,RHOX,MGG1,KGG1
FACTOR = (VOL*RHO+NSM*AREA)/(VOL*RHOX)
DO 1400 I = 1,NODESQ
1400 XMASS(I) = XMASS(I)*FACTOR
1410 CONTINUE
C
C PICK UP THE GLOBAL TO BASIC TRANSFORMATIONS FROM THE CSTM.
C
DO 1412 I = 1,36
1412 TRANS(I) = 0.0D0
C DO 1414 I = 2,8
C1414 TRANS1(I) = 0.0D0
C TRANS1(1) = 1.0D0
C TRANS1(5) = 1.0D0
C TRANS1(9) = 1.0D0
C
DO 1450 I = 1,NNODE
NOTRAN(I) = 0
IPOINT = 9*(I-1) + 1
IF (IGPDT(1,I) .LE. 0) GO TO 1420
IGPTH(1) = IGPDT(1,I)
GPTH (2) = BGPDT(2,I)
GPTH (3) = BGPDT(3,I)
GPTH (4) = BGPDT(4,I)
C
C NOTE THAT THE 6X6 TRANSFORMATION WHICH WILL BE USED LATER
C IN THE TRIPLE MULTIPLICATION TO TRANSFORM THE ELEMENT
C STIFFNESS MATRIX FROM BASIC TO GLOBAL COORDINATES, IS BUILT
C UPON THE 3X3 TRANSFORMATION FROM GLOBAL TO BASIC TBG-MATRIX.
C THIS IS DUE TO THE DIFFERENCE IN TRANSFORMATION OF ARRAYS
C AND MATRICES.
C
CALL TRANSD (GPTH,TBG)
CALL GMMATD (TEB,3,3,0,TBG,3,3,0,TRANS(IPOINT))
GO TO 1450
C
1420 IF (IDENTT.NE.1 .OR. OFFSET.NE.0.0D0) GO TO 1430
NOTRAN(I) = 1
GO TO 1450
C
1430 DO 1440 J = 1,9
1440 TRANS(IPOINT+J-1) = TEB(J)
1450 CONTINUE
C
C
C HERE WE SHIP OUT THE STIFFNESS AND DAMPING MATRICES.
C ----------------------------------------------------
C
IF (KGG1 .EQ. 0) GO TO 1600
C
C SET UP I-LOOP TO DUMP OUT BASIC TO GLOBAL TRANSFORMED, NODAL
C PARTITIONED (6 D.O.F. PER NODE) COLUMNS OF THE ELEM. STIFFNESS.
C
C THIS MEANS WE ARE SENDING TO EMGOUT 6 COLUMNS OF THE ELEMENT
C STIFFNESS MATRIX AT A TIME. EACH BUNCH OF 6 COLUMNS CORRESPOND
C TO ONE PARTICULAR NODE OF THE ELEMENT. FOR THE MASS MATRIX, WE
C ONLY SEND 3 COLUMNS PER NODE TO EMGOUT SINCE THE OTHER 3 D.O.F.
C ARE ZERO ANYWAY. THE CODE WORD (DICT(4)) TELLS EMGOUT WHICH
C COLUMNS ARE THE NON ZERO ONES THAT WE ARE SENDING. (SEE SECTION
C 6.8.3.5.1 OF THE PROGRAMMER MANUAL)
C
C
DICT(1) = ESTID
DICT(2) = 1
DICT(3) = NDOF
DICT(4) = 63
NPART = NDOF*6
DO 1560 I = 1,NNODE
IBEGIN = 6*(I-1) + JCORED - 1
C
C DUMP AN UNTRANSFORMED NODAL COLUMN PARTITION.
C
DO 1500 J = 1,NDOF
KPOINT = NDOF*(J-1) + IBEGIN
LPOINT = 6*(J-1)
DO 1500 K = 1,6
1500 COLSTF(LPOINT+K) = AKGG(KPOINT+K)
IF (NOTRAN(I) .EQ. 1) GO TO 1515
C
C THIS COLUMN PARTITION NEEDS TO BE TRANSFORMED TO GLOBAL
C COORDINATES. (SEE PAGE 2.3-43 OF THE PROGRAMMER MANUAL)
C
C LOAD THE 6X6 TRANSFORMATION
C
CALL TLDRD (OFFSET,I,TRANS,TRANS1)
C
C TRANSFORM THE NODAL COLUMN PARTITION.
C
CALL GMMATD (COLSTF,NDOF,6,0,TRANS1,6,6,0,COLTMP)
DO 1510 II = 1,NPART
1510 COLSTF(II) = COLTMP(II)
C
C NOW TRANSFORM THE ROWS OF THIS PARTITION.
