File: sdhtff.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (308 lines) | stat: -rw-r--r-- 8,268 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
      SUBROUTINE SDHTFF
C
C     THIS ROUTINE CALCULATES THE PHASE 1 FLUX-TEMPERATURE RELATIONSHIPS
C
      INTEGER         SUB,NELS(18),IP(32),SMAP(52),STRSPT,SIG
      REAL            C(12),K,KQ(9),DR(3,4),MATO,EL,ZI(3),VEC(3),VVEC(3)
      COMMON /CONDAS/ CONSTS(5)
      COMMON /SDR2X4/ DUMX(109),STRSPT
      COMMON /SDR2X5/ EST(100),IDE,SIG(32),NQ,NSIL,NAME(2),K(9),CE(96),
     1                DSHPB(3,32)
      COMMON /SDR2X6/ SUB,IMAT,AF,THETA,R(3,32)
      COMMON /HMTOUT/ MATO(6)
      EQUIVALENCE     (CONSTS(1),PI)
      DATA    NELS  / 1,1,4,1,4,1,3,5,10,1,1,1,1,4,1,1,1,1 /
      DATA    SMAP  / 1        ,2        ,3        ,6      ,
     1                1        ,2        ,6        ,5      ,
     2                1        ,4        ,5        ,6      ,
     3                1        ,2        ,3        ,6      ,
     4                1        ,3        ,4        ,8      ,
     5                1        ,3        ,8        ,6      ,
     6                1        ,5        ,6        ,8      ,
     7                3        ,6        ,7        ,8      ,
     8                2        ,3        ,4        ,7      ,
     9                1        ,2        ,4        ,5      ,
     O                2        ,4        ,5        ,7      ,
     1                2        ,5        ,6        ,7      ,
     2                4        ,5        ,7        ,8      /
C
      GO TO (30,40,40,40,40,50,50,50,50,30,30,30,30,30,30,50,50,30), SUB
   30 K(1) = MATO(1)
      NQ   = 1
      GO TO  60
   40 K(1) = MATO(1)
      K(2) = MATO(2)
      K(3) = K(2)
      K(4) = MATO(3)
      NQ   = 2
      GO TO  60
   50 K(1) = MATO(1)
      K(2) = MATO(2)
      K(3) = MATO(3)
      K(4) = K(2)
      K(5) = MATO(4)
      K(6) = MATO(5)
      K(7) = K(3)
      K(8) = K(6)
      K(9) = MATO(6)
      NQ   = 3
   60 CONTINUE
      IP(1)= 1
      IP(2)= 2
      IP(3)= 3
      IF (SUB .EQ. 17) GO TO 111
      IF (SUB.NE.3 .AND. SUB.NE.5) GO TO 100
C
C     MOVE  QUADS TO ELEMENT COORDINATES
C     (CQUAD4? APPEARENTLY UP TO ELEMENT TYPE 52 ONLY)
C
      DO 70 I = 1,3
      DR(I,1) = R(I,2) - R(I,1)
      DR(I,3) = R(I,3) - R(I,1)
   70 DR(I,2) = R(I,4) - R(I,2)
      CALL SAXB (DR(1,3),DR(1,2),DR(1,4))
C
      EL   = SQRT(DR(1,1)**2 + DR(2,1)**2 + DR(3,1)**2)
      AREA = SQRT(DR(1,4)**2 + DR(2,4)**2 + DR(3,4)**2)
C
      DO 80 I = 1,3
      DR(I,1) = DR(I,1)/EL
   80 DR(I,4) = DR(I,4)/AREA
C
      CALL SAXB (DR(1,4),DR(1,1),DR(1,2))
      DO 90 I = 1,3
   90 DR(I,4) = R(I,4) - R(I,1)
      CALL GMMATS (DR(1,1),2,3,0,DR(1,3),2,3,1,KQ)
      DR(1,3) = KQ(1)
      DR(1,4) = KQ(2)
      DR(2,3) = KQ(3)
      DR(2,4) = KQ(4)
      DR(1,2) = EL
      DR(1,1) = 0.0
      DR(2,1) = 0.0
      DR(2,2) = 0.0
      GO TO 120
  100 IF (SUB.NE.2 .AND. SUB.NE.4) GO TO 120
C
C     MOVE  TRIANGLES TO ELEMENT COORDINATES
C     (CTRIA3?)
