File: quad4d.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (1718 lines) | stat: -rw-r--r-- 52,495 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
      SUBROUTINE QUAD4D
C
C     FORMS STIFFNESS AND MASS MATRICES FOR THE QUAD4 PLATE ELEMENT
C
C     DOUBLE PRECISION VERSION
C
C     EST  LISTING
C
C     WORD       TYPE         DESCRIPTION
C     --------------------------------------------------------------
C       1          I    ELEMENT ID, EID
C       2 THRU 5   I    SILS, GRIDS 1 THRU 4
C       6 THRU 9   R    MEMBRANE THICKNESSES T AT GRIDS 1 THRU 4
C      10          R    MATERIAL PROPERTY ORIENTATION ANGLE, THETA
C               OR I    COORD. SYSTEM ID (SEE TM ON CQUAD4 CARD)
C      11          I    TYPE FLAG FOR WORD 10
C      12          R    GRID ZOFF  (OFFSET)
C      13          I    MATERIAL ID FOR MEMBRANE, MID1
C      14          R    ELEMENT THICKNESS, T (MEMBRANE, UNIFORMED)
C      15          I    MATERIAL ID FOR BENDING, MID2
C      16          R    BENDING INERTIA FACTOR, I
C      17          I    MATERIAL ID FOR TRANSVERSE SHEAR, MID3
C      18          R    TRANSV. SHEAR CORRECTION FACTOR TS/T
C      19          R    NON-STRUCTURAL MASS, NSM
C      20 THRU 21  R    Z1, Z2  (STRESS FIBRE DISTANCES)
C      22          I    MATERIAL ID FOR MEMBRANE-BENDING COUPLING, MID4
C      23          R    MATERIAL ANGLE OF ROTATION, THETA
C               OR I    COORD. SYSTEM ID (SEE MCSID ON PSHELL CARD)
C      24          I    TYPE FLAG FOR WORD 23
C      25          I    INTEGRATION ORDER
C      26          R    STRESS ANGLE OF ROTATION, THETA
C               OR I    COORD. SYSTEM ID (SEE SCSID ON PSHELL CARD)
C      27          I    TYPE FLAG FOR WORD 26
C      28          R    ZOFF1 (OFFSET)  OVERRIDDEN BY EST(12)
C      29 THRU 44  I/R  CID,X,Y,Z - GRIDS 1 THRU 4
C      45          R    ELEMENT TEMPERATURE
C
C
      LOGICAL          HEAT,MEMBRN,BENDNG,SHRFLX,MBCOUP,NORPTH,BADJAC,
     1                 ANIS,NOCSUB,NOGO
      INTEGER          NEST(45),IEGPDT(4,4),CPMASS,FLAGS,NOUT,ELTYPE,
     1                 ELID,ESTID,SIL(4),KSIL(4),KCID(4),DICT(9),
     2                 IGPDT(4,4),IGPTH(4),NAM(2),MID(4),TYPE,NECPT(4),
     3                 ROWFLG,NOTRAN(4),HSIL(8),HORDER(8)
      REAL             TSFACT,EPSI,EPST,EPS,GPTH(4),MATOUT,EGPDT(4,4),
     1                 GSUBE,BGPDM(3,4),GPNORM(4,4),BGPDT(4,4),ADAMP,
     2                 MATSET,NSM,EPNORM(4,4),KHEAT,HTCP,SINMAT,COSMAT,
     3                 ECPT(4),SAVE(20)
      DOUBLE PRECISION AMGG(1),AKGG,DGPTH(4),BMAT1(384),XYBMAT(96),
     1                 ZETA,MOMINR,VOL,VOLI,TH,AREA,AREA2,DETJ,
     2                 PTINT(2),EPS1,XI,ETA,ZTA,HZTA,THK,
     3                 XMASSO,V(3,3),COEFF,XMTMP(16),XMASS(16),
     4                 TMPMAS(9),JACOB(3,3),TMPSHP(4),TMPTHK(4),
     5                 DSHPTP(8),PSITRN(9),PHI(9),SHP(4),DSHP(8),
     6                 TGRID(4,4),COLSTF(144),TRANS(36),TRANS1(36),
     7                 COLTMP(144),AVGTHK,TEMP
CWKBD 2/94 SPR93020      DOUBLE PRECISION EIX,EIY,TGX,TGY
CWKBI 9/94 SPR93020
      DOUBLE PRECISION VKL, V12DK, VP12L, VJL
CWKBI 2/94 SPR93020
      DOUBLE PRECISION DNUX, DNUY
C
C     DOUBLE PRECISION PTINTZ(2),BMATRX(144),STRESR(240)
C
C     DATA FOR ADDING ELEMENT, USER AND MATERIAL COORDINATE SYSTEMS
C
      DOUBLE PRECISION AA,BB,CC,X31,Y31,X42,Y42,EXI,EXJ,UGPDM(3,4),
     1                 CENT(3),CENTE(3),TBM(9),TEB(9),TEM(9),TUB(9),
     2                 TUM(9),TEU(9),TBG(9),GGE(9),GGU(9)
C
C     DATA FOR ADDING CSUBB, MIDI, MATERIAL TRANS., AND HEAT
C
      DOUBLE PRECISION RHO,TS,TSI,REALI,RHOX,THETAM,XM,YM,U(9),A,B,
     1                 ASPECT,THLEN,XA(4),YB(4),GT(9),GI(36),
     2                 ENORX,ENORY,GNORX,GNORY,NUNORX,NUNORY,DSUB,DSUB4,
     3                 PSIINX,PSIINY,TSMFX,TSMFY,CURVTR(3,4),CURVE(3),
     4                 SINEAX,SINEAY,W1,PI,TWOPI,RADDEG,DEGRAD,
     5                 HTFLX(12),HTCAP(16),HTCON(16),DVOL,DHEAT,WEITC,
     6                 BTERMS(32),DETERM
CWKBNB 11/93 SPR 93020
      DOUBLE PRECISION VD1(3), VD2(3), VKN(3), VKS(3)
     1,                V12(3), V41(3), VP12(3),VIS(3), VJS(3)
CWKBNE 11/93 SPR 93020
C
C     DATA FOR IRREGULAR 4-NODE
C
      DOUBLE PRECISION ZC(4),UEV,ANGLEI,EDGEL,EDGSHR,UNV,VNT(3,4),CONST,
     1                 ASPCTX,ASPCTY,GFOUR(10,10),DFOUR(7,7),BFOUR(240),
     2                 CSUBB4,CSUBX,CSUBY,CSUBT,CSUBTX,CSUBTY,OFFSET,
     3                 SFCTR1,SFCTR2,SFCTX1,SFCTX2,SFCTY1,SFCTY2
      CHARACTER        UFM*23,UWM*25,UIM*29,SFM*25
      COMMON /XMSSG /  UFM,UWM,UIM,SFM
C
C     ICORE = FIRST WORD OF OPEN CORE
C     JCORE = NEXT AVAILABLE LOCATION IN OPEN CORE.
C     NCORE = CURRENT LAST AVAILABLE LOCATION IN OPEN CORE
C
      COMMON /EMGPRM/  ICORE,JCORE,NCORE,ICSTM,NCSTM,IMAT,NMAT,IHMAT,
     1                 NHMAT,IDIT,NDIT,ICONG,NCONG,LCONG,ANYCON,
     2                 FLAGS(3),PRECIS,ERROR,HEAT,CPMASS,LCSTM,LMAT,
     3                 LHMAT,KFLAGS(3),L38
      COMMON /EMGEST/  EST(45)
      COMMON /EMGDIC/  ELTYPE,LDICT,NLOCS,ELID,ESTID
      COMMON /SYSTEM/  SYS(100)
      COMMON /MATIN /  MATID,INFLAG,ELTEMP,DUMMY,SINMAT,COSMAT
      COMMON /MATOUT/  MATOUT(25)
      COMMON /HMTOUT/  KHEAT(7),TYPE
CZZ   COMMON /ZZEMGX/  AKGG(1)
      COMMON /ZZZZZZ/  AKGG(20000)
      COMMON /Q4DT  /  DETJ,HZTA,PSITRN,NNODE,BADJAC,N1
      COMMON /TERMS /  MEMBRN,BENDNG,SHRFLX,MBCOUP,NORPTH
      COMMON /Q4COMD/  ANGLEI(4),EDGSHR(3,4),EDGEL(4),UNV(3,4),
     1                 UEV(3,4),ROWFLG,IORDER(4)
      COMMON /CONDAD/  PI,TWOPI,RADDEG,DEGRAD
      COMMON /COMJAC/  XI,ETA,ZETA,DETERM,DUM2,LTYPFL
      COMMON /CJACOB/  TH,VI(3),VJ(3),VN(3)
      COMMON /TRPLM /  NDOF,IBOT,IPTX1,IPTX2,IPTY1,IPTY2
      EQUIVALENCE      (SYS(01) ,SYSBUF  ), (SYS(02) ,NOUT      ),
     1                 (SYS(03) ,NOGO    ), (SYS(55) ,IPREC     )
C     EQUIVALENCE      (SYS(48) ,ICSUB4  ), (SYS(49) ,ICSUBB    ),
C    1                 (SYS(50) ,ICSUBT  ), (SYS(75) ,ICSUB8    )
      EQUIVALENCE      (FLAGS(1),KGG1    ), (FLAGS(2),MGG1      ),
     1                 (ADAMP   ,DICT(5) ), (IGPTH(1),GPTH(1)   ),
     2                 (EST(1)  ,NEST(1) ), (INT     ,NEST(25)  ),
     3                 (ELTH    ,EST(14) ), (GPTH(1) ,EST(6)    ),
     4                 (ZOFF    ,EST(12) ), (ZOFF1   ,EST(28)   ),
     5                 (SIL(1)  ,NEST(2) ), (MATSET  ,MATOUT(25)),
     6                 (NSM     ,EST(19) ), (AMGG(1) ,AKGG(1)   ),
     7                 (HTCP    ,KHEAT(4)), (HTFLX(1),TMPMAS(1) ),
     8                 (HTCAP(1),XMASS(1)), (HTCON(1),XMTMP(1)  ),
     9                 (NECPT(1),ECPT(1) ),
     O                 (BGPDT(1,1) ,EST(29)   ),
     1                 (IEGPDT(1,1),EGPDT(1,1)),
     2                 (IGPDT(1,1) ,BGPDT(1,1))
      DATA    EPS1  /  1.0D-7 /
      DATA    CONST /  0.57735026918962D0/
      DATA    NAM   /  4HQUAD,4H4D       /
C
      ELID   = NEST(1)
      LTYPFL = 1
      OFFSET = ZOFF
      IF (ZOFF .EQ. 0.0) OFFSET = ZOFF1
C
C     CHECK FOR SUFFICIENT OPEN CORE FOR ELEMENT STIFFNESS
C
      JCORED = JCORE/IPREC + 1
      NCORED = NCORE/IPREC - 1
      IF ((JCORED+576).LE.NCORED .OR. HEAT .OR. KGG1.EQ.0) GO TO 10
      GO TO 1730
C
C     COPY THE SILS AND BGPDT DATA INTO SAVE ARRAY SINCE THE DATA
C     WILL BE REORDERED BASED ON INCREASING SILS.