C
1515 DO 1530 M = 1,NNODE
IF (NOTRAN(M) .EQ. 1) GO TO 1530
MPOINT = 36*(M-1) + 1
C
C LOAD THE 6X6 TRANSFORMATION
C
CALL TLDRD (OFFSET,M,TRANS,TRANS1)
C
C TRANSFORM THE 6 ROWS FOR THIS SUBPARTITION
C
CALL GMMATD (TRANS1,6,6,1,COLSTF(MPOINT),6,6,0,COLTMP)
IIPNT = MPOINT - 1
DO 1520 II = 1,36
1520 COLSTF(IIPNT+II) = COLTMP(II)
1530 CONTINUE
C
C HERE WE MUST CHANGE FROM THE ROW LOADING CONVENTION
C FOR GMMATD TO THE COLUMN LOADING CONVENTION FOR EMGOUT.
C
DO 1550 II = 1,6
IPOINT = NDOF*(II-1)
DO 1550 JJ = 1,NDOF
JPOINT = 6*(JJ-1)
COLTMP(IPOINT+JJ) = COLSTF(JPOINT+II)
1550 CONTINUE
C
C DUMP THE TRANSFORMED NODAL COLUMN PARTITION
C
IEOE = 0
IF (I .EQ. NNODE) IEOE = 1
ADAMP = GSUBE
C
C INTEGER 1 IN THE NEXT TO LAST FORMAL PARAMETER OF
C EMGOUT MEANS WE ARE SENDING STIFFNESS DATA.
C
CALL EMGOUT (COLTMP,COLTMP,NPART,IEOE,DICT,1,IPREC)
1560 CONTINUE
C
C
C HERE WE SHIP OUT THE MASS MATRIX.
C ---------------------------------
C
1600 IF (MGG1 .EQ. 0) GO TO 1710
C
NDOF = NNODE*3
NPART = NDOF*3
DICT(3) = NDOF
DICT(4) = 7
ADAMP = 0.0D0
C
C SET UP I-LOOP TO PROCESS AND DUMP THE NODAL COLUMN PARTITIONS.
C
DO 1690 I = 1,NNODE
DO 1610 IJK = 1,NPART
1610 AMGG(JCORED-1+IJK) = 0.0D0
C
C SET UP J-LOOP TO LOAD THE UNTRANSFORMED NODAL COLUMN PARTITION.
C
DO 1620 J = 1,NNODE
IPOINT = 9*(J-1) + JCORED
JPOINT = IPOINT + 4
KPOINT = IPOINT + 8
IFROM = NNODE*(J-1) + I
XMASSO = XMASS(IFROM)
AMGG(IPOINT) = XMASSO
AMGG(JPOINT) = XMASSO
AMGG(KPOINT) = XMASSO
1620 CONTINUE
IF (NOTRAN(I) .EQ. 1) GO TO 1670
C
C THIS COLUMN PARTITION NEEDS TO BE TRANSFORMED
C TO GLOBAL COORDINATES.
C
DO 1640 M = 1,NNODE
MPOINT = 9*(M-1) + JCORED
CALL GMMATD (AMGG(MPOINT),3,3,0,TRANS(9*I-8),3,3,0,TMPMAS)
IICORE = MPOINT - 1
DO 1630 K = 1,9
1630 AMGG(IICORE+K) = TMPMAS(K)
1640 CONTINUE
C
C SET UP M-LOOP TO TRANSFORM THE NODAL ROW PARTITIONS
C OF THIS NODAL COLUMN PARTITION.
C
DO 1660 M = 1,NNODE
MPOINT = 9*(M-1) + JCORED
C
C TRANSFORM THE 3 ROWS FOR THIS SUBPARTITION. THIS IS CORRECT
C (3 ROWS). REMEMBER THAT FOR THE MASS MATIIX FOR THIS ELEMENT
C THERE ARE NO MASS MOMENT OF INERTIA TERMS. THIS GIVES THREE
C ROWS OF ZERO TERMS INTERSPERSED BETWEEN 3 ROWS OF NONZERO
C TRANSLATIONAL MASS TERMS FOR EACH NODE.
C
CALL GMMATD (TRANS(9*M-8),3,3,1,AMGG(MPOINT),3,3,0,TMPMAS)
IICORE = MPOINT - 1
DO 1650 K = 1,9
1650 AMGG(IICORE+K) = TMPMAS(K)
1660 CONTINUE
C
C HERE WE MUST CHANGE FROM THE ROW LOADING CONVENTION
C FOR GMMATD TO THE COLUMN LOADING CONVENTION FOR EMGOUT.
C
1670 DO 1680 II = 1,3
IPOINT = NDOF*(II-1)
DO 1680 JJ = 1,NDOF
JPOINT = 3*(JJ-1) + JCORED - 1
1680 COLTMP(IPOINT+JJ) = AMGG(JPOINT+II)
C
C DUMP THIS TRANSFORMED MASS NODAL COLUMN PARTITION.