C
      DO 110 I = 1,3
      DR(I,1) = R(I,2) - R(I,1)
  110 DR(I,2) = R(I,3) - R(I,1)
C
      EL   = DR(1,1)**2 + DR(2,1)**2 + DR(3,1)**2
      EL   = SQRT(EL)
      AREA = SADOTB(DR(1,1),DR(1,2))/EL
      CALL SAXB (DR(1,1),DR(1,2),DR(1,3))
      DR(2,3) = SQRT(DR(1,3)**2 + DR(2,3)**2 + DR(3,3)**2)/EL
      DR(1,3) = AREA
      DR(1,1) = 0.0
      DR(1,2) = EL
      DR(2,1) = 0.0
      DR(2,2) = 0.0
      GO TO 120
C
C     IS2D8-CENTROID ONLY-WE NEED TO CONVERT ONLY GRIDS 5-8 TO LOCAL
C     COORDS
C
  111 DO 112 I = 1,3
  112 ZI(I) = R(I,2) - R(I,1)
      ZLEN  = SQRT(ZI(1)**2 + ZI(2)**2 + ZI(3)**2)
      DO 113 I = 1,3
  113 ZI(I) = ZI(I)/ZLEN
      DO 115 I = 5,8
      DO 114 J = 1,3
  114 VEC(J) = R(J,I) - R(J,1)
      DR(1,I-4) = SADOTB(VEC,ZI)
      CALL SAXB (ZI,VEC,VVEC)
      DR(2,I-4) = SQRT(VVEC(1)**2 + VVEC(2)**2 + VVEC(3)**2)
  115 CONTINUE
  120 CONTINUE
C
C     LOOP  ON  SUBELEMENTS  (ONE FOR MOST)
C
      FACT = 0.0
      NEL  = NELS(SUB)
      XELS = FLOAT(NEL)
      DO 460 IEL = 1,NEL
C
      GO TO (130,160,160,140,140,200,220,240,240,330,330,330,
     1       330,330,330,285,291,330), SUB
C
C     RODS,BARS, ETC.
C
  130 EL = 0.0
      DO 135 I = 1, 3
      EL = EL + (R(I,1)-R(I,2))**2
  135 CONTINUE
      EL = SQRT(EL)
      C(1) = -1.0/EL
      C(2) =  1.0/EL
      NP = 2
      GO TO 300
C
C     RING ELEMENTS, TRIANGLES AND QUADRILATERALS
C
  140 AF = 1.0
  160 DO 170 I = 1,3
      IG = I + IEL - 1
      IF (IG .GT. 4) IG = IG - 4
  170 IP(I) = IG
      I1 = IP(1)
      I2 = IP(2)
      I3 = IP(3)
      AREA = DR(1,I1)*(DR(2,I2)-DR(2,I3)) + DR(1,I2)*(DR(2,I3)-DR(2,I1))
     2     + DR(1,I3)*(DR(2,I1)-DR(2,I2))
      C(1) = (DR(2,I2) - DR(2,I3))/AREA
      C(2) = (DR(2,I3) - DR(2,I1))/AREA
      C(3) = (DR(2,I1) - DR(2,I2))/AREA
      C(4) = (DR(1,I3) - DR(1,I2))/AREA
      C(5) = (DR(1,I1) - DR(1,I3))/AREA
      C(6) = (DR(1,I2) - DR(1,I1))/AREA
C
      NP   = 3
      GO TO 300
C
C     SOLID ELEMENTS
C
  200 DO 210 I = 1,4
  210 IP(I) = I
      GO TO 260
C
C     WEDGE
C
  220 LROW = 4*IEL - 4
      DO 230 I = 1,4
      I1 = LROW + I
  230 IP(I) = SMAP(I1)
      GO TO 260
C
C     HEXA1 AND HEXA2 ELEMENTS
C
  240 LROW = 4*IEL + 8
      DO 250 I = 1,4
      I1 = LROW + I
  250 IP(I) = SMAP(I1)
  260 I1 = IP(1)
      DO 270 I = 1,3
      IG = IP(I+1)
      DO 270 J = 1,3
       DR(J,I) = R(J,IG) - R(J,I1)
  270 CONTINUE
C
C     NO NEED TO COMPUTE DETERMINANT SINCE IT IS NOT USED SUBSEQUENTLY.
