File: shsetd.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (390 lines) | stat: -rw-r--r-- 12,025 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
      SUBROUTINE SHSETD (*,MM,SIL,BGPDT,IGPDT,GPTH,ELTH,GPTEMP,BGPDM,
     1                   EGPDT,DGPTH,GPNORM,EPNORM,NNODE,MMN,NSIL,
     2                   IORDER,IORDRN,TEB,TUB,CENTE,AVGTHK,TCE,ELID)
C
C     TO SET UP FOR ISOPARAMETRIC SHELL ELEMENTS, CALLED ONLY BY SHHMGD
C
C     DOUBLE PRECISION VERSION
C
C     INPUT :
C           MM       - MAXIMUM NO. OF NODES PER THIS TYPE ELEMENT
C           SIL      - ARRAY OF SIL NUMBERS
C           BGPDT    - BGPDT DATA FROM EST (REAL ARRAY)
C           IGPDT    - BGPDT DATA FROM EST (INTEGER ARRAY)
C           GPTH     - GRID POINT THICKNESS DATA
C           ELTH     - ELEMENT THICKNESS FROM EPT
C           GPTEMP   - GRID POINT TEMPERATURE DATA
C           ELID     - ELEMENT ID
C     OUTPUT:
C           SIL      - ARRAY OF SIL NUMBERS        (REARRANGED)
C           BGPDT    - BGPDT DATA (REAL ARRAY)     (REARRANGED)
C           IGPDT    - BGPDT DATA (INTEGER ARRAY)  (REARRANGED)
C           GPTH     - GRID POINT THICKNESS DATA   (REARRANGED)
C           GPTEMP   - GRID POINT TEMPERATURE DATA (REARRANGED)
C           BGPDM    - BGPDT DATA SAVED IN ORIGINAL FORMAT
C           EGPDT    - BGPDT DATA IN ELEMENT COORD. SYSTEM
C           DGPTH    - GRID POINT THICKNESS DATA
C           GPNORM   - GRID POINT NORMALS
C           EPNORM   - GRID POINT NORMALS IN ELEMENT COORD. SYSTEM
C           NNODE    - THE NO. OF NODES PRESENT IN THE ELEMENT
C           MMN      - ARRAY OF MISSING MIDSIDE NODES
C           NSIL     - INTERNALLY ORDERED SIL ARRAY
C           IORDER   - ARRAY OF ORDER INDICATORS FOR REARRANGED DATA
C           IORDRN   - ARRAY OF ORDER INDICATORS FOR TRIA
C           TEB      - TRANSFORMATION FROM ELEMENT TO BASIC COORD.SYSTEM
C           TUB      - TRANSFORMATION FROM USER TO BASIC COORD. SYSTEM
C           CENTE    - LOCATION OF THE CENTER OF THE ELEMENT
C           AVGTHK   - AVERAGE THICKNESS OF THE ELEMENT
C
      LOGICAL          QUAD
      INTEGER          SIL(8),IORDER(8),KSIL(8),KCID(8),MMN(8),NSIL(8),
     1                 IORDRN(8),IGPDT(4,8),ELID
      REAL             GPTEMP(8),TEMTEM(8),BGPDT(4,8),TGRID(4,8),
     1                 GPTH(8),TMPTHK(8),BGPDM(3,8)
      DOUBLE PRECISION CENT(3),CENTE(3),EGPDT(4,8),GGU(9),GGN(9),TEB(9),
     1                 TEU(9),SMAX,SMIN,SL(3),GGE(9),TUB(9),CC,DGPTH(8),
     2                 GPNORM(4,8),EPNORM(4,8),X31,Y31,X42,Y42,EXI,EXJ,
     3                 AA,BB,UGPDM(3,8),TCE(63),AVGTHK
C
C
      IF (MM.NE.3 .AND. MM.NE.4 .AND. MM.NE.6 .AND. MM.NE.8) GO TO 700
C           TRIA3         QUAD4         TRIA6         QUAD8
C
      QUAD = MM.EQ.8 .OR. MM.EQ.4
      MMX  = 3
      IF (QUAD) MMX = 4
      NNODE = MM
      DO 10 I = 1,MM
      MMN(I) = SIL(I)
      KSIL(I)= SIL(I)
      IF (SIL(I) .GT. 0) GO TO 10
      NNODE = NNODE - 1
   10 CONTINUE
C
C     FILL IN ARRAY GGU WITH THE COORDINATES OF GRID POINTS 1,2 AND 4
C     (3 FOR TRIA). THIS ARRAY WILL BE USED LATER TO DEFINE THE USER
C     COORDINATE SYSTEM WHILE CALCULATING TRANSFORMATIONS INVOLVING
C     THIS COORDINATE SYSTEM.
