File: rodd.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (313 lines) | stat: -rw-r--r-- 9,892 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
      SUBROUTINE RODD
C
C     THIS ROUTINE PROCESSES ROD ELEMENT DATA TO PRODUCE STIFFNESS AND
C     MASS MATRICES. IF THE HEAT TRANSFER OPTION IS ON, CONDUCTIVITY AND
C     CAPACITY MATRICES ARE PRODUCED
C
C     THIS ROUTINE CAN COMPUTE BOTH CONVENTIONAL AND CONSISTENT
C     MASS MATRICES
C
C     DOUBLE PRECISION VERSION
C
C     THIS VERSION WAS SPECIALLY CODED TO ILLUSTRATE A GENERAL
C     USE OF THE IMPROVED MATRIX GENERATOR.
C
C     THE EST ENTRY FOR THIS ELEMENT CONTAINS
C
C     POSITION     NAME       DESCRIPTION
C     *****        *****      *******************************
C     1             EID       ELEMENT ID NO.
C     2             SIL1      SCALAR INDEX OF POINT A
C     3             SIL2      SCALAR INDEX OF POINT B
C     4             MID       MATERIAL DATA ID
C     5             AFACT     AREA OF CROSS SECTION
C     6             JFACT     TORSIONAL STIFFNESS COEFFICIENT
C     7             CFACT     TORSIONAL STRESS RECOVERY DISTANCE
C     8             MU        NON-STRUCTURAL MASS PER LENGTH
C     9-16          BGPDT     BASIC GRID POINT DATA. COORDINATE SYSTEM
C                             NUMBER AND  X,Y,Z LOCATION FOR 2 POINTS
C     17            TBAR      AVERAGE ELEMENT TEMPERATURE
C
C
      LOGICAL         NOGO
      INTEGER         SIL1     ,SIL2     ,IEST(13) ,EID      ,GE       ,
     1                DICT(7)  ,ELID     ,ESTID
      REAL            JFACT    ,MU       ,KCON     ,EST(200)
      DOUBLE PRECISION          EVECT(3) ,EL       ,KE       ,ME       ,
     1                TE       ,HA(3)    ,HB(3)    ,KHA(3)   ,KHB(3)   ,
     2                TA(9)    ,TB(9)    ,SCALE    ,K        ,MJIDUM(9),
     3                MASSII(9),MASSJJ(9),MASSIJ(9),MASSJI(9),MIJDUM(9)
      CHARACTER       UFM*23
      COMMON /XMSSG / UFM
      COMMON /MATIN / MATID    ,INFLAG   ,ELTEMP   ,DUM(3)
      COMMON /MATOUT/ E        ,G        ,NU       ,RHO      ,ALFA     ,
     1                TSUB0    ,GE
      COMMON /HMTOUT/ KCON
      COMMON /EMGPRM/ IXTRA    ,IZR      ,NZR      ,DUMY(12) ,KMBGG(3) ,
     1                IPREC    ,NOGO     ,HEAT     ,ICMBAR
      COMMON /EMGDIC/ DUM2(2)  ,NLOCS    ,ELID     ,ESTID
      COMMON /ZZZZZZ/ K(1)
C
C     THE VARIABLE K IS OPEN CORE. OPEN SPACE EXISTS FROM Z(IZ) TO Z(NZ)
C     THIS IS INTENDED AS AN EXAMPLE. NORMALLY FOR SMALL ARRAYS
C     LOCAL VARIABLES MAY BE USED.
C
      COMMON /EMGEST/ EID      ,SIL1     ,SIL2     ,MID      ,AFACT    ,
     1                JFACT    ,CFACT    ,MU       ,BGPDT(4,2),TBAR
      COMMON /SYSTEM/ KSYSTM(63)
      EQUIVALENCE     (KSYSTM( 2),IOUTPT),(KSYSTM(56),IHEAT)  ,
     1                (EID,EST(1),IEST(1)),(CP,KCON)
C
C     FOR DOUBLE PRECISION THE POINTERS TO OPEN CORE MUST BE MODIFIED.
C
      IZ = (IZR-2)/IPREC + 2
      NZ = NZR/IPREC
      IF (NZ-IZ .LE. 144) GO TO 290
      DICT(1) = ESTID
C
C     SUBTRACT BASIC LOCATIONS TO OBTAIN LENGTH ETC.
