1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
SUBROUTINE SDHTFF
C
C THIS ROUTINE CALCULATES THE PHASE 1 FLUX-TEMPERATURE RELATIONSHIPS
C
INTEGER SUB,NELS(18),IP(32),SMAP(52),STRSPT,SIG
REAL C(12),K,KQ(9),DR(3,4),MATO,EL,ZI(3),VEC(3),VVEC(3)
COMMON /CONDAS/ CONSTS(5)
COMMON /SDR2X4/ DUMX(109),STRSPT
COMMON /SDR2X5/ EST(100),IDE,SIG(32),NQ,NSIL,NAME(2),K(9),CE(96),
1 DSHPB(3,32)
COMMON /SDR2X6/ SUB,IMAT,AF,THETA,R(3,32)
COMMON /HMTOUT/ MATO(6)
EQUIVALENCE (CONSTS(1),PI)
DATA NELS / 1,1,4,1,4,1,3,5,10,1,1,1,1,4,1,1,1,1 /
DATA SMAP / 1 ,2 ,3 ,6 ,
1 1 ,2 ,6 ,5 ,
2 1 ,4 ,5 ,6 ,
3 1 ,2 ,3 ,6 ,
4 1 ,3 ,4 ,8 ,
5 1 ,3 ,8 ,6 ,
6 1 ,5 ,6 ,8 ,
7 3 ,6 ,7 ,8 ,
8 2 ,3 ,4 ,7 ,
9 1 ,2 ,4 ,5 ,
O 2 ,4 ,5 ,7 ,
1 2 ,5 ,6 ,7 ,
2 4 ,5 ,7 ,8 /
C
GO TO (30,40,40,40,40,50,50,50,50,30,30,30,30,30,30,50,50,30), SUB
30 K(1) = MATO(1)
NQ = 1
GO TO 60
40 K(1) = MATO(1)
K(2) = MATO(2)
K(3) = K(2)
K(4) = MATO(3)
NQ = 2
GO TO 60
50 K(1) = MATO(1)
K(2) = MATO(2)
K(3) = MATO(3)
K(4) = K(2)
K(5) = MATO(4)
K(6) = MATO(5)
K(7) = K(3)
K(8) = K(6)
K(9) = MATO(6)
NQ = 3
60 CONTINUE
IP(1)= 1
IP(2)= 2
IP(3)= 3
IF (SUB .EQ. 17) GO TO 111
IF (SUB.NE.3 .AND. SUB.NE.5) GO TO 100
C
C MOVE QUADS TO ELEMENT COORDINATES
C (CQUAD4? APPEARENTLY UP TO ELEMENT TYPE 52 ONLY)
C
DO 70 I = 1,3
DR(I,1) = R(I,2) - R(I,1)
DR(I,3) = R(I,3) - R(I,1)
70 DR(I,2) = R(I,4) - R(I,2)
CALL SAXB (DR(1,3),DR(1,2),DR(1,4))
C
EL = SQRT(DR(1,1)**2 + DR(2,1)**2 + DR(3,1)**2)
AREA = SQRT(DR(1,4)**2 + DR(2,4)**2 + DR(3,4)**2)
C
DO 80 I = 1,3
DR(I,1) = DR(I,1)/EL
80 DR(I,4) = DR(I,4)/AREA
C
CALL SAXB (DR(1,4),DR(1,1),DR(1,2))
DO 90 I = 1,3
90 DR(I,4) = R(I,4) - R(I,1)
CALL GMMATS (DR(1,1),2,3,0,DR(1,3),2,3,1,KQ)
DR(1,3) = KQ(1)
DR(1,4) = KQ(2)
DR(2,3) = KQ(3)
DR(2,4) = KQ(4)
DR(1,2) = EL
DR(1,1) = 0.0
DR(2,1) = 0.0
DR(2,2) = 0.0
GO TO 120
100 IF (SUB.NE.2 .AND. SUB.NE.4) GO TO 120
C
C MOVE TRIANGLES TO ELEMENT COORDINATES
C (CTRIA3?)