C
      DO 20 I = 1,3
      II = (I-1)*3
      IJ = I
      IF (QUAD .AND. IJ.EQ.3) IJ = 4
      DO 20 J = 1,3
      JJ = J + 1
   20 GGU(II+J) = DBLE(BGPDT(JJ,IJ))
      CALL BETRND (TUB,GGU,0,ELID)
C
C     STORE INCOMING BGPDT FOR LUMPED MASS AND ELEMENT COORD. SYSTEM
C
      DO 30 I = 1,3
      I1 = I + 1
      DO 30 J = 1,MM
   30 BGPDM(I,J) = BGPDT(I1,J)
C
C     TRANSFORM BGPDM FROM BASIC TO USER COORD. SYSTEM
C
      DO 40 I = 1,3
      IP = (I-1)*3
      DO 40 J = 1,MM
      UGPDM(I,J) = 0.0D0
      DO 40 K = 1,3
      KK = IP + K
   40 UGPDM(I,J) = UGPDM(I,J) + TUB(KK)*(DBLE(BGPDM(K,J))-GGU(K))
C
      IF (QUAD) GO TO 200
C
C     FOR TRIA
C     CALCULATE THE CENTER COORDINATES
C
      CENTE(1) = (GGU(1)+GGU(4)+GGU(7))/3.0D0
      CENTE(2) = (GGU(2)+GGU(5)+GGU(8))/3.0D0
      CENTE(3) = (GGU(3)+GGU(6)+GGU(9))/3.0D0
C
C     ESTABLISH THE INTERNAL COORDINATES:
C     X-AXIS IS ALONG THE MIDDLE-SIZED SIDE AND THE XY-PLANE IS
C     DETERMINED BY IT TOGETHER WITH THE SHORTEST SIDE
C
      CC = (GGU(7)-GGU(4))*(GGU(7)-GGU(4))
     1   + (GGU(8)-GGU(5))*(GGU(8)-GGU(5))
     2   + (GGU(9)-GGU(6))*(GGU(9)-GGU(6))
      IF (CC .LE. 0.0D0) GO TO 700
      SL(1) = DSQRT(CC)
      CC = (GGU(7)-GGU(1))*(GGU(7)-GGU(1))
     1   + (GGU(8)-GGU(2))*(GGU(8)-GGU(2))
     2   + (GGU(9)-GGU(3))*(GGU(9)-GGU(3))
      IF (CC .LE. 0.0D0) GO TO 700
      SL(2) = DSQRT(CC)
      CC = (GGU(4)-GGU(1))*(GGU(4)-GGU(1))
     1   + (GGU(5)-GGU(2))*(GGU(5)-GGU(2))
     2   + (GGU(6)-GGU(3))*(GGU(6)-GGU(3))
      IF (CC .LE. 0.0D0) GO TO 700
      SL(3) = DSQRT(CC)
      SMAX  = SL(1)
      ISMAX = 1
      DO 100 I = 2,3
      IF (SL(I) .LE. SMAX) GO TO 100
      SMAX  = SL(I)
      ISMAX = I
  100 CONTINUE
      SMIN  = SL(1)
      ISMIN = 1
      DO 110 I = 2,3
      IF (SL(I) .GE. SMIN) GO TO 110
      SMIN  = SL(I)
      ISMIN = I
  110 CONTINUE
      IF (ISMAX .EQ. ISMIN) ISMIN = 3
      MIDDL = IABS(ISMAX-ISMIN)
      IF (ISMAX+ISMIN .EQ. 3) MIDDL = 3
C
C     DETECT THE POSSIBLE REVERSAL OF THE INTERNAL Z-AXIS WITH RESPECT
C     TO THE USER Z-AXIS. IF THAT IS THE CASE, SWITCH ISMAX AND ISMIN
C     TO AVOID THE PROBLEM. THE SIDE WITH MEDIUM LENGTH WILL STILL BE
C     THE X-AXIS.