C
   10 J = 1
      DO 15 I = 1,20
      SAVE(I) = EST(I+J)
      IF (I .EQ. 4) J = 24
   15 CONTINUE
C
      NNODE = 4
      N1    = 4
      NODESQ= NNODE*NNODE
      NDOF  = NNODE*6
      NDOF3 = NNODE*3
      ND2   = NDOF*2
      ND3   = NDOF*3
      ND4   = NDOF*4
      ND5   = NDOF*5
      ND6   = NDOF*6
      ND7   = NDOF*7
C
C     FILL IN ARRAY GGU WITH THE COORDINATES OF GRID POINTS 1, 2 AND 4.
C     THIS ARRAY WILL BE USED LATER TO DEFINE THE USER COORD. SYSTEM
C     WHILE CALCULATING TRANSFORMATIONS INVOLVING THIS COORD. SYSTEM.
C
      DO 20 I = 1,3
      II = (I-1)*3
      IJ = I
      IF (IJ .EQ. 3) IJ = 4
      DO 20 J = 1,3
      JJ = J + 1
   20 GGU(II+J) = BGPDT(JJ,IJ)
CWKBD 11/93 SPR93020      CALL BETRND (TUB,GGU,0,ELID)
CWKBNB 11/93 SPR93020
C    ADD FROM SHEAR ELEMENT
C
C    COMPUTE DIAGONAL VECTORS
C
      DO 21 I = 1,3
      II=I+1
      VD1(I) = BGPDT(II,3) - BGPDT(II,1)
   21 VD2(I) = BGPDT(II,4) - BGPDT(II,2)
C
C    COMPUTE THE NORMAL VECTOR VKN, NORMALIZE, AND COMPUTE THE PROJECTED
C    AREA, PA
C
      VKN(1) = VD1(2)*VD2(3) - VD1(3)*VD2(2)
      VKN(2) = VD1(3)*VD2(1) - VD1(1)*VD2(3)
      VKN(3) = VD1(1)*VD2(2) - VD1(2)*VD2(1)
      VKL = DSQRT( VKN(1)**2 + VKN(2)**2 + VKN(3)**2 )
      IF ( VKL .EQ. 0. ) WRITE( NOUT, 2070 ) NEST(1)
2070  FORMAT(//,' ILLEGAL GEOMETRY FOR QUAD4 ELEMENT, ID=',I10 )
      VKS(1) = VKN(1)/VKL
      VKS(2) = VKN(2)/VKL
      VKS(3) = VKN(3)/VKL
      PA = VKL/2.D0
C
C  COMPUTE SIDES -12- AND -41-
      DO 25 I = 1,3
      II = I + 1
      V12(I) = BGPDT(II,2) - BGPDT(II,1)
      V41(I) = BGPDT(II,1) - BGPDT(II,4)
25    CONTINUE
C
C  COMPUTE DOT PRODUCT, V12DK, OR V12 AND VK, THE VECTORS VP12, VI, VJ
C
      V12DK   = V12(1)*VKS(1) + V12(2)*VKS(2) + V12(3)*VKS(3)
      VP12(1) = V12(1) - V12DK*VKS(1)
      VP12(2) = V12(2) - V12DK*VKS(2)
      VP12(3) = V12(3) - V12DK*VKS(3)
      VP12L   = DSQRT( VP12(1)**2 + VP12(2)**2 + VP12(3)**2 )
      IF ( VP12L .EQ. 0. ) WRITE( NOUT, 2070 ) NEST(1)
      VIS(1) = VP12(1) / VP12L
      VIS(2) = VP12(2) / VP12L
      VIS(3) = VP12(3) / VP12L
      VJS(1) = VKS(2)*VIS(3) - VKS(3)*VIS(2)
      VJS(2) = VKS(3)*VIS(1) - VKS(1)*VIS(3)
      VJS(3) = VKS(1)*VIS(2) - VKS(2)*VIS(1)
C
C   NORMALIZE J FOR GOOD MEASURE
C
      VJL = DSQRT( VJS(1)**2 + VJS(2)**2 + VJS(3)**2 )
      IF ( VJL .EQ. 0. ) WRITE ( NOUT, 2070 ) NEST(1)
      VJS(1) = VJS(1) / VJL
      VJS(2) = VJS(2) / VJL
      VJS(3) = VJS(3) / VJL
      DO 29 I = 1,3
      TUB(I)   = VIS(I)
      TUB(I+3) = VJS(I)
      TUB(I+6) = VKS(I)
29    CONTINUE
CWKBNE 11/93 SPR93020
C
C     STORE INCOMING BGPDT FOR LUMPED MASS AND ELEMENT C.S.
C
      DO 30 I = 1,3
      I1 = I + 1
      DO 30 J = 1,4
   30 BGPDM(I,J) = BGPDT(I1,J)
C
C     TRANSFORM BGPDM FROM BASIC TO USER C.S.
C
      DO 40 I = 1,3
      IP = (I-1)*3
      DO 40 J = 1,4
      UGPDM(I,J) = 0.0D0
      DO 40 K = 1,3
      KK = IP + K
   40 UGPDM(I,J) = UGPDM(I,J) + TUB(KK)*(DBLE(BGPDM(K,J))-GGU(K))
C
C
C     THE ORIGIN OF THE ELEMENT C.S. IS IN THE MIDDLE OF THE ELEMENT
C
      DO 50 J = 1,3
      CENT(J) = 0.0D0
      DO 50 I = 1,4
   50 CENT(J) = CENT(J)+UGPDM(J,I)/NNODE
C
C     STORE THE CORNER NODE DIFF. IN THE USER C.S.
C
      X31 = UGPDM(1,3) - UGPDM(1,1)
      Y31 = UGPDM(2,3) - UGPDM(2,1)
      X42 = UGPDM(1,4) - UGPDM(1,2)
      Y42 = UGPDM(2,4) - UGPDM(2,2)
      AA  = DSQRT(X31*X31 + Y31*Y31)
      BB  = DSQRT(X42*X42 + Y42*Y42)
      IF (AA.EQ.0.D0 .OR. BB.EQ.0.D0) GO TO 1700
C
C     NORMALIZE XIJ'S
C
      X31 = X31/AA
      Y31 = Y31/AA
      X42 = X42/BB
      Y42 = Y42/BB
      EXI = X31 - X42
      EXJ = Y31 - Y42
C
C     STORE GGE ARRAY, THE OFFSET BETWEEN ELEMENT C.S. AND USER C.S.
C
      GGE(1) = CENT(1)
      GGE(2) = CENT(2)
      GGE(3) = CENT(3)
C
      GGE(4) = GGE(1) + EXI
      GGE(5) = GGE(2) + EXJ
      GGE(6) = GGE(3)
C
      GGE(7) = GGE(1) - EXJ
      GGE(8) = GGE(2) + EXI
      GGE(9) = GGE(3)
C
C     THE ARRAY IORDER STORES THE ELEMENT NODE ID IN
C     INCREASING SIL ORDER.
C
C     IORDER(1) = NODE WITH LOWEST  SIL NUMBER
C     IORDER(4) = NODE WITH HIGHEST SIL NUMBER
C
C     ELEMENT NODE NUMBER IS THE INTEGER FROM THE NODE
C     LIST  G1,G2,G3,G4 .  THAT IS, THE 'I' PART
C     OF THE 'GI' AS THEY ARE LISTED ON THE CONNECTIVITY
C     BULK DATA CARD DESCRIPTION.
C
      DO 60 I = 1,4
      IORDER(I) = 0
      HORDER(I) = 0
      KSIL(I) = SIL(I)
      HSIL(I) = SIL(I)
   60 CONTINUE
C
      DO 80 I = 1,4
      ITEMP = 1
      ISIL  = KSIL(1)
      DO 70 J = 2,4
      IF (ISIL .LE. KSIL(J)) GO TO 70
      ITEMP = J
      ISIL  = KSIL(J)
   70 CONTINUE
      IORDER(I) = ITEMP
      HORDER(I) = ITEMP
      KSIL(ITEMP) = 99999999
   80 CONTINUE
C
C     ADJUST EST DATA
C
C     USE THE POINTERS IN IORDER TO COMPLETELY REORDER THE
C     GEOMETRY DATA INTO INCREASING SIL ORDER.
C     DON'T WORRY!! IORDER ALSO KEEPS TRACK OF WHICH SHAPE
C     FUNCTIONS GO WITH WHICH GEOMETRIC PARAMETERS!
C
      DO 100 I = 1,4
      KSIL(I) = SIL(I)
      TMPTHK(I) = GPTH(I)
      KCID(I) = IGPDT(1,I)
      DO 90 J = 2,4
      TGRID(J,I) = BGPDT(J,I)
   90 CONTINUE
  100 CONTINUE
      DO 120 I = 1,4
      IPOINT  = IORDER(I)
      SIL(I)  = KSIL(IPOINT)
      GPTH(I) = TMPTHK(IPOINT)
      IGPDT(1,I) = KCID(IPOINT)
      DO 110 J = 2,4
      BGPDT(J,I) = TGRID(J,IPOINT)
  110 CONTINUE
  120 CONTINUE
C
C     COMPUTE NODE NORMALS
C
      CALL Q4NRMD (BGPDT,GPNORM,IORDER,IFLAG)
      IF (IFLAG .EQ. 0) GO TO 130
      GO TO 1700
C
C     DETERMINE NODAL THICKNESSES
C
  130 AVGTHK = 0.0D0
      DO 160 I = 1,NNODE
      IORD = IORDER(I)
      DO 140 IC = 1,3
  140 CURVTR(IC,IORD) = GPNORM(IC+1,I)
C
      IF (GPTH(I) .EQ. 0.0) GPTH(I) = ELTH
      IF (NEST(13).EQ.0 .AND. ELTH.EQ.0.0) GPTH(I) = 1.0E-14
      IF (GPTH(I) .GT. 0.0) GO TO 150
      WRITE (NOUT,2010) UFM,ELID
      NOGO = .TRUE.