C
DO 110 I = 1,3
DR(I,1) = R(I,2) - R(I,1)
110 DR(I,2) = R(I,3) - R(I,1)
C
EL = DR(1,1)**2 + DR(2,1)**2 + DR(3,1)**2
EL = SQRT(EL)
AREA = SADOTB(DR(1,1),DR(1,2))/EL
CALL SAXB (DR(1,1),DR(1,2),DR(1,3))
DR(2,3) = SQRT(DR(1,3)**2 + DR(2,3)**2 + DR(3,3)**2)/EL
DR(1,3) = AREA
DR(1,1) = 0.0
DR(1,2) = EL
DR(2,1) = 0.0
DR(2,2) = 0.0
GO TO 120
C
C IS2D8-CENTROID ONLY-WE NEED TO CONVERT ONLY GRIDS 5-8 TO LOCAL
C COORDS
C
111 DO 112 I = 1,3
112 ZI(I) = R(I,2) - R(I,1)
ZLEN = SQRT(ZI(1)**2 + ZI(2)**2 + ZI(3)**2)
DO 113 I = 1,3
113 ZI(I) = ZI(I)/ZLEN
DO 115 I = 5,8
DO 114 J = 1,3
114 VEC(J) = R(J,I) - R(J,1)
DR(1,I-4) = SADOTB(VEC,ZI)
CALL SAXB (ZI,VEC,VVEC)
DR(2,I-4) = SQRT(VVEC(1)**2 + VVEC(2)**2 + VVEC(3)**2)
115 CONTINUE
120 CONTINUE
C
C LOOP ON SUBELEMENTS (ONE FOR MOST)
C
FACT = 0.0
NEL = NELS(SUB)
XELS = FLOAT(NEL)
DO 460 IEL = 1,NEL
C
GO TO (130,160,160,140,140,200,220,240,240,330,330,330,
1 330,330,330,285,291,330), SUB
C
C RODS,BARS, ETC.
C
130 EL = 0.0
DO 135 I = 1, 3
EL = EL + (R(I,1)-R(I,2))**2
135 CONTINUE
EL = SQRT(EL)
C(1) = -1.0/EL
C(2) = 1.0/EL
NP = 2
GO TO 300
C
C RING ELEMENTS, TRIANGLES AND QUADRILATERALS
C
140 AF = 1.0
160 DO 170 I = 1,3
IG = I + IEL - 1
IF (IG .GT. 4) IG = IG - 4
170 IP(I) = IG
I1 = IP(1)
I2 = IP(2)
I3 = IP(3)
AREA = DR(1,I1)*(DR(2,I2)-DR(2,I3)) + DR(1,I2)*(DR(2,I3)-DR(2,I1))
2 + DR(1,I3)*(DR(2,I1)-DR(2,I2))
C(1) = (DR(2,I2) - DR(2,I3))/AREA
C(2) = (DR(2,I3) - DR(2,I1))/AREA
C(3) = (DR(2,I1) - DR(2,I2))/AREA
C(4) = (DR(1,I3) - DR(1,I2))/AREA
C(5) = (DR(1,I1) - DR(1,I3))/AREA
C(6) = (DR(1,I2) - DR(1,I1))/AREA
C
NP = 3
GO TO 300
C
C SOLID ELEMENTS
C
200 DO 210 I = 1,4
210 IP(I) = I
GO TO 260
C
C WEDGE
C
220 LROW = 4*IEL - 4
DO 230 I = 1,4
I1 = LROW + I
230 IP(I) = SMAP(I1)
GO TO 260
C
C HEXA1 AND HEXA2 ELEMENTS
C
240 LROW = 4*IEL + 8
DO 250 I = 1,4
I1 = LROW + I
250 IP(I) = SMAP(I1)
260 I1 = IP(1)
DO 270 I = 1,3
IG = IP(I+1)
DO 270 J = 1,3
DR(J,I) = R(J,IG) - R(J,I1)
270 CONTINUE
C
C NO NEED TO COMPUTE DETERMINANT SINCE IT IS NOT USED SUBSEQUENTLY.