C
      IF (ISMAX .NE. MOD(ISMIN,3)+1) GO TO 120
      III    = ISMIN
      ISMIN  = ISMAX
      ISMAX  = III
C
  120 IS3    = 3*(ISMAX-1)
      GGN(1) = GGU(IS3+1)
      GGN(2) = GGU(IS3+2)
      GGN(3) = GGU(IS3+3)
C
      IS3    = 3*(ISMIN-1)
      GGN(4) = GGU(IS3+1)
      GGN(5) = GGU(IS3+2)
      GGN(6) = GGU(IS3+3)
C
      IS3    = 3*(MIDDL-1)
      GGN(7) = GGU(IS3+1)
      GGN(8) = GGU(IS3+2)
      GGN(9) = GGU(IS3+3)
C
      CALL BETRND (TEB,GGN,0,ELID)
      GO TO 300
C
C     FOR QUAD
C     THE ORIGIN OF THE ELEMENT COORD.SYSTEM IS IN THE MIDDLE OF THE
C     ELEMENT
C
  200 DO 210 J = 1,3
      CENT(J) = 0.0D0
      DO 210 I = 1,MM
  210 CENT(J) = CENT(J) + UGPDM(J,I)/NNODE
C
C     STORE THE CORNER NODE DIFF. IN THE USER COORD. SYSTEM
C
      X31 = UGPDM(1,3) - UGPDM(1,1)
      Y31 = UGPDM(2,3) - UGPDM(2,1)
      X42 = UGPDM(1,4) - UGPDM(1,2)
      Y42 = UGPDM(2,4) - UGPDM(2,2)
      AA  = X31*X31 + Y31*Y31
      IF (AA .LE. 0.0D0) GO TO 700
      AA  = DSQRT(AA)
      BB  = X42*X42 + Y42*Y42
      IF (BB .LE. 0.0D0) GO TO 700
      BB  = DSQRT(BB)
C
C     NORMALIZE XIJ'S
C
      X31 = X31/AA
      Y31 = Y31/AA
      X42 = X42/BB
      Y42 = Y42/BB
      EXI = X31 - X42
      EXJ = Y31 - Y42
C
C     STORE GGE ARRAY, THE OFFSET BETWEEN ELEMENT COORD. SYSTEM AND USER
C     COORD. SYSTEM
C
      GGE(1) = CENT(1)
      GGE(2) = CENT(2)
      GGE(3) = CENT(3)
C
      GGE(4) = GGE(1) + EXI
      GGE(5) = GGE(2) + EXJ
      GGE(6) = GGE(3)
C
      GGE(7) = GGE(1) - EXJ
      GGE(8) = GGE(2) + EXI
      GGE(9) = GGE(3)
C
      CALL BETRND (TEU,GGE,0,ELID)
      CALL GMMATD (TEU,3,3,0, TUB,3,3,0,  TEB)
      CALL GMMATD (TUB,3,3,1, CENT,3,1,0, CENTE)
C
C     THE ARRAY IORDER STORES THE ELEMENT NODE ID IN INCREASING SIL
C     ORDER.