      GO TO 1710
  150 DGPTH(I) = GPTH(I)
      AVGTHK = AVGTHK + DGPTH(I)/NNODE
  160 CONTINUE
C
C     NEST(13) = MID1 ID FOR MEMBRANE
C     NEST(15) = MID2 ID FOR BENDING
C     NEST(17) = MID3 ID FOR TRANSVERSE SHEAR
C     NEST(22) = MID4 ID FOR MEMBRANE-BENDING COUPLING
C                MID4 MUST BE BLANK UNLESS MID1 AND MID2 ARE NON-ZERO
C                MID4 ID MUST NOT EQUAL MID1 OR MID2 ID
C     (WHEN LAYER COMPOSITE IS USED, MID ID IS RAISED TO ID*100000000)
C      EST(14) = MEMBRANE THICKNESS, T
C      EST(16) = BENDING STIFFNESS PARAMETER, 12I/T**3
C      EST(18) = TRANSVERSE SHEAR  PARAMETER, TS/T
C
C     0.8333333 = 5.0/6.0
C
      MOMINR = 0.0D0
      TSFACT = .8333333
      NOCSUB = .FALSE.
      IF (NEST(15) .NE.  0) MOMINR = EST(16)
      IF (NEST(17) .NE.  0) TS = EST(18)
      IF ( EST(18) .EQ. .0) TS = .833333D0
C
C     FIX FOR LAMINATED COMPOSITE WITH MEMBRANE BEHAVIOUR ONLY.
C     REQUIRED TO PREVENT ZERO DIVIDE ERRORS.
C
      IF (NEST(15).EQ.0 .AND. NEST(13).GT.100000000) TS = .833333D0
C
C     SET LOGICAL NOCSUB IF EITHER MOMINR OR TS ARE NOT DEFAULT
C     VALUES. THIS WILL BE USED TO OVERRIDE ALL CSUBB COMPUTATIONS.
C     I.E. DEFAULT VALUES OF UNITY ARE USED.
C
      EPSI = ABS(MOMINR - 1.0)
      EPST = ABS(TS  - TSFACT)
      EPS  = .05
C     NOCSUB = EPSI.GT.EPS .OR. EPST.GT.EPS
      IF (NEST(13) .GT. 100000000) NOCSUB = .FALSE.
C
C     THE COORDINATES OF THE ELEMENT GRID POINTS HAVE TO BE
C     TRANSFORMED FROM THE BASIC C.S. TO THE ELEMENT C.S.
C
      CALL BETRND (TEU,GGE,0,ELID)
      CALL GMMATD (TEU,3,3,0,TUB ,3,3,0,TEB  )
      CALL GMMATD (TUB,3,3,1,CENT,3,1,0,CENTE)
      IDENTT = 0
      IF (TEB(1).EQ.1.D0 .AND. TEB(5).EQ.1.D0 .AND. TEB(9).EQ.1.D0 .AND.
     1    TEB(2).EQ.0.D0 .AND. TEB(3).EQ.0.D0 .AND. TEB(4).EQ.0.D0 .AND.
     2    TEB(6).EQ.0.D0 .AND. TEB(7).EQ.0.D0 .AND. TEB(8).EQ.0.D0
     3    ) IDENTT = 1
      IP = -3
      DO 170 II = 2,4
      IP = IP + 3
      DO 170 J = 1,NNODE
      EPNORM(II,J) = 0.0
      EGPDT(II,J)  = 0.0
      DO 170 K = 1,3
      KK = IP + K
      K1 = K  + 1
      CC = DBLE(BGPDT(K1,J)) - GGU(K)-CENTE(K)
      EPNORM(II,J) = EPNORM(II,J) + TEB(KK)*GPNORM(K1,J)
  170 EGPDT(II,J)  = EGPDT(II,J)  + SNGL(TEB(KK)*CC)
C
C     BEGIN INITIALIZING MATERIAL VARIABLES
C
C     SET INFLAG = 12 SO THAT SUBROUTINE MAT WILL SEARCH FOR-
C     ISOTROPIC MATERIAL PROPERTIES AMONG THE MAT1 CARDS,
C     ORTHOTROPIC MATERIAL PROPERTIES AMONG THE MAT8 CARDS, AND
C     ANISOTROPIC MATERIAL PROPERTIES AMONG THE MAT2 CARDS.
C
      INFLAG = 12
      RHO    = 0.0D0
      ELTEMP = EST(45)
      MID(1) = NEST(13)
      MID(2) = NEST(15)
      MID(3) = NEST(17)
      MID(4) = NEST(22)
      MEMBRN = MID(1).GT.0
      BENDNG = MID(2).GT.0 .AND. MOMINR.GT.0.0D0
      SHRFLX = MID(3).GT.0
      MBCOUP = MID(4).GT.0
C
C     FIGURE OUT PATH OF THE TRIPLE MULTIPLY AND THE NO. OF ROWS IN
C     THE B-MATRIX (I.E. STRAIN-NODAL DISPLACEMENT MATRIX)
C
C     NORPTH = MID(1).EQ.MID(2) .AND. MID(1).EQ.MID(3) .AND. MID(4).EQ.0
C    1        .AND. DABS(MOMINR-1.0D0).LE.EPS1
C
      NORPTH = .FALSE.
C
C     DETERMINE FACTORS TO BE USED IN CSUBB CALCULATIONS
C
C     IF (.NOT.BENDNG) GO TO 290
      DO 210 I = 1,4
      DO 200 J = 1,NNODE
      JO = IORDER(J)
      IF (I .NE. JO) GO TO 200
      XA(I) = EGPDT(2,J)
      YB(I) = EGPDT(3,J)
      ZC(I) = EGPDT(4,J)
      VNT(1,I) = EPNORM(2,J)
      VNT(2,I) = EPNORM(3,J)
      VNT(3,I) = EPNORM(4,J)
  200 CONTINUE
  210 CONTINUE
C
      A = 0.5D0*DABS(XA(2)+XA(3)-XA(1)-XA(4))
      B = 0.5D0*DABS(YB(4)+YB(3)-YB(1)-YB(2))
      IF (A .GT. B) ASPECT = B/A
      IF (A .LE. B) ASPECT = A/B
      THLEN = AVGTHK/A
      IF (A .LT. B) THLEN = AVGTHK/B
C
C     TORSION-RELATED SHEAR CORRECTION FOR 4-NODE-
C     PRELIMINARY FACTORS
C
      ASPCTX = A/B
      ASPCTY = B/A
      CSUBB4 = 1.6D0
      CSUBT  = 71.D0*ASPECT*(1.6D0/CSUBB4)*(1.D0+415.D0*ASPECT*THLEN**2)
      CSUBTX = CSUBT*ASPCTX**2
      CSUBTY = CSUBT*ASPCTY**2
C
      I  = 2
      J  = 2
      JJ = 3
      SINEAX = 0.0D0
      SINEAY = 0.0D0
  220 CALL DAXB (CURVTR(1,I-1),CURVTR(1,I),CURVE)
      CC = CURVE(1)*CURVE(1) + CURVE(2)*CURVE(2) + CURVE(3)*CURVE(3)
      IF (CC .LT. EPS1) GO TO 230
      CC = 0.5D0*DSQRT(CC)
  230 SINEAX = SINEAX + CC
      IF (I .NE. 2) GO TO 240
      I = 4
      GO TO 220
C
  240 CALL DAXB (CURVTR(1,J),CURVTR(1,JJ),CURVE)
      CC = CURVE(1)*CURVE(1) + CURVE(2)*CURVE(2) + CURVE(3)*CURVE(3)
      IF (CC .LT. EPS1) GO TO 250
      CC = 0.5D0*DSQRT(CC)
  250 SINEAY = SINEAY+CC
      IF (J .NE. 2) GO TO 260
      J  = 1
      JJ = 4
      GO TO 240
  260 CC = 28.0D0
      SINEAX = CC*SINEAX + 1.0D0
      SINEAY = CC*SINEAY + 1.0D0
      IF (SINEAX .GT. SINEAY) SINEAY = SINEAX
      IF (SINEAY .GT. SINEAX) SINEAX = SINEAY
C
C     IRREGULAR 4-NODE CODE-  GEOMETRIC VARIABLES
C
C     CALCULATE AND NORMALIZE- UNIT EDGE VECTORS, UNIT NORMAL VECTORS
C
      DO 270 I = 1,4
      J = I + 1
      IF (J .EQ. 5) J = 1
      UEV(1,I) = XA(J) - XA(I)
      UEV(2,I) = YB(J) - YB(I)
      UEV(3,I) = ZC(J) - ZC(I)
      UNV(1,I) = (VNT(1,J) + VNT(1,I))*0.50D0
      UNV(2,I) = (VNT(2,J) + VNT(2,I))*0.50D0
      UNV(3,I) = (VNT(3,J) + VNT(3,I))*0.50D0
      CC = UEV(1,I)**2 + UEV(2,I)**2 + UEV(3,I)**2
      IF (CC .EQ. 0.D0) GO TO 1700
      IF (CC .GE. EPS1) CC = DSQRT(CC)
      EDGEL(I) = CC
      UEV(1,I) = UEV(1,I)/CC
      UEV(2,I) = UEV(2,I)/CC
      UEV(3,I) = UEV(3,I)/CC
      CC = UNV(1,I)**2 + UNV(2,I)**2 + UNV(3,I)**2
      IF (CC .EQ. 0.D0) GO TO 1700
      IF (CC .GE. EPS1) CC = DSQRT(CC)
      UNV(1,I) = UNV(1,I)/CC
      UNV(2,I) = UNV(2,I)/CC
      UNV(3,I) = UNV(3,I)/CC
  270 CONTINUE
C
C     CALCULATE INTERNAL NODAL ANGLES
C
      DO 280 I = 1,4
      J = I - 1
      IF (J .EQ. 0) J = 4
      ANGLEI(I)=-UEV(1,I)*UEV(1,J) -UEV(2,I)*UEV(2,J) -UEV(3,I)*UEV(3,J)
      IF (DABS(ANGLEI(I)) .LT .EPS1) ANGLEI(I) = 0.0D0
  280 CONTINUE
C
C     SET THE INTEGRATION POINTS
C
C 290 CONTINUE
      PTINT(1)  = -CONST
      PTINT(2)  =  CONST
C     PTINTZ(1) = -CONST
C     PTINTZ(2) =  CONST
C     JZTA = 2
C     IF (.NOT.BENDNG) PTINTZ(1) = 0.0D0
C     IF (.NOT.BENDNG) JZTA = 1
      IF (HEAT) GO TO 1790
C
C     TRIPLE LOOP TO SAVE THE LAST 2 ROWS OF B-MATRIX AT 2X2X2
C     INTEGRATION POINTS FOR LATER MANIPULATION.