C
ISING = -1
CALL INVERS (3,DR,3,C,0,DETERM,ISING,C(4))
DO 280 I = 1,3
IG = 4*I - 4
C(IG+1) = 0.0
DO 280 J = 2,4
I1 = IG + J
C(I1 ) = DR(J-1,I)
C(IG+1) = C(IG+1) - C(I1)
280 CONTINUE
NP = 4
GO TO 300
C
C ISOPARAMETRIC SOLIDS
C
285 IG = 0
DO 290 I = 1,3
DO 290 J = 1,NSIL
IG = IG + 1
290 CE(IG) = DSHPB(I,J)
GO TO 460
C
C IS2D8- SINCE CENTROID ONLY, WE CAN EASILY COMPUTE SHAPE FUNCTIONS
C DERIVATIVES, JACOBIAN,ETC.. THE FINAL RESULT OF DNDX,DNDY=DNL IS
C GIVEN
C
291 X68 = DR(1,2) - DR(1,4)
X57 = DR(1,1) - DR(1,3)
Y68 = DR(2,2) - DR(2,4)
Y57 = DR(2,1) - DR(2,3)
DENOM = -X68*Y57 + X57*Y68
DO 292 I = 1,24
292 CE(I) = 0.
CE( 5) = Y68/DENOM
CE( 6) =-Y57/DENOM
CE( 7) =-Y68/DENOM
CE( 8) = Y57/DENOM
CE(13) =-X68/DENOM
CE(14) = X57/DENOM
CE(15) = X68/DENOM
CE(16) =-X57/DENOM
GO TO 460
C
C SUPERIMPOSE C MATRICES ONTO CE MATRICES OF THE WHOLE ELEMENT
C
300 DO 310 I = 1,NP
DO 310 J = 1,NQ
I1 = NP*(J-1) + I
IG = NSIL*(J-1) + IP(I)
CE(IG) = CE(IG) + C(I1)/XELS
310 CONTINUE
GO TO 460
C
C BOUNDARY HEAT CONVECTION ELEMENTS
C
330 ITYPE = SUB - 9
IF (ITYPE .GT. 7) RETURN
GO TO (340,350,370,380,380,350,350), ITYPE
340 NP = 1
C(1) = 1.0
FACT = AF*K(1)
GO TO 410
350 NP = 2
C(1) = 0.5
C(2) = 0.5
EL = SQRT((R(1,1)-R(1,2))**2 + (R(2,1)-R(2,2))**2 +
1 (R(3,1)-R(3,2))**2)
FACT = AF*EL*K(1)
GO TO 410
C
C RING SURFACE
C
370 EL = ((R(1,2)-R(1,1))**2 + (R(3,2)-R(3,1))**2)
FACT = 3.0*(R(1,1) + R(1,2))
C(1) = (2.0*R(1,1) + R(1,2))/FACT
C(2) = (R(1,1) + 2.0*R(1,2))/FACT
FACT = (R(1,1) + R(1,2))*PI*SQRT(EL)*K(1)
NP = 2
GO TO 410
C
C TRIANGLES (ALSO FOR SUBELEMENT OF QUAD)
C
380 DO 390 I = 1,3
IG = I + IEL - 1
IF (IG .GT. 4) IG = IG - 4
IP(I) = IG
390 CONTINUE
I1 = IP(1)
I2 = IP(2)
I3 = IP(3)
DO 400 I = 1,3
DR(I,1) = R(I,I2) - R(I,I1)
400 DR(I,2) = R(I,I3) - R(I,I1)
CALL SAXB (DR(1,1),DR(1,2),DR(1,3))
AREA = (SQRT(DR(1,3)**2 + DR(2,3)**2 +DR(3,3)**2))/2.0
IF (ITYPE .EQ. 5) AREA = AREA/2.0
FACT = FACT + AREA*MATO(1)
C(1) = 1.0/3.0
C(2) = C(1)
C(3) = C(1)
NP = 3
C
C SUPERIMPOSE C MATRIX INTO CE MATRIX
C
410 DO 420 I = 1,NP
IG = IP(I)
CE(IG) = CE(IG) + C(I)/XELS
IG = IP(I) + 4
420 CE(IG) = CE(IG) - C(I)/XELS
K(1) = FACT
460 CONTINUE
RETURN
END
|