C
C     IORDER(1)  = NODE WITH LOWEST  SIL NUMBER
C     IORDER(MM) = NODE WITH HIGHEST SIL NUMBER
C
C     ELEMENT NODE NUMBER IS THE INTEGER FROM THE NODE LIST
C     G1,G2,G3,G4,G5,G6,G7,G8 .  THAT IS, THE "I" PART OF THE "GI" AS
C     THEY ARE LISTED ON THE CONNECTIVITY BULK DATA CARD DESCRIPTION.
C
  300 KSILD = 99999995
      DO 310 I = 1,MM
      IORDER(I) = 0
      IORDRN(I) = 0
      KSIL(I) = SIL(I)
      IF (SIL(I) .NE. 0) GO TO 310
      KSIL(I) = KSILD
      KSILD   = KSILD + 1
  310 CONTINUE
      DO 330 I = 1,MM
      ITEMP = 1
      ISIL  = KSIL(1)
      DO 320 J = 2,MM
      IF (ISIL .LE. KSIL(J)) GO TO 320
      ITEMP = J
      ISIL  = KSIL(J)
  320 CONTINUE
      IORDER(I) = ITEMP
      IORDRN(I) = ITEMP
      KSIL(ITEMP) = 99999999
  330 CONTINUE
C
C     ADJUST EST DATA
C
C     USE THE POINTERS IN IORDER TO COMPLETELY REORDER THE GEOMETRY DATA
C     INTO INCREASING SIL ORDER.
C     DON'T WORRY!! IORDER ALSO KEEPS TRACK OF WHICH SHAPE FUNCTIONS GO
C     WITH WHICH GEOMETRIC PARAMETERS!
C
      DO 350 I = 1,MM
      KSIL(I)  = SIL(I)
      TMPTHK(I)= GPTH(I)
      IF (MM .NE. 4) TEMTEM(I) = GPTEMP(I)
      KCID(I) = IGPDT(1,I)
      DO 340 J = 2,4
      TGRID(J,I) = BGPDT(J,I)
  340 CONTINUE
  350 CONTINUE
      DO 370 I = 1,MM
      IPOINT  = IORDER(I)
      SIL(I)  = KSIL(IPOINT)
      NSIL(I) = KSIL(IPOINT)
      GPTH(I) = TMPTHK(IPOINT)
      IF (MM .NE. 4) GPTEMP(I) = TEMTEM(IPOINT)
      IGPDT(1,I) = KCID(IPOINT)
      DO 360 J = 2,4
      BGPDT(J,I) = TGRID(J,IPOINT)
  360 CONTINUE
  370 CONTINUE
C
      IF (QUAD) GO TO 500
C
C     FOR TRIA
C     CREATE THE INTERNAL ORDER OF THE NODES OF ELEMENT IN CONNECTION
C     WITH THE INTERNAL COORDINATE SYSTEM THEN CALCULATE NORMALS
C
      DO 400 I = 1,MM
      IF (IORDER(I) .EQ. ISMAX) IORDRN(I) = 1
      IF (IORDER(I) .EQ. ISMIN) IORDRN(I) = 2
      IF (IORDER(I) .EQ. MIDDL) IORDRN(I) = 3
      IF (IORDER(I) .EQ. 4) IND4=I
      IF (IORDER(I) .EQ. 5) IND5=I
      IF (IORDER(I) .EQ. 6) IND6=I
  400 CONTINUE
      IF (MM .NE. 6) GO TO 410
      IF (ISMAX+ISMIN .EQ. 3) IORDRN(IND4) = 4
      IF (ISMAX+ISMIN .EQ. 4) IORDRN(IND6) = 4
      IF (ISMAX+ISMIN .EQ. 5) IORDRN(IND5) = 4
      IF (ISMIN+MIDDL .EQ. 3) IORDRN(IND4) = 5
      IF (ISMIN+MIDDL .EQ. 4) IORDRN(IND6) = 5
      IF (ISMIN+MIDDL .EQ. 5) IORDRN(IND5) = 5