C
      IF (KGG1 .EQ. 0) GO TO 400
C     IF (.NOT.BENDNG) GO TO 360
      I  = 1
      KPT= 1
C
      DO 350 IXSI = 1,2
      XI = PTINT(IXSI)
C
      DO 350 IETA = 1,2
      ETA = PTINT(IETA)
C
      CALL Q4SHPD (XI,ETA,SHP,DSHP)
C
C     IRREGULAR 4-NODE CODE-  CALCULATION OF NODAL EDGE SHEARS
C                             AT THIS INTEGRATION POINT
C
      DO 310 IJ = 1,4
      II = IJ - 1
      IF (II .EQ. 0) II = 4
      IK = IJ + 1
      IF (IK .EQ. 5) IK = 1
      AA = SHP(IJ)
      BB = SHP(IK)
C
      DO 300 IS = 1,3
      EDGSHR(IS,IJ) = (UEV(IS,IJ)+ANGLEI(IJ)*UEV(IS,II))*AA/
     1                (1.0D0-ANGLEI(IJ)*ANGLEI(IJ))
     2              + (UEV(IS,IJ)+ANGLEI(IK)*UEV(IS,IK))*BB/
     3                (1.0D0-ANGLEI(IK)*ANGLEI(IK))
  300 CONTINUE
  310 CONTINUE
C
C     SORT THE SHAPE FUNCTIONS AND THEIR DERIVATIVES INTO SIL ORDER.
C
      DO 320 IS = 1,4
      TMPSHP(IS  ) =  SHP(IS  )
      DSHPTP(IS  ) = DSHP(IS  )
  320 DSHPTP(IS+4) = DSHP(IS+4)
      DO 330 IS = 1,4
      KK = IORDER(IS)
      SHP (IS  ) = TMPSHP(KK  )
      DSHP(IS  ) = DSHPTP(KK  )
  330 DSHP(IS+4) = DSHPTP(KK+4)
C
      DO 340 IZTA = 1,2
      ZTA = PTINT(IZTA)
C
C     COMPUTE THE JACOBIAN AT THIS GAUSS POINT,
C     ITS INVERSE AND ITS DETERMINANT.
C
      HZTA = ZTA/2.0D0
      CALL JACOB2 (ELID,SHP,DSHP,DGPTH,EGPDT,EPNORM,JACOB)
      IF (BADJAC) GO TO 1710
C
C     COMPUTE PSI TRANSPOSE X JACOBIAN INVERSE.
C     HERE IS THE PLACE WHERE THE INVERSE JACOBIAN IS FLAGED TO BE
C     TRANSPOSED BECAUSE OF OPPOSITE MATRIX LOADING CONVENTION
C     BETWEEN INVER AND GMMAT.
C
      CALL GMMATD (PSITRN,3,3,0,JACOB,3,3,1,PHI)
C
C     CALL Q4BMGD TO GET B MATRIX
C     SET THE ROW FLAG TO 1. IT SIGNALS SAVING THE LAST 2 ROWS.
C
      ROWFLG = 1
      CALL Q4BMGD (DSHP,DGPTH,EGPDT,EPNORM,PHI,BMAT1(KPT))
  340 KPT = KPT + ND2
  350 CONTINUE
C
C     IN PLANE SHEAR REDUCTION
C
C     IF (.NOT.MEMBRN) GO TO 400
C 360 CONTINUE
      XI  = 0.0D0
      ETA = 0.0D0
      KPT = 1
      KPNT= ND2
C     IF (NORPTH) KPNT = NDOF
C
      CALL Q4SHPD (XI,ETA,SHP,DSHP)
C
C     SORT THE SHAPE FUNCTIONS AND THEIR DERIVATIVES INTO SIL ORDER.
C
      DO 370 I = 1,4
      TMPSHP(I  ) =  SHP(I  )
      DSHPTP(I  ) = DSHP(I  )
  370 DSHPTP(I+4) = DSHP(I+4)
      DO 380 I = 1,4
      KK = IORDER(I)
      SHP(I   ) = TMPSHP(KK  )
      DSHP(I  ) = DSHPTP(KK  )
  380 DSHP(I+4) = DSHPTP(KK+4)
C
C     DO 390 IZTA = 1,JZTA
      DO 390 IZTA = 1,2
C     ZTA  = PTINTZ(IZTA)
      ZTA  = PTINT(IZTA)
      HZTA = ZTA/2.0D0
      CALL JACOB2 (ELID,SHP,DSHP,DGPTH,EGPDT,EPNORM,JACOB)
      IF (BADJAC) GO TO 1710
C
      CALL GMMATD (PSITRN,3,3,0,JACOB,3,3,1,PHI)
C
C     CALL Q4BMGD TO GET B-MATRIX
C     SET THE ROW FLAG TO 2. IT WILL SAVE THE 3RD ROW OF B-MATRIX AT
C     THE TWO INTEGRATION POINTS.
C
      ROWFLG = 2
      CALL Q4BMGD (DSHP,DGPTH,EGPDT,EPNORM,PHI,XYBMAT(KPT))
  390 KPT = KPT + KPNT
C
C     SET THE ARRAY OF LENGTH 4 TO BE USED IN CALLING TRANSD.
C     NOTE THAT THE FIRST WORD IS THE COORDINATE SYSTEM ID WHICH
C     WILL BE SET IN POSITION LATER.
C
  400 DO 410 IEC = 2,4
  410 ECPT(IEC) = 0.0
C
C     FETCH MATERIAL PROPERTIES
C
C
C     EACH MATERIAL PROPERTY MATRIX G HAS TO BE TRANSFORMED FROM
C     THE MATERIAL COORDINATE SYSTEM TO THE ELEMENT COORDINATE
C     SYSTEM. THESE STEPS ARE TO BE FOLLOWED-
C
C     1- IF MCSID HAS BEEN SPECIFIED, SUBROUTINE TRANSD IS CALLED
C        TO CALCULATE TBM-MATRIX (MATERIAL TO BASIC TRANSFORMATION).
C        TBM-MATRIX IS THEN PREMULTIPLIED BY TEB-MATRIX TO OBTAIN
C        TEM-MATRIX.
C        THEN USING THE PROJECTION OF X-AXIS, AN ANGLE IS CALCULATED
C        UPON WHICH STEP 2 IS TAKEN.
C
C     2- IF THETAM HAS BEEN SPECIFIED, SUBROUTINE ANGTRD IS CALLED
C        TO CALCULATE TEM-MATRIX (MATERIAL TO ELEMENT TRANSFORMATION).
C
C                          T
C     3-           G  =   U   G   U
C                   E          M
C
C
      IF (NEST(11) .EQ. 0) GO TO 470
      MCSID = NEST(10)
C
C     CALCULATE TEM-MATRIX USING MCSID
C
  420 IF (MCSID .GT. 0) GO TO 440
      DO 430 I = 1,9
  430 TEM(I) = TEB(I)
      GO TO 450
  440 NECPT(1) = MCSID
      CALL TRANSD (ECPT,TBM)
C
C     MULTIPLY TEB AND TBM MATRICES
C
      CALL GMMATD (TEB,3,3,0,TBM,3,3,0,TEM)
C
C     CALCULATE THETAM FROM THE PROJECTION OF THE X-AXIS OF THE
C     MATERIAL C.S. ON TO THE XY PLANE OF THE ELEMENT C.S.
C
  450 CONTINUE
      XM = TEM(1)
      YM = TEM(4)
      IF (DABS(XM).GT.EPS1 .OR. DABS(YM).GT.EPS1) GO TO 460
      NEST(2) = MCSID
      J = 231
      GO TO 1720
  460 THETAM = DATAN2(YM,XM)
      GO TO 480
C
C     CALCULATE TEM-MATRIX USING THETAM
C
  470 THETAM = DBLE(EST(10))*DEGRAD
C     IF (THETAM .EQ. 0.0D0) GO TO 490
      IF (THETAM .EQ. 0.0D0) GO TO 490
  480 CALL ANGTRD (THETAM,1,TUM)
      CALL GMMATD (TEU,3,3,0,TUM,3,3,0,TEM)
      GO TO 510
C
C     DEFAULT IS CHOSEN, LOOK FOR VALUES OF MCSID AND/OR THETAM
C     ON THE PSHELL CARD.
C
  490 IF (NEST(24) .EQ. 0) GO TO 500
      MCSID = NEST(23)
      GO TO 420
C
  500 THETAM = DBLE(EST(23))*DEGRAD
      GO TO 480
C
  510 CONTINUE
      IF (HEAT) GO TO 1810
C
      DO 600 M = 1,36
  600 GI(M)  = 0.0D0
      SINMAT = 0.
      COSMAT = 0.