C
      DO 10 I = 1,3
   10 EVECT(I) = BGPDT(I+1,2) - BGPDT(I+1,1)
C
      EL = DSQRT(EVECT(1)**2 + EVECT(2)**2 + EVECT(3)**2)
      IF (EL .LE. 0.0D0) GO TO 270
C
C     IF HEAT TRANSFER PROBLEM TRANSFER.  CALL MATERIAL SUBROUTINE
C
      INFLAG = 1
      MATID  = MID
      ELTEMP = TBAR
      IF (IHEAT .EQ. 1) GO TO 240
      CALL MAT (EID)
      KE = DBLE(E*AFACT)/EL
      ME = (DBLE(RHO*AFACT+MU))*EL/2.0D0
      TE = DBLE(G*JFACT)/EL
C
C     PROCESS STIFFNESS HERE
C
      IF (KMBGG(1) .EQ. 0) GO TO 220
      IF (KE.EQ.0.0D0 .AND. TE.EQ.0.0D0) GO TO 220
C
C     GENERATE   HA  =  (E*TA)/EL   AND  HB = (E*TB)/EL
C
      IF (IEST(9) .EQ. 0) GO TO 30
      CALL TRANSD (BGPDT(1,1),TA)
      CALL GMMATD (EVECT,1,3,0, TA,3,3,0, HA)
      DO 20 I = 1,3
   20 HA(I) = HA(I)/EL
      GO TO 50
   30 DO 40 I = 1,3
   40 HA(I) = EVECT(I)/EL
   50 IF (IEST(13) .EQ. 0) GO TO 70
      CALL TRANSD (BGPDT(1,2),TB)
      CALL GMMATD (EVECT,1,3,0, TB,3,3,0, HB)
      DO 60 I = 1,3
   60 HB(I) = HB(I)/EL
      GO TO 90
   70 DO 80 I = 1,3
   80 HB(I) = EVECT(I)/EL
C
C     THE GENERAL 12X12  MATRIX FOR THE ROD ELEMENT IS
C                            -                              -
C                            1HA K HA1   0  1HA K HB1       1
C                **   **     1 ------1------1-------1-------1
C                *  K  *   = 1   0   1HA T A1       1HA T HB1
C                **   **     1 ------1------1-------1-------1
C                            1HB K HA1      1HB K HB1       1
C                            1 ------1------1-------1-------1
C                            1       1HB T A1       1HB T HB1
C                            1       1      1       1       1
C                            -                              -
C                      EACH BLOCK  ABOVE IS A 3 BY 3 MATRIX
C
C     TEST AND SET COMPONENT CODE    111= 7     111000=56
C
   90 ICODE = 0
      NDOF  = 0
      IF (TE  .NE. 0.D0) GO TO 100
      ICODE = 7
      NDOF  = 6
      GO TO 120
  100 IF (KE  .NE. 0.D0) GO TO 110
      ICODE = 56
      NDOF  = 6
      GO TO 120
  110 ICODE = 63
      NDOF  = 12
  120 NSQ   = NDOF**2
      NG    = NDOF/2
      NPART = NG*NDOF
      IZERO = IZ - 1
      IPASS = 1
      DO  130 I = 1,NSQ
      IZPI  = IZ + I - 1
  130 K(IZPI) = 0.0D0
C
C     EXTENSIONAL STIFFNESS TERMS ARE COMPUTED HERE.
C
      IF (ICODE .EQ. 56) GO TO 200
      SCALE = KE
  140 DO 150 I = 1,3
      KHA(I) = SCALE*HA(I)
  150 KHB(I) = SCALE*HB(I)
C
C     THE MATRIX COLUMNS AND ROWS MUST BE IN THE NUMERICAL ORDER
C     OF TH SIL VALUES. THE POINTERS INTO THE MATRIX ARE VARIABLES.
C
      IF (SIL2-SIL1) 160,270,170
  160 IBBZ = IZERO
      IABZ = IZERO + NG
      IBAZ = IZERO + NPART
      IAAZ = IBAZ  + NG
      GO TO 180
  170 IAAZ = IZERO
      IBAZ = IZERO + NG
      IABZ = IZERO + NPART
      IBBZ = IABZ  + NG
  180 CONTINUE
      DO 190 J = 1,3
      DO 190 I = 1,3
      IJ  = NDOF*(J-1) + I
      IAA = IJ + IAAZ
      K(IAA) = KHA(I)*HA(J)
      IBA = IJ + IBAZ
      K(IBA) =-KHB(I)*HA(J)
      IAB = IJ + IABZ
      K(IAB) =-KHA(I)*HB(J)
      IBB = IJ + IBBZ
      K(IBB) = KHB(I)*HB(J)
  190 CONTINUE
C
C     THE TORSIONAL STIFFNESS TERMS ARE FORMED USING TE INSTEAD OF KE
C     THEY ARE INSERTED IN THE MATRIX WITH  A CONSTANT OFFSET, 3*12+3.
C
  200 IF (IPASS .EQ. 2) GO TO 210
      IF (NDOF .EQ. 12) IZERO = 38 + IZ
      IPASS = 2
      SCALE = TE
      IF (ICODE .NE. 7) GO TO 140
  210 IPART = IZ
      DICT(2) = 1
      DICT(3) = NDOF
      DICT(4) = ICODE
      DICT(5) = GE
      CALL EMGOUT (K(IPART),K(IPART),NSQ,1,DICT,1,IPREC)
C
C     THE MASS MATRIX TERMS ARE CALCULATED HERE.