      IF (MIDDL+ISMAX .EQ. 3) IORDRN(IND4) = 6
      IF (MIDDL+ISMAX .EQ. 4) IORDRN(IND6) = 6
      IF (MIDDL+ISMAX .EQ. 5) IORDRN(IND5) = 6
C
  410 DO 420 I = 1,3
      II = I + 1
      IP = (I-1)*3
      DO 420 J = 1,NNODE
      EGPDT(II,J) = 0.0D0
      DO 420 K = 1,3
      KK = IP + K
      EGPDT(II,J) = EGPDT(II,J) + TEB(KK)*(DBLE(BGPDT(K+1,J))-GGN(K))
  420 CONTINUE
C
C     USE THE POINTERS IN IORDER AND IORDRN TO REORDER MMN
C
      DO 430 I = 1,MM
      IPOINT = IORDRN(I)
      JPOINT = IORDER(I)
      MMN(IPOINT) = KSIL(JPOINT)
  430 CONTINUE
C
      IF (MM .NE. 3) GO TO 520
      DO 440 II=1,3
      EPNORM(1,II) = 0.0D0
      EPNORM(2,II) = 0.0D0
      EPNORM(3,II) = 0.0D0
      EPNORM(4,II) = 1.0D0
      GPNORM(1,II) = 0.0D0
      GPNORM(2,II) = TEB(7)
      GPNORM(3,II) = TEB(8)
      GPNORM(4,II) = TEB(9)
  440 CONTINUE
      GO TO 520
C
C     FOR QUAD - COMPUTE NODAL NORMALS
C     THE COORDINATES OF THE ELEMENT GRID POINTS HAVE TO BE TRANSFORMED
C     FROM THE BASIC COORD. SYSTEM TO THE ELEMENT COORD. SYSTEM
C
  500 IFLAG = 0
      IF (MM .EQ. 4) CALL Q4NRMD (BGPDT,GPNORM,IORDER,IFLAG)
      IF (IFLAG .NE. 0) GO TO 700
C
      DO 510 I = 1,3
      II = I + 1
      IP = (I-1)*3
      DO 510 J = 1,NNODE
      EPNORM(II,J) = 0.0D0
      EGPDT (II,J) = 0.0D0
      DO 510 K = 1,3
      KK = IP + K
      K1 = K  + 1
      CC = DBLE(BGPDT(K1,J)) - GGU(K) - CENTE(K)
      EPNORM(II,J) = EPNORM(II,J) + TEB(KK)*GPNORM(K1,J)
      EGPDT (II,J) = EGPDT (II,J) + TEB(KK)*CC
  510 CONTINUE
C
C     SET AVGTHK TO ZERO
C
  520 AVGTHK = 0.0D0
      DO 550 I = 1,NNODE
      IO = IORDER(I)
      IF (IO .GT. MMX) GO TO 550
C
      IF (GPTH(I)) 700,530,540
  530 IF (ELTH .LE. 0.0) GO TO 700
      GPTH(I)  = ELTH
  540 DGPTH(I) = DBLE(GPTH(I))
      AVGTHK = AVGTHK + DGPTH(I)/NNODE
  550 CONTINUE
C
      DO 620 I = 1,NNODE
      IO = IORDER(I)
      IF (IO      .LE. MMX) GO TO 620
      IF (GPTH(I) .GT. 0.0) GO TO 610
      IO1 = IO  - MMX
      IO2 = IO1 + 1
      IF (IO2 .EQ. MMX+1) IO2 = 1
      DO 600 J = 1,MM
      JO = IORDER(J)
      IF (JO .EQ. IO1) IC1 = J
      IF (JO .EQ. IO2) IC2 = J
  600 CONTINUE
      GPTH (I) = (GPTH(IC1)+GPTH(IC2))/2.0
  610 DGPTH(I) = DBLE(GPTH(I))
      AVGTHK = AVGTHK + DGPTH(I)/NNODE
  620 CONTINUE
      RETURN
C
  700 RETURN 1
      END