      IGOBK  = 0
C
C     BEGIN M-LOOP TO FETCH PROPERTIES FOR EACH MATERIAL ID
C
      M = 0
  610 M = M + 1
      IF (M .GT. 4) GO TO 790
      IF (M.EQ.4 .AND. IGOBK.EQ.1) GO TO 800
      MATID = MID(M)
      IF (MATID.EQ.0 .AND. M.NE.3) GO TO 610
      IF (MATID.EQ.0 .AND. M.EQ.3 .AND. .NOT.BENDNG) GO TO 610
      IF (MATID.EQ.0 .AND. M.EQ.3 .AND. BENDNG) MATID = MID(2)
C
      IF (M-1) 640,630,620
  620 IF (MATID.EQ.MID(M-1) .AND. IGOBK.EQ.0) GO TO 640
  630 CALL MAT (ELID)
  640 CONTINUE
C
      IF (MEMBRN .AND. M.EQ.1) RHO = MATOUT(7)
      RHOX = RHO
      IF (RHO .EQ. 0.0D0) RHOX = 1.0D0
      IF (KGG1 .EQ.    0) GO TO 610
C
      IF (MEMBRN .AND. M.NE.1 .OR. .NOT.MEMBRN .AND. M.NE.2) GO TO 650
      GSUBE = MATOUT(12)
      IF (MATSET .EQ. 8.) GSUBE = MATOUT(16)
  650 CONTINUE
C
      IF (M.EQ.2 .AND. NORPTH) GO TO 670
      COEFF  = 1.0D0
      LPOINT = (M-1)*9 + 1
C
      CALL Q4GMGD (M,COEFF,GI(LPOINT))
C
CWKBDB 11/93 SPR93020
C      IF (M .GT. 0) GO TO 670
C      IF (.NOT.SHRFLX .AND. BENDNG) GO TO 660
C      NEST(2) = MATID
C      J = 232
C      GO TO 1720
C
C  660 M = -M
C ALREADY DELETED BEFORE SPR93020 670 IF (.NOT.BENDNG) GO TO 760
C  670 CONTINUE
C      MTYPE = IFIX(MATSET+.05) - 2
C      IF (NOCSUB) GO TO 760
C      GO TO (760,680,720,760), M
C
C  680 IF (MTYPE) 690,700,710
C  690 ENORX = MATOUT(16)
C      ENORY = MATOUT(16)
C      GO TO 760
C  700 ENORX = MATOUT(1)
C      ENORY = MATOUT(4)
C      GO TO 760
C  710 ENORX = MATOUT(1)
C      ENORY = MATOUT(3)
C      GO TO 760
C
C  720 IF (MTYPE) 730,740,750
C  730 GNORX = MATOUT(6)
C      GNORY = MATOUT(6)
C      GO TO 760
C
C  740 GNORX = MATOUT(1)
C      GNORY = MATOUT(4)
C      GO TO 760
C
C  750 GNORX = MATOUT(6)
C      GNORY = MATOUT(5)
C      IF (GNORX .EQ. 0.0D0) GNORX = MATOUT(4)
C      IF (GNORY .EQ. 0.0D0) GNORY = MATOUT(4)
C  760 CONTINUE
C
CWKBDE 11/93 SPR93020
C     IF (MATSET .EQ. 1.0) GO TO 610
      IF (M .EQ. 3) GO TO 770
      U(1) = TEM(1)*TEM(1)
      U(2) = TEM(4)*TEM(4)
      U(3) = TEM(1)*TEM(4)
      U(4) = TEM(2)*TEM(2)
      U(5) = TEM(5)*TEM(5)
      U(6) = TEM(2)*TEM(5)
      U(7) = TEM(1)*TEM(2)*2.0D0
      U(8) = TEM(4)*TEM(5)*2.0D0
      U(9) = TEM(1)*TEM(5) + TEM(2)*TEM(4)
      L=3
      GO TO 780
C
  770 U(1) = TEM(5)*TEM(9) + TEM(6)*TEM(8)
      U(2) = TEM(2)*TEM(9) + TEM(8)*TEM(3)
      U(3) = TEM(4)*TEM(9) + TEM(7)*TEM(6)
      U(4) = TEM(1)*TEM(9) + TEM(3)*TEM(7)
      L    = 2
C
  780 CALL GMMATD (U(1),L,L,1,GI(LPOINT),L,L,0,GT(1))
      CALL GMMATD (GT(1),L,L,0,U(1),L,L,0,GI(LPOINT))
CWKBNB 11/93 SPR93020
      IF (M .GT. 0) GO TO 670
      IF (.NOT.SHRFLX .AND. BENDNG) GO TO 660
      NEST(2) = MATID
      J = 232
      GO TO 1720
  660 M = -M
  670 CONTINUE
      MTYPE = IFIX(MATSET+.05) - 2
      IF (NOCSUB) GO TO 760
      GO TO (760,680,720,760), M
CWKBNE 11/93 SPR93020
CWKBNB 2/94 SPR93020
  680 IF ( MTYPE ) 690, 700, 710
  690 ENORX = MATOUT(16)
      ENORY = MATOUT(16)
      DNUX  = GI( LPOINT+1 ) / GI( LPOINT )
      DNUY  = GI( LPOINT+3 ) / GI( LPOINT+4 ) 
      GO TO 760
  700 ENORX = MATOUT(1)
      ENORY = MATOUT(4)
      DNUX  = GI( LPOINT+1 ) / GI( LPOINT )
      DNUY  = GI( LPOINT+3 ) / GI( LPOINT+4 )
      GO TO 760
  710 ENORX = MATOUT(1)
      ENORY = MATOUT(3)
      DNUX  = GI(LPOINT+1)/GI(LPOINT)
      DNUY  = GI(LPOINT+3)/GI(LPOINT+4)
CWKBNE 2/94 SPR93020
      GO TO 760
  720 IF ( MTYPE ) 730, 740, 750
  730 GNORX = MATOUT(6)
      GNORY = MATOUT(6)
      GO TO 760
  740 GNORX = MATOUT(1)
      GNORY = MATOUT(4)
      GO TO 760
  750 GNORX = MATOUT(6)
      GNORY = MATOUT(5)
      IF ( GNORX .EQ. 0.0D0 ) GNORX = MATOUT(4)
      IF ( GNORY .EQ. 0.0D0 ) GNORY = MATOUT(4)
  760 CONTINUE
      GO TO 610
C
C     END OF M-LOOP
C
  790 CONTINUE
      IF (MID(3) .LT. 100000000) GO TO 800
      IF (GI(19).NE.0.D0 .OR. GI(20).NE.0.D0 .OR. GI(21).NE.0.D0 .OR.
     1    GI(22).NE.0.D0) GO TO 800
      IGOBK = 1
      M = 2
      MID(3) = MID(2)
      GO TO 610
  800 CONTINUE
C
      NOCSUB = ENORX.EQ.0.0D0 .OR. ENORY.EQ.0.0D0 .OR.
     1         GNORX.EQ.0.0D0 .OR. GNORY.EQ.0.0D0 .OR.
     2        MOMINR.EQ.0.0D0
C
      MATTYP = IFIX(MATSET+.05)
C
C     IF MGG1 IS NON-ZERO AND RHO IS GREATER THAN 0.0,
C     THEN COMPUTE THE MASS MATRIX.
C
      IF (MGG1 .EQ. 0) GO TO 810
      IF (JCORED+144 .LE. NCORED) GO TO 810
  810 CONTINUE
C
      LIMIT = JCORED + NDOF*NDOF
      DO 820 I = JCORED,LIMIT
  820 AKGG(I)  = 0.0D0
      DO 830 I = 1,NODESQ
      XMASS(I) = 0.0D0
  830 XMTMP(I) = 0.0D0
      AREA     = 0.0D0
      VOL      = 0.0D0
C
C
C     HERE BEGINS THE TRIPLE LOOP ON STATEMENTS 1310 AND 1300 TO
C     GAUSS INTEGRATE FOR THE ELEMENT MASS AND STIFFNESS MATRICES.
C     -----------------------------------------------------------
C
      DO 1310 IXSI = 1,2
      XI = PTINT(IXSI)
      DO 1310 IETA = 1,2
      ETA = PTINT(IETA)
      CALL Q4SHPD (XI,ETA,SHP,DSHP)
C
C     SORT THE SHAPE FUNCTIONS AND THEIR DERIVATIVES INTO SIL ORDER.
C
      DO 900 I = 1,4
      TMPSHP(I  ) =  SHP(I  )
      DSHPTP(I  ) = DSHP(I  )
  900 DSHPTP(I+4) = DSHP(I+4)
      DO 910 I = 1,4
      KK = IORDER(I)
      SHP (I  ) = TMPSHP(KK  )
      DSHP(I  ) = DSHPTP(KK  )
  910 DSHP(I+4) = DSHPTP(KK+4)
      CALL GMMATD (SHP,1,NNODE,0,DGPTH,1,NNODE,1,THK)
      REALI = MOMINR*THK*THK*THK/12.0D0
C     REALI =        THK*THK*THK/12.0D0
      TSI   = TS*THK
C
C     SKIP MASS CALCULATIONS IF NOT REQUESTED
C
      IF (NSM .NE.  0.0) GO TO 920
      IF (MGG1 .EQ.   0) GO TO 1020
      IF (RHO .EQ. 0.D0) GO TO 1020
      IF (RHO .GT. 0.D0) GO TO 920
      WRITE (NOUT,2030) UWM,RHO,MID(1),NEST(1)
C     NOGO = .TRUE.
C     GO TO 1710
C
C     COMPUTE S AND T VECTORS AT THE MID-SURFACE
C     FOR MASS CALCULATIONS ONLY.
C
  920 CONTINUE
      DO 930 I = 1,2
      IPOINT = 4*(I-1)
      DO 930 J = 1,3
      V(I,J) = 0.0D0
      DO 930 K = 1,NNODE
      KTEMP = K + IPOINT
      JTEMP = J + 1
      V(I,J)= V(I,J) + DSHP(KTEMP)*BGPDT(JTEMP,K)
  930 CONTINUE
C
C     COMPUTE S CROSS T AT THE MID-SURFACE FOR MASS CALCULATIONS.
C
      V(3,1) = V(1,2)*V(2,3) - V(2,2)*V(1,3)
      V(3,2) = V(1,3)*V(2,1) - V(2,3)*V(1,1)
      V(3,3) = V(1,1)*V(2,2) - V(2,1)*V(1,2)
      AREA2  = V(3,1)*V(3,1) + V(3,2)*V(3,2) + V(3,3)*V(3,3)
C
C     AREA2 = NORM OF S CROSS T IS THE AREA OF THE ELEMENT
C     AS COMPUTED AT THIS GAUSS POINT.
C
CWKBR 11/93 SPR 93015 IF (AREA2 .LT. EPS1) GO TO 1700
      IF ( AREA2 .LE. 0.0 ) GO TO 1700
C
      AREA2 = DSQRT(AREA2)
      AREA  = AREA + AREA2
      VOLI  = AREA2*THK
      VOL   = VOL + VOLI
C
      IF (MGG1 .EQ.   0) GO TO 1020
      IF (CPMASS .GT. 0) GO TO 1000
      I4 = 1
      DO 960 J4 = 1,NNODE
      XMASS(I4) = XMASS(I4) + VOLI*RHOX*SHP(J4)
  960 I4 = I4 + NNODE + 1
      GO TO 1020
C
C     COMPUTE CONSISTENT MASS MATRIX
C
C     COMPUTE THE CONTRIBUTION TO THE MASS MATRIX
C     FROM THIS INTEGRATION POINT.
C
 1000 CALL GMMATD (SHP,1,NNODE,1,SHP,1,NNODE,0,XMTMP)
C
C     ADD MASS CONTRIBUTION FROM THIS INTEGRATION POINT
C     TO THE ELEMENT MASS MATRIX.
C
      DO 1010 I = 1,NODESQ
 1010 XMASS(I) = XMASS(I) + VOLI*RHOX*XMTMP(I)
C
 1020 IF (KGG1 .EQ. 0) GO TO 1330
C
C     BEGIN STIFFNESS COMPUTATIONS
C
C     SET DEFAULT VALUES OF CSUBB FACTORS
C
      SFCTY1 = 1.0D0
      SFCTY2 = 1.0D0
      SFCTX1 = 1.0D0
      SFCTX2 = 1.0D0
      TSMFX  = 1.0D0
      TSMFY  = 1.0D0
      IF (NOCSUB) GO TO 1090
      IF (.NOT.BENDNG) GO TO 1090
C      NUNORX = MOMINR*ENORX/(2.0D0*GNORX) - 1.0D0
C      NUNORY = MOMINR*ENORY/(2.0D0*GNORY) - 1.0D0
CWKBNB 2/94 SPR93020
      NUNORX = MOMINR*ENORX/(2.0D0*GNORX) - 1.0D0
      NUNORY = MOMINR*ENORY/(2.0D0*GNORY) - 1.0D0
CWKBNE 2/94 SPR93020
C
C     NOTE- THE ABOVE EXPRESSIONS FOR NUNORX AND NUNORY WERE MODIFIED
C           BY G.CHAN/UNISYS    1988
C
CWKBDB 2/94 SPR93020
C      EIX = MOMINR*ENORX
C      EIY = MOMINR*ENORY
C      TGX = 2.0D0*GNORX
C      TGY = 2.0D0*GNORY
C      NUNORX = EIX/TGX - 1.0D0
C      NUNORY = EIY/TGY - 1.0D0
C      IF (EIX .GT. TGX) NUNORX= 1.0D0 - TGX/EIX
C      IF (EIY .GT. TGY) NUNORY= 1.0D0 - TGY/EIY
CWKBDE 2/94 SPR93020
      IF (NUNORX .GT. 0.999999D0) NUNORX = 0.999999D0
      IF (NUNORY .GT. 0.999999D0) NUNORY = 0.999999D0
CWKBNB 2/94 SPR93020
      IF ( NUNORX .LE. 0. ) NUNORX = DNUX
      IF ( NUNORY .LE. 0. ) NUNORY = DNUY
CWKBNE 2/94 SPR93020
C     IF (NUNORX .GT. .49D0) NUNORX = 0.49D0
C     IF (NUNORY .GT. .49D0) NUNORY = 0.49D0
      CC = ASPECT
C
C     NOTE- THE FOLLOWING 2 FORMULATIONS WERE PUT IN ON 4/30/85 IN
C           CONJUNCTION WITH THE OUT-OF-PLANE SHEAR CORRECTION BASED
C           ON T.J.R HUGHES. THE FLEXIBLE SOLUTION PROVIDES MORE
C           ACCURATE RESULTS FOR PLATES, ALTHOUGH IT MIGHT CONVERGE
C           SLOWLY. THE STIFFER SOLUTION (COMMENTED OUT) IS O.K. FOR
C           PLATES AND SHOULD HAVE A BETTER CONVERGENCE.