C
IEOE = 0
IF (I .EQ. NNODE) IEOE = 1
C
C INTEGER 2 IN THE NEXT TO LAST FORMAL PARAMETER OF
C EMGOUT MEANS WE ARE SENDING MASS DATA.
C
CALL EMGOUT (COLTMP,COLTMP,NPART,IEOE,DICT,2,IPREC)
1690 CONTINUE
GO TO 1710
C
1700 J = 230
GO TO 1720
C
1710 CONTINUE
RETURN
C
1720 CALL MESAGE (30,J,NEST)
IF (L38 .EQ. 1) CALL MESAGE (-61,0,0)
NOGO = .TRUE.
GO TO 1710
1730 CALL MESAGE (-30,234,NAM)
C
C
C HEAT FLOW OPTION STARTS HERE.
C
C WE NEED TO RESTORE THE ORIGINAL ORDER OF SILS AND BGPDT DATA
C
1790 J = 1
DO 1800 I = 1,20
EST(I+J) = SAVE(I)
IF (I .EQ. 4) J = 24
1800 CONTINUE
C
INFLAG = 2
COSMAT = 1.0
SINMAT = 0.0
MATID = NEST(13)
CALL HMAT (ELID)
GI(1) = DBLE(KHEAT(1))
GI(2) = DBLE(KHEAT(2))
GI(3) = GI(2)
GI(4) = DBLE(KHEAT(3))
ANIS = TYPE.NE.4 .AND. TYPE.NE.-1
C COMMENT- ANIS = .FALSE. MEANS ISOTROPIC THERMAL CONDUCTIVITY.
C
IF (ANIS) GO TO 400
GO TO 1820
1810 CONTINUE
TEM(3) = TEM(4)
TEM(4) = TEM(5)
CALL GMMATD (TEM,2,2,0,GI,2,2,0,GT)
CALL GMMATD (GT,2,2,0,TEM,2,2,1,GI)
1820 CONTINUE
DO 1830 I = 1,16
HTCON(I) = 0.0D0
HTCAP(I) = 0.0D0
1830 CONTINUE
DO 1840 I = 5,8
HSIL(I) = 0
1840 HORDER(I) = 0
C
DO 1890 IXSI = 1,2
XI = PTINT(IXSI)
DO 1890 IETA = 1,2
ETA = PTINT(IETA)
DO 1870 IZTA = 1,2
ZETA = PTINT(IZTA)
C
CALL TERMSD (NNODE,DGPTH,EPNORM,EGPDT,HORDER,HSIL,BTERMS)
DVOL = DETERM
C
DO 1850 I = 1,4
1850 ECPT(I) = GI(I)*DVOL
WEITC = DVOL*HTCP
C
IP = 1
DO 1860 I = 1,NNODE
IDN = I + NNODE
HTFLX(IP+1) = ECPT(3)*BTERMS(I) + ECPT(4)*BTERMS(IDN)
HTFLX(IP ) = ECPT(1)*BTERMS(I) + ECPT(2)*BTERMS(IDN)
1860 IP = IP + 2
CALL GMMATD (BTERMS,2,NNODE,-1,HTFLX,NNODE,2,1,HTCON)
C
1870 CONTINUE
IF (HTCP .EQ. 0.0) GO TO 1890
IP = 0
DO 1880 I = 1,NNODE
DHEAT = WEITC*SHP(I)
DO 1880 J = 1,NNODE
IP = IP + 1
HTCAP(IP) = HTCAP(IP) + DHEAT*SHP(J)
1880 CONTINUE
1890 CONTINUE
DICT(1) = ESTID
DICT(2) = 1
DICT(3) = NNODE
DICT(4) = 1
IF (HTCP .EQ. 0.0) GO TO 1900
ADAMP = 1.0
CALL EMGOUT (HTCAP,HTCAP,NODESQ,1,DICT,3,IPREC)
1900 CONTINUE
ADAMP = 0.0
CALL EMGOUT (HTCON,HTCON,NODESQ,1,DICT,1,IPREC)
GO TO 1710
C
2010 FORMAT (A23,', THE ELEMENT THICKNESS FOR QUAD4 EID =',I9,
1 ' IS NOT COMPLETELY DEFINED.')
2030 FORMAT (A25,', RHO = ',1P,D12.4,' IS ILLEGAL FROM MATERIAL ID =',
1 I9,' FOR QUAD4 EID =',I9)
2060 FORMAT (A25,', ZERO VOLUME OR DENSITY FOR QUAD4 ELEMENT ID =',I9,
1 ', AREA,VOL,RHO =',3D12.3, /70X,'MGG1,KGG1 =',2I8)
END
|