C
  220 IF (KMBGG(2).EQ.0 .OR. ME.EQ.0.0D0) RETURN
      DICT(3) = 6
      DICT(4) = 7
      DICT(5) = 0
C
C     CHECK TO SEE IF CONVENTIONAL OR CONSISTENT MASS MATRIX IS REQUIRED
C
      IF (ICMBAR .GT. 0) GO TO 400
C
C     CONVENTIONAL MASS MATRIX TERMS ARE COMPUTED HERE
C
      DICT(2) = 2
      LDATA   = 6
      IZP5    = IZ + 5
      DO 230 I = IZ,IZP5
  230 K(I) = ME
      GO TO 600
C
C     CONSISTENT MASS MATRIX TERMS ARE COMPUTED HERE
C
  400 DICT(2) = 1
      LDATA   = 36
      DO 420 I = 1,9
      MASSII(I) = 0.0D0
      MASSJJ(I) = 0.0D0
      MASSIJ(I) = 0.0D0
      MASSJI(I) = 0.0D0
      MIJDUM(I) = 0.0D0
      MJIDUM(I) = 0.0D0
  420 CONTINUE
      ME = 2.0D0*ME
      DO 440 I = 1,9,4
      MASSII(I) = ME/3.0D0
      MASSJJ(I) = ME/3.0D0
      MASSIJ(I) = ME/6.0D0
      MASSJI(I) = ME/6.0D0
      MIJDUM(I) = ME/6.0D0
      MJIDUM(I) = ME/6.0D0
  440 CONTINUE
      IF (SIL2-SIL1) 480,270,460
  460 ITI = 9
      ITJ = 13
      GO TO 500
  480 ITI = 13
      ITJ = 9
  500 IF (IEST(ITI) .EQ. 0) GO TO 520
      CALL TRANSD (IEST(ITI), TA)
      CALL GMMATD (TA,3,3,1, MASSII,3,3,0, K(IZ))
      CALL GMMATD (K(IZ),3,3,0, TA,3,3,0, MASSII)
      CALL GMMATD (TA,3,3,1, MIJDUM,3,3,0, MASSIJ)
      CALL GMMATD (MJIDUM,3,3,0, TA,3,3,0, MASSJI)
  520 IF (IEST(ITJ) .EQ. 0) GO TO 560
      CALL TRANSD (IEST(ITJ), TA)
      CALL GMMATD (TA,3,3,1, MASSJJ,3,3,0, K(IZ))
      CALL GMMATD (K(IZ),3,3,0, TA,3,3,0, MASSJJ)
      CALL GMMATD (MASSIJ,3,3,0, TA,3,3,0, MIJDUM)
      CALL GMMATD (TA,3,3,1, MASSJI,3,3,0, MJIDUM)
      DO 540 I = 1,9
      MASSIJ(I) = MIJDUM(I)
      MASSJI(I) = MJIDUM(I)
  540 CONTINUE
  560 DO 580 I = 1,3
      KZ = IZ + I - 1
      K(KZ   ) = MASSII(I  )
      K(KZ+ 6) = MASSII(I+3)
      K(KZ+12) = MASSII(I+6)
      K(KZ+ 3) = MASSIJ(I  )
      K(KZ+ 9) = MASSIJ(I+3)
      K(KZ+15) = MASSIJ(I+6)
      K(KZ+18) = MASSJI(I  )
      K(KZ+24) = MASSJI(I+3)
      K(KZ+30) = MASSJI(I+6)
      K(KZ+21) = MASSJJ(I  )
      K(KZ+27) = MASSJJ(I+3)
      K(KZ+33) = MASSJJ(I+6)
  580 CONTINUE
  600 CALL EMGOUT (K(IZ),K(IZ),LDATA,1,DICT,2,IPREC)
      RETURN
C
C     HEAT TRANSFER CALCULATIONS ARE PERFORMED HERE
C
  240 INFLAG  = 1
      DICT(2) = 1
      DICT(3) = 2
      DICT(4) = 1
      DICT(5) = 0
      IF (KMBGG(1) .EQ. 0) GO TO 250
      CALL HMAT (EID)
      K(IZ) = DBLE(AFACT*KCON)/EL
      IF (K(IZ) .EQ. 0.0D0) GO TO 250
      K(IZ+1) = -K(IZ)
      K(IZ+2) = -K(IZ)
      K(IZ+3) =  K(IZ)
      CALL EMGOUT (K(IZ),K(IZ),4,1,DICT,1,IPREC)
  250 INFLAG = 4
      IF (KMBGG(1) .EQ. 0) RETURN
      CALL HMAT (EID)
      K(IZ) = DBLE(AFACT*CP)*EL/2.0D0
      IF (K(IZ) .EQ. 0.0D0) RETURN
      K(IZ+1) = K(IZ)
      DICT(2) = 2
      CALL EMGOUT (K(IZ),K(IZ),2,1,DICT,3,IPREC)
      RETURN
C
  270 NOGO = .TRUE.
      WRITE  (IOUTPT,280) UFM,EID
  280 FORMAT (A23,' 3118, ROD ELEMENT NO.',I9,
     1        ' HAS ILLEGAL GEOMETRY OR CONNECTIONS.')
      RETURN
C
  290 NOGO = .TRUE.
      WRITE  (IOUTPT,300) UFM
  300 FORMAT (A23,' 3119, INSUFFICIENT CORE TO PROCESS ROD ELEMENTS')
      RETURN
      END