C
C           THEY WERE MODIFIED ON 5/3/85
C
C     4-NODE CSUBB FORMULATION AS OF 5/3/85 (FLEXIBLE SOLUTION)
C     REPLACES THE ONE COMMENTED OUT IMMEDIATELY ABOVE
C
      W1 = 1.0D0 + 4400.0D0*THLEN*THLEN*THLEN*THLEN
      IF (CC .LT. 0.2D0) GO TO 1030
      DSUB4 = (18.375D0-11.875D0*CC)*W1
      GO TO 1040
 1030 DSUB4 = (159.85D0*CC-15.97D0)*W1
C
C     4-NODE CSUBB FORMULATION AS OF 5/3/85 (STIFFER SOLUTION)
C
C     W1 = 1.0D0 + 2.5D0*THLEN + 1.0D04*THLEN**5
C     IF (CC .LT. 0.2D0) GO TO 1030
C     DSUB4 = 18.0D0*W1
C     GO TO 1040
C1030 DSUB4 = (179.85D0*CC-17.97D0)*W1
 1040 IF (DSUB4 .LT. .01D0) DSUB4 = 0.01D0
      IF (DSUB4 .GT. 2.0D3) DSUB4 = 2000.0D0
      DSUB  = DSUB4
      COEFT = CONST
      AX    = A
      IF (ETA .LT .0.0D0) AX = A + COEFT*(XA(2)-XA(1)-A)
      IF (ETA .GT. 0.0D0) AX = A + COEFT*(XA(3)-XA(4)-A)
      PSIINX = 20.0D0*DSUB*REALI*SINEAX*(1.0D0+ASPECT*ASPECT)/
     1         (TSI*(1.0D0-NUNORX)*AX*AX)
      DSUB  = DSUB4
      COEFT = CONST
      BY    = B
      IF (XI .LT. 0.0D0) BY = B + COEFT*(YB(4)-YB(1)-B)
      IF (XI .GT. 0.0D0) BY = B + COEFT*(YB(3)-YB(2)-B)
      PSIINY = 20.0D0*DSUB*REALI*SINEAY*(1.0D0+ASPECT*ASPECT)/
     1         (TSI*(1.0D0-NUNORY)*BY*BY)
      IF (.NOT.SHRFLX) GO TO 1050
      TSMFX = PSIINX/(1.0D0+PSIINX)
      TSMFY = PSIINY/(1.0D0+PSIINY)
      GO TO 1060
 1050 TSMFX = PSIINX
      TSMFY = PSIINY
C
 1060 CONTINUE
      IF (TSMFX .LE. 0.0D0) TSMFX = EPS1
      IF (TSMFY .LE. 0.0D0) TSMFY = EPS1
C
C     FILL IN THE 7X7 MATERIAL PROPERTY MATRIX D FOR NORPTH
C
      IF (.NOT.NORPTH) GO TO 1090
      DO 1070 IG = 1,7
      DO 1070 JG = 1,7
 1070 DFOUR(IG,JG) = 0.0D0
C
      DO 1080 IG = 1,3
      IG1 = (IG-1)*3
      DO 1080 JG = 1,3
      JG1 = JG + IG1
 1080 DFOUR(IG,JG) = GI(JG1)
      GO TO 1150
C
C     FILL IN THE 10X10 G-MATRIX WHEN MID4 IS NOT PRESENT
C
 1090 DO 1100 IG = 1,10
      DO 1100 JG = 1,10
 1100 GFOUR(IG,JG) = 0.0D0
      IF (MBCOUP) GO TO 1150
C
      IF (.NOT.MEMBRN) GO TO 1120
      DO 1110 IG = 1,3
      IG1 = (IG-1)*3
      DO 1110 JG = 1,3
      JG1 = JG + IG1
 1110 GFOUR(IG,JG) = GI(JG1)
C
 1120 IF (.NOT.BENDNG) GO TO 1250
      DO 1130 IG = 4,6
      IG2 = (IG-2)*3
      DO 1130 JG = 4,6
      JG2 = JG + IG2
 1130 GFOUR(IG,JG) = GI(JG2)*MOMINR
C
      IF (.NOT.MEMBRN) GO TO 1150
      DO 1140 IG = 1,3
      IG1 = (IG-1)*3
      KG  = IG + 3
      DO 1140 JG = 1,3
      JG1 = JG + IG1
      LG  = JG + 3
      GFOUR(IG,LG) = GI(JG1)
 1140 GFOUR(KG,JG) = GI(JG1)
 1150 CONTINUE
C
C     IRREGULAR 4-NODE CODE-  CALCULATION OF NODAL EDGE SHEARS
C                             AT THIS INTEGRATION POINT
C
      DO 1210 IJ = 1,4
      II = IJ - 1
      IF (II .EQ. 0) II = 4
      IK = IJ + 1
      IF (IK .EQ. 5) IK = 1
C
      DO 1160 IR = 1,4
      IF (IJ .NE. IORDER(IR)) GO TO 1160
      IOJ = IR
      GO TO 1170
 1160 CONTINUE
 1170 DO 1180 IR = 1,4
      IF (IK .NE. IORDER(IR)) GO TO 1180
      IOK = IR
      GO TO 1190
 1180 CONTINUE
 1190 AA = SHP(IOJ)
      BB = SHP(IOK)
C
      DO 1200 IS = 1,3
      EDGSHR(IS,IJ) = (UEV(IS,IJ)+ANGLEI(IJ)*UEV(IS,II))*AA/
     1                (1.0D0-ANGLEI(IJ)*ANGLEI(IJ))
     2              + (UEV(IS,IJ)+ANGLEI(IK)*UEV(IS,IK))*BB/
     3                (1.0D0-ANGLEI(IK)*ANGLEI(IK))
 1200 CONTINUE
 1210 CONTINUE
C
C     TORSION-RELATED SHEAR CORRECTION FOR 4-NODE-
C     SET-UP OF EXPANDED SHEAR MATERIAL PROPERTY MATRICES (G OR D)
C
      CSUBX  = 20.0D0*REALI/(TSI*(1.0D0-NUNORX)*A*A)
      CSUBY  = 20.0D0*REALI/(TSI*(1.0D0-NUNORY)*B*B)
      SFCTR1 = CSUBB4*CSUBX
      SFCTR2 = CSUBTX*CSUBX
      IF (.NOT.SHRFLX) GO TO 1220
      SFCTR1 = SFCTR1/(1.0D0+SFCTR1)
      SFCTR2 = SFCTR2/(1.0D0+SFCTR2)
 1220 CONTINUE
      SFCTX1 = SFCTR1 + SFCTR2
      SFCTX2 = SFCTR1 - SFCTR2
      SFCTR1 = CSUBB4*CSUBY
      SFCTR2 = CSUBTY*CSUBY
      IF (.NOT.SHRFLX) GO TO 1230
      SFCTR1 = SFCTR1/(1.0D0+SFCTR1)
      SFCTR2 = SFCTR2/(1.0D0+SFCTR2)
 1230 CONTINUE
      SFCTY1 = SFCTR1 + SFCTR2
      SFCTY2 = SFCTR1 - SFCTR2
C
C     FILL IN THE EXPANDED MATERIAL PROPERTY MATRIX
C
      IF (NORPTH) GO TO 1240
      GFOUR( 7, 7) = 0.25D0*SFCTY1*TS*GI(19)
      GFOUR( 8, 8) = 0.25D0*SFCTY1*TS*GI(19)
      GFOUR( 8, 7) = 0.25D0*SFCTY2*TS*GI(19)
      GFOUR( 7, 8) = GFOUR(8,7)
      GFOUR( 9, 9) = 0.25D0*SFCTX1*TS*GI(22)
      GFOUR(10,10) = 0.25D0*SFCTX1*TS*GI(22)
      GFOUR(10, 9) = 0.25D0*SFCTX2*TS*GI(22)
      GFOUR( 9,10) = GFOUR(10,9)
      GFOUR( 7, 9) = DSQRT(TSMFX*TSMFY)*TS*GI(20)
      GFOUR( 9, 7) = GFOUR(7,9)
      GO TO 1250
C
 1240 DFOUR(4,4) = 0.25D0*SFCTY1*TS*GI(19)
      DFOUR(5,5) = 0.25D0*SFCTY1*TS*GI(19)
      DFOUR(5,4) = 0.25D0*SFCTY2*TS*GI(19)
      DFOUR(4,5) = DFOUR(5,4)
      DFOUR(6,6) = 0.25D0*SFCTX1*TS*GI(22)
      DFOUR(7,7) = 0.25D0*SFCTX1*TS*GI(22)
      DFOUR(7,6) = 0.25D0*SFCTX2*TS*GI(22)
      DFOUR(6,7) = DFOUR(7,6)
      DFOUR(4,6) = DSQRT(TSMFX*TSMFY)*TS*GI(20)
      DFOUR(6,4) = DFOUR(4,6)
 1250 CONTINUE
C
C     DO 1300 IZTA = 1,JZTA
      DO 1300 IZTA = 1,2
      ZTA  = PTINT(IZTA)
      IBOT = (IZTA-1)*ND2
C
      HZTA = ZTA/2.0D0
C
C     TORSION-RELATED SHEAR CORRECTION FOR 4-NODE-
C     SET-UP OF POINTERS TO THE SAVED B-MATRIX
C
      IPTX1 = ((IXSI-1)*2+IETA-1)*2*ND2 + IBOT
      IPTX2 = ((IXSI-1)*2+2-IETA)*2*ND2 + IBOT
      IPTY1 = ((IXSI-1)*2+IETA-1)*2*ND2 + IBOT
      IPTY2 = ((2-IXSI)*2+IETA-1)*2*ND2 + IBOT
C     IF (NORPTH) IBOT = IBOT/2
C
C     FILL IN THE 10X10 G-MATRIX IF MID4 IS PRESENT
C
      IF (.NOT.MBCOUP) GO TO 1290
      DO 1260 IG = 1,3
      IG1 = (IG-1)*3
      DO 1260 JG = 1,3
      JG1 = JG  + IG1
      JG4 = JG1 + 27
 1260 GFOUR(IG,JG) = GI(JG1)
C
      DO 1270 IG = 4,6
      IG2 = (IG-2)*3
      DO 1270 JG = 4,6
      JG2 = JG  + IG2
      JG4 = JG2 + 18
 1270 GFOUR(IG,JG) = GI(JG2)*MOMINR
C
      DO 1280 IG = 1,3
      IG4 = (IG+8)*3
      KG  = IG  + 3
      DO 1280 JG = 1,3
      JG4 = JG  + IG4
      JG1 = JG4 - 27
      LG  = JG  + 3
      GFOUR(IG,LG) = -GI(JG4)*ZTA*6.0D0+GI(JG1)
 1280 GFOUR(KG,JG) = -GI(JG4)*ZTA*6.0D0+GI(JG1)
 1290 CONTINUE
C
C     COMPUTE THE JACOBIAN AT THIS GAUSS POINT,
C     ITS INVERSE AND ITS DETERMINANT.