C
      ISING = -1
      CALL INVERS (3,DR,3,C,0,DETERM,ISING,C(4))
      DO 280 I = 1,3
      IG = 4*I - 4
      C(IG+1) = 0.0
      DO 280 J = 2,4
      I1 = IG + J
      C(I1  ) = DR(J-1,I)
      C(IG+1) = C(IG+1) - C(I1)
  280 CONTINUE
      NP = 4
      GO TO 300
C
C     ISOPARAMETRIC SOLIDS
C
  285 IG = 0
      DO 290 I = 1,3
      DO 290 J = 1,NSIL
      IG = IG + 1
  290 CE(IG) = DSHPB(I,J)
      GO TO 460
C
C     IS2D8- SINCE CENTROID ONLY, WE CAN EASILY COMPUTE SHAPE FUNCTIONS
C     DERIVATIVES, JACOBIAN,ETC.. THE FINAL RESULT OF DNDX,DNDY=DNL IS
C     GIVEN
C
  291 X68 = DR(1,2) - DR(1,4)
      X57 = DR(1,1) - DR(1,3)
      Y68 = DR(2,2) - DR(2,4)
      Y57 = DR(2,1) - DR(2,3)
      DENOM = -X68*Y57 + X57*Y68
      DO 292 I = 1,24
  292 CE(I)  = 0.
      CE( 5) = Y68/DENOM
      CE( 6) =-Y57/DENOM
      CE( 7) =-Y68/DENOM
      CE( 8) = Y57/DENOM
      CE(13) =-X68/DENOM
      CE(14) = X57/DENOM
      CE(15) = X68/DENOM
      CE(16) =-X57/DENOM
      GO TO 460
C
C     SUPERIMPOSE C MATRICES ONTO CE MATRICES OF THE WHOLE ELEMENT
C
  300 DO 310 I = 1,NP
      DO 310 J = 1,NQ
      I1 = NP*(J-1) + I
      IG = NSIL*(J-1) + IP(I)
      CE(IG) = CE(IG) + C(I1)/XELS
  310 CONTINUE
      GO TO 460
C
C     BOUNDARY HEAT CONVECTION ELEMENTS
C
  330 ITYPE = SUB - 9
      IF (ITYPE .GT. 7) RETURN
      GO TO (340,350,370,380,380,350,350), ITYPE
  340 NP = 1
      C(1) = 1.0
      FACT = AF*K(1)
      GO TO 410
  350 NP = 2
      C(1) = 0.5
      C(2) = 0.5
      EL = SQRT((R(1,1)-R(1,2))**2 + (R(2,1)-R(2,2))**2 +
     1          (R(3,1)-R(3,2))**2)
      FACT = AF*EL*K(1)
      GO TO 410
C
C     RING SURFACE
C
  370 EL   = ((R(1,2)-R(1,1))**2 + (R(3,2)-R(3,1))**2)
      FACT = 3.0*(R(1,1) + R(1,2))
      C(1) = (2.0*R(1,1) + R(1,2))/FACT
      C(2) = (R(1,1) + 2.0*R(1,2))/FACT
      FACT = (R(1,1) + R(1,2))*PI*SQRT(EL)*K(1)
      NP   = 2
      GO TO 410
C
C     TRIANGLES  (ALSO FOR SUBELEMENT OF QUAD)
C
  380 DO 390 I = 1,3
      IG = I + IEL - 1
      IF (IG .GT. 4) IG = IG - 4
      IP(I) = IG
  390 CONTINUE
      I1 = IP(1)
      I2 = IP(2)
      I3 = IP(3)
      DO 400 I = 1,3
      DR(I,1) = R(I,I2) - R(I,I1)
  400 DR(I,2) = R(I,I3) - R(I,I1)
      CALL SAXB (DR(1,1),DR(1,2),DR(1,3))
      AREA = (SQRT(DR(1,3)**2 + DR(2,3)**2 +DR(3,3)**2))/2.0
      IF (ITYPE .EQ. 5) AREA = AREA/2.0
      FACT = FACT + AREA*MATO(1)
      C(1) = 1.0/3.0
      C(2) = C(1)
      C(3) = C(1)
      NP   = 3
C
C     SUPERIMPOSE C MATRIX INTO CE MATRIX
C
  410 DO 420 I = 1,NP
      IG = IP(I)
      CE(IG) = CE(IG) + C(I)/XELS
      IG = IP(I) + 4
  420 CE(IG) = CE(IG) - C(I)/XELS
      K(1) = FACT
  460 CONTINUE
      RETURN
      END