C
      CALL JACOB2 (ELID,SHP,DSHP,DGPTH,EGPDT,EPNORM,JACOB)
      IF (BADJAC) GO TO 1710
C
C     COMPUTE PSI TRANSPOSE X JACOBIAN INVERSE.
C     HERE IS THE PLACE WHERE THE INVERSE JACOBIAN IS FLAGED TO BE
C     TRANSPOSED BECAUSE OF OPPOSITE MATRIX LOADING CONVENTION
C     BETWEEN INVER AND GMMAT.
C
      CALL GMMATD (PSITRN,3,3,0,JACOB,3,3,1,PHI)
C
C     CALL Q4BMGD TO GET B-MATRIX. SET THE ROW FLAG TO 3.
C     IT WILL RETURN THE FIRST 6 ROWS OF B-MATRIX.
C
      ROWFLG = 3
      CALL Q4BMGD (DSHP,DGPTH,EGPDT,EPNORM,PHI,BFOUR(1))
C
C     REPLACE ABOVE Q4BMGD BY THE FOLLOWING LINE IF TRPLMD IS NOT USED
C     CALL Q4BMGD (DSHP,DGPTH,EGPDT,EPNORM,PHI,BMATRX)
C
C     TORSION-RELATED SHEAR CORRECTION FOR 4-NODE -
C     SET-UP OF B-MATRIX AND TRIPLE MULTIPLY
C
C
      CALL TRPLMD (GFOUR,DFOUR,BFOUR,BMAT1,XYBMAT,MATTYP,JCORED,DETJ)
C     (TRPLMD CAN BE REPLACED BY NEXT 40 (APROX.) LINES)
C
C     ND63 = ND6
C     ND74 = ND7
C     IF (.NOT.NORPTH) GO TO 1291
C     ND63 = ND3
C     ND74 = ND4
C1291 DO 1292 IX = 1,NDOF
C     BFOUR(IX) = BMATRX(IX)
C     BFOUR(IX+NDOF) = BMATRX(IX+NDOF)
C     BFOUR(IX+ND2 ) = XYBMAT(IX+IBOT)
C     BFOUR(IX+ND5 ) = XYBMAT(IX+IBOT+NDOF)
C     BFOUR(IX+ND63) = BMAT1(IX+IPTY1)
C     BFOUR(IX+ND74) = BMAT1(IX+IPTY2)
C     BFOUR(IX+ND74+NDOF) = BMAT1(IX+IPTX1+NDOF)
C1292 BFOUR(IX+ND74+ND2 ) = BMAT1(IX+IPTX2+NDOF)
C
C     IF (NORPTH) GO TO 1294
C     DO 1293 IX = 1,NDOF
C     BFOUR(IX+ND3) = BMATRX(IX+ND3)
C     BFOUR(IX+ND4) = BMATRX(IX+ND4)
C1293 CONTINUE
C     NNX = 10
C     CALL GMMATD (GFOUR,NNX,NNX,0,BFOUR,NNX,NDOF,0,STRESR)
C     GO TO 1295
C
C1294 NNX = 7
C     CALL GMMATD (DFOUR,NNX,NNX,0,BFOUR,NNX,NDOF,0,STRESR)
C1295 NNY = NNX*NDOF
C     DO 1296 KBAR = 1,NNY
C1296 BFOUR(KBAR) = BFOUR(KBAR)*DETJ
C
C     COMPUTE THE CONTRIBUTION TO THE STIFFNESS MATRIX FROM THIS GAUSS
C     INTEGRATION POINT.  NOTE THAT THE -1 IN THE GMMATD CALL KEEPS A
C     RUNNING SUM ON AKGG.
C
C     CALL GMMATD (BFOUR,NNX,NDOF,-1,STRESR,NNX,NDOF,0,AKGG(JCORED))
C
 1300 CONTINUE
 1310 CONTINUE
C
C     EQUALIZE THE OFF- DIAGNOAL TERMS TO GUARANTEE PERFECT SYMMETRIC
C     MATRIX IF NO DAMPING INVLOVED
C
      IF (GSUBE .NE. 0.0) GO TO 1330
      IJ = JCORED - 1
      NDOFM1 = NDOF - 1
      DO 1320 II = 1,NDOFM1
      IP1 = II + 1
      IM1 = (II-1)*NDOF + IJ
      DO 1320 JJ = IP1,NDOF
      I = IM1 + JJ
      J = (JJ-1)*NDOF + II + IJ
      TEMP = (AKGG(I) + AKGG(J))*.5D0
      IF (DABS(TEMP) .LT. 1.0D-17) TEMP = 0.0D0
      AKGG(I) = TEMP
      AKGG(J) = TEMP
 1320 CONTINUE
C
C     END OF STIFFNESS LOOP
C
C     ADD NON-STRUCTURAL MASS
C
 1330 CONTINUE
      IF (MGG1 .EQ. 0) GO TO 1410
      IF (RHO.EQ.0.D0 .AND. NSM.EQ.0.0) GO TO 1410
C     IF (CPMASS .GT. 0) GO TO 1410
      IF (NSM .EQ.  0.0) GO TO 1410
      IF (VOL.EQ.0.D0 .OR. RHOX.EQ.0.D0) WRITE (NOUT,2060) SFM,ELID,
     1                                   AREA,VOL,RHOX,MGG1,KGG1
      FACTOR = (VOL*RHO+NSM*AREA)/(VOL*RHOX)
      DO 1400 I = 1,NODESQ
 1400 XMASS(I) = XMASS(I)*FACTOR
 1410 CONTINUE
C
C     PICK UP THE GLOBAL TO BASIC TRANSFORMATIONS FROM THE CSTM.
C
      DO 1412 I = 1,36
 1412 TRANS(I)  = 0.0D0
C     DO 1414 I = 2,8
C1414 TRANS1(I) = 0.0D0
C     TRANS1(1) = 1.0D0
C     TRANS1(5) = 1.0D0
C     TRANS1(9) = 1.0D0
C
      DO 1450 I = 1,NNODE
      NOTRAN(I) = 0
      IPOINT = 9*(I-1) + 1
      IF (IGPDT(1,I) .LE. 0) GO TO 1420
      IGPTH(1) = IGPDT(1,I)
      GPTH (2) = BGPDT(2,I)
      GPTH (3) = BGPDT(3,I)
      GPTH (4) = BGPDT(4,I)
C
C     NOTE THAT THE 6X6 TRANSFORMATION WHICH WILL BE USED LATER
C     IN THE TRIPLE MULTIPLICATION TO TRANSFORM THE ELEMENT
C     STIFFNESS MATRIX FROM BASIC TO GLOBAL COORDINATES, IS BUILT
C     UPON THE 3X3 TRANSFORMATION FROM GLOBAL TO BASIC TBG-MATRIX.
C     THIS IS DUE TO THE DIFFERENCE IN TRANSFORMATION OF ARRAYS
C     AND MATRICES.
C
      CALL TRANSD (GPTH,TBG)
      CALL GMMATD (TEB,3,3,0,TBG,3,3,0,TRANS(IPOINT))
      GO TO 1450
C
 1420 IF (IDENTT.NE.1 .OR. OFFSET.NE.0.0D0) GO TO 1430
      NOTRAN(I) = 1
      GO TO 1450
C
 1430 DO 1440 J = 1,9
 1440 TRANS(IPOINT+J-1) = TEB(J)
 1450 CONTINUE
C
C
C     HERE WE SHIP OUT THE STIFFNESS AND DAMPING MATRICES.
C     ----------------------------------------------------
C
      IF (KGG1 .EQ. 0) GO TO 1600
C
C     SET UP I-LOOP TO DUMP OUT BASIC TO GLOBAL TRANSFORMED, NODAL
C     PARTITIONED (6 D.O.F. PER NODE) COLUMNS OF THE ELEM. STIFFNESS.
C
C     THIS MEANS WE ARE SENDING TO EMGOUT 6 COLUMNS OF THE ELEMENT
C     STIFFNESS MATRIX AT A TIME.  EACH BUNCH OF 6 COLUMNS CORRESPOND
C     TO ONE PARTICULAR NODE OF THE ELEMENT.  FOR THE MASS MATRIX, WE
C     ONLY SEND 3 COLUMNS PER NODE TO EMGOUT SINCE THE OTHER 3 D.O.F.
C     ARE ZERO ANYWAY.  THE CODE WORD (DICT(4)) TELLS EMGOUT WHICH
C     COLUMNS ARE THE NON ZERO ONES THAT WE ARE SENDING. (SEE SECTION
C     6.8.3.5.1 OF THE PROGRAMMER MANUAL)
C
C
      DICT(1) = ESTID
      DICT(2) = 1
      DICT(3) = NDOF
      DICT(4) = 63
      NPART   = NDOF*6
      DO 1560 I = 1,NNODE
      IBEGIN = 6*(I-1) + JCORED - 1
C
C     DUMP AN UNTRANSFORMED NODAL COLUMN PARTITION.
C
      DO 1500 J = 1,NDOF
      KPOINT = NDOF*(J-1) + IBEGIN
      LPOINT = 6*(J-1)
      DO 1500 K = 1,6
 1500 COLSTF(LPOINT+K) = AKGG(KPOINT+K)
      IF (NOTRAN(I) .EQ. 1) GO TO 1515
C
C     THIS COLUMN PARTITION NEEDS TO BE TRANSFORMED TO GLOBAL
C     COORDINATES. (SEE PAGE 2.3-43 OF THE PROGRAMMER MANUAL)
C
C     LOAD THE 6X6 TRANSFORMATION
C
      CALL TLDRD (OFFSET,I,TRANS,TRANS1)
C
C     TRANSFORM THE NODAL COLUMN PARTITION.
C
      CALL GMMATD (COLSTF,NDOF,6,0,TRANS1,6,6,0,COLTMP)
      DO 1510 II = 1,NPART
 1510 COLSTF(II) = COLTMP(II)
C
C     NOW TRANSFORM THE ROWS OF THIS PARTITION.
C
 1515 DO 1530 M = 1,NNODE
      IF (NOTRAN(M) .EQ. 1) GO TO 1530
      MPOINT = 36*(M-1) + 1
C
C     LOAD THE 6X6 TRANSFORMATION
C
      CALL TLDRD (OFFSET,M,TRANS,TRANS1)
C
C     TRANSFORM THE 6 ROWS FOR THIS SUBPARTITION
C
      CALL GMMATD (TRANS1,6,6,1,COLSTF(MPOINT),6,6,0,COLTMP)
      IIPNT = MPOINT - 1
      DO 1520 II = 1,36
 1520 COLSTF(IIPNT+II) = COLTMP(II)
 1530 CONTINUE
C
C     HERE WE MUST CHANGE FROM THE ROW LOADING CONVENTION
C     FOR GMMATD TO THE COLUMN LOADING CONVENTION FOR EMGOUT.
C
      DO 1550 II = 1,6
      IPOINT = NDOF*(II-1)
      DO 1550 JJ = 1,NDOF
      JPOINT = 6*(JJ-1)
      COLTMP(IPOINT+JJ) = COLSTF(JPOINT+II)
 1550 CONTINUE
C
C     DUMP THE TRANSFORMED NODAL COLUMN PARTITION
C
      IEOE = 0
      IF (I .EQ. NNODE) IEOE = 1
      ADAMP = GSUBE
C
C     INTEGER 1 IN THE NEXT TO LAST FORMAL PARAMETER OF
C     EMGOUT MEANS WE ARE SENDING STIFFNESS DATA.
C
      CALL EMGOUT (COLTMP,COLTMP,NPART,IEOE,DICT,1,IPREC)
 1560 CONTINUE
C
C
C     HERE WE SHIP OUT THE MASS MATRIX.
C     ---------------------------------
C
 1600 IF (MGG1 .EQ. 0) GO TO 1710
C
      NDOF  = NNODE*3
      NPART = NDOF*3
      DICT(3) = NDOF
      DICT(4) = 7
      ADAMP = 0.0D0
C
C     SET UP I-LOOP TO PROCESS AND DUMP THE NODAL COLUMN PARTITIONS.
C
      DO 1690 I = 1,NNODE
      DO 1610 IJK = 1,NPART
 1610 AMGG(JCORED-1+IJK) = 0.0D0
C
C     SET UP J-LOOP TO LOAD THE UNTRANSFORMED NODAL COLUMN PARTITION.
C
      DO 1620 J = 1,NNODE
      IPOINT = 9*(J-1) + JCORED
      JPOINT = IPOINT  + 4
      KPOINT = IPOINT  + 8
      IFROM  = NNODE*(J-1) + I
      XMASSO = XMASS(IFROM)
      AMGG(IPOINT) = XMASSO
      AMGG(JPOINT) = XMASSO
      AMGG(KPOINT) = XMASSO
 1620 CONTINUE
      IF (NOTRAN(I) .EQ. 1) GO TO 1670
C
C     THIS COLUMN PARTITION NEEDS TO BE TRANSFORMED
C     TO GLOBAL COORDINATES.
C
      DO 1640 M = 1,NNODE
      MPOINT = 9*(M-1) + JCORED
      CALL GMMATD (AMGG(MPOINT),3,3,0,TRANS(9*I-8),3,3,0,TMPMAS)
      IICORE = MPOINT - 1
      DO 1630 K = 1,9
 1630 AMGG(IICORE+K) = TMPMAS(K)
 1640 CONTINUE
C
C     SET UP M-LOOP TO TRANSFORM THE NODAL ROW PARTITIONS
C     OF THIS NODAL COLUMN PARTITION.
C
      DO 1660 M = 1,NNODE
      MPOINT = 9*(M-1) + JCORED
C
C     TRANSFORM THE 3 ROWS FOR THIS SUBPARTITION.  THIS IS CORRECT
C     (3 ROWS).  REMEMBER THAT FOR THE MASS MATIIX FOR THIS ELEMENT
C     THERE ARE NO MASS MOMENT OF INERTIA TERMS.  THIS GIVES THREE
C     ROWS OF ZERO TERMS INTERSPERSED BETWEEN 3 ROWS OF NONZERO
C     TRANSLATIONAL MASS TERMS FOR EACH NODE.
C
      CALL GMMATD (TRANS(9*M-8),3,3,1,AMGG(MPOINT),3,3,0,TMPMAS)
      IICORE = MPOINT - 1
      DO 1650 K = 1,9
 1650 AMGG(IICORE+K) = TMPMAS(K)
 1660 CONTINUE
C
C     HERE WE MUST CHANGE FROM THE ROW LOADING CONVENTION
C     FOR GMMATD TO THE COLUMN LOADING CONVENTION FOR EMGOUT.
C
 1670 DO 1680 II = 1,3
      IPOINT = NDOF*(II-1)
      DO 1680 JJ = 1,NDOF
      JPOINT = 3*(JJ-1) + JCORED - 1
 1680 COLTMP(IPOINT+JJ) = AMGG(JPOINT+II)
C
C     DUMP THIS TRANSFORMED MASS NODAL COLUMN PARTITION.
C
      IEOE = 0
      IF (I .EQ. NNODE) IEOE = 1
C
C     INTEGER 2 IN THE NEXT TO LAST FORMAL PARAMETER OF
C     EMGOUT MEANS WE ARE SENDING MASS DATA.
C
      CALL EMGOUT (COLTMP,COLTMP,NPART,IEOE,DICT,2,IPREC)
 1690 CONTINUE
      GO TO 1710
C
 1700 J = 230
      GO TO 1720
C
 1710 CONTINUE
      RETURN
C
 1720 CALL MESAGE (30,J,NEST)
      IF (L38 .EQ. 1) CALL MESAGE (-61,0,0)
      NOGO = .TRUE.
      GO TO 1710
 1730 CALL MESAGE (-30,234,NAM)
C
C
C     HEAT FLOW OPTION STARTS HERE.
C
C     WE NEED TO RESTORE THE ORIGINAL ORDER OF SILS AND BGPDT DATA
C
 1790 J = 1
      DO 1800 I = 1,20
      EST(I+J) = SAVE(I)
      IF (I .EQ. 4) J = 24
 1800 CONTINUE
C
      INFLAG = 2
      COSMAT = 1.0
      SINMAT = 0.0
      MATID  = NEST(13)
      CALL HMAT (ELID)
      GI(1) = DBLE(KHEAT(1))
      GI(2) = DBLE(KHEAT(2))
      GI(3) = GI(2)
      GI(4) = DBLE(KHEAT(3))
      ANIS  = TYPE.NE.4 .AND. TYPE.NE.-1
C     COMMENT-  ANIS = .FALSE. MEANS ISOTROPIC THERMAL CONDUCTIVITY.
C
      IF (ANIS) GO TO 400
      GO TO 1820
 1810 CONTINUE
      TEM(3) = TEM(4)
      TEM(4) = TEM(5)
      CALL GMMATD (TEM,2,2,0,GI,2,2,0,GT)
      CALL GMMATD (GT,2,2,0,TEM,2,2,1,GI)
 1820 CONTINUE
      DO 1830 I = 1,16
      HTCON(I) = 0.0D0
      HTCAP(I) = 0.0D0
 1830 CONTINUE
      DO 1840 I = 5,8
      HSIL(I)   = 0
 1840 HORDER(I) = 0
C
      DO 1890 IXSI = 1,2
      XI = PTINT(IXSI)
      DO 1890 IETA = 1,2
      ETA = PTINT(IETA)
      DO 1870 IZTA = 1,2
      ZETA = PTINT(IZTA)
C
      CALL TERMSD (NNODE,DGPTH,EPNORM,EGPDT,HORDER,HSIL,BTERMS)
      DVOL = DETERM
C
      DO 1850 I = 1,4
 1850 ECPT(I) = GI(I)*DVOL
      WEITC = DVOL*HTCP
C
      IP = 1
      DO 1860 I = 1,NNODE
      IDN = I + NNODE
      HTFLX(IP+1) = ECPT(3)*BTERMS(I) + ECPT(4)*BTERMS(IDN)
      HTFLX(IP  ) = ECPT(1)*BTERMS(I) + ECPT(2)*BTERMS(IDN)
 1860 IP = IP + 2
      CALL GMMATD (BTERMS,2,NNODE,-1,HTFLX,NNODE,2,1,HTCON)
C
 1870 CONTINUE
      IF (HTCP .EQ. 0.0) GO TO 1890
      IP = 0
      DO 1880 I = 1,NNODE
      DHEAT = WEITC*SHP(I)
      DO 1880 J = 1,NNODE
      IP = IP + 1
      HTCAP(IP) = HTCAP(IP) + DHEAT*SHP(J)
 1880 CONTINUE
 1890 CONTINUE
      DICT(1) = ESTID
      DICT(2) = 1
      DICT(3) = NNODE
      DICT(4) = 1
      IF (HTCP .EQ. 0.0) GO TO 1900
      ADAMP = 1.0
      CALL EMGOUT (HTCAP,HTCAP,NODESQ,1,DICT,3,IPREC)
 1900 CONTINUE
      ADAMP = 0.0
      CALL EMGOUT (HTCON,HTCON,NODESQ,1,DICT,1,IPREC)
      GO TO 1710
C
 2010 FORMAT (A23,', THE ELEMENT THICKNESS FOR QUAD4 EID =',I9,
     1       ' IS NOT COMPLETELY DEFINED.')
 2030 FORMAT (A25,', RHO = ',1P,D12.4,' IS ILLEGAL FROM MATERIAL ID =',
     1       I9,' FOR QUAD4 EID =',I9)
 2060 FORMAT (A25,', ZERO VOLUME OR DENSITY FOR QUAD4 ELEMENT ID =',I9,
     1       ', AREA,VOL,RHO =',3D12.3, /70X,'MGG1,KGG1 =',2I8)
      END