1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
SUBROUTINE SHSETD (*,MM,SIL,BGPDT,IGPDT,GPTH,ELTH,GPTEMP,BGPDM,
1 EGPDT,DGPTH,GPNORM,EPNORM,NNODE,MMN,NSIL,
2 IORDER,IORDRN,TEB,TUB,CENTE,AVGTHK,TCE,ELID)
C
C TO SET UP FOR ISOPARAMETRIC SHELL ELEMENTS, CALLED ONLY BY SHHMGD
C
C DOUBLE PRECISION VERSION
C
C INPUT :
C MM - MAXIMUM NO. OF NODES PER THIS TYPE ELEMENT
C SIL - ARRAY OF SIL NUMBERS
C BGPDT - BGPDT DATA FROM EST (REAL ARRAY)
C IGPDT - BGPDT DATA FROM EST (INTEGER ARRAY)
C GPTH - GRID POINT THICKNESS DATA
C ELTH - ELEMENT THICKNESS FROM EPT
C GPTEMP - GRID POINT TEMPERATURE DATA
C ELID - ELEMENT ID
C OUTPUT:
C SIL - ARRAY OF SIL NUMBERS (REARRANGED)
C BGPDT - BGPDT DATA (REAL ARRAY) (REARRANGED)
C IGPDT - BGPDT DATA (INTEGER ARRAY) (REARRANGED)
C GPTH - GRID POINT THICKNESS DATA (REARRANGED)
C GPTEMP - GRID POINT TEMPERATURE DATA (REARRANGED)
C BGPDM - BGPDT DATA SAVED IN ORIGINAL FORMAT
C EGPDT - BGPDT DATA IN ELEMENT COORD. SYSTEM
C DGPTH - GRID POINT THICKNESS DATA
C GPNORM - GRID POINT NORMALS
C EPNORM - GRID POINT NORMALS IN ELEMENT COORD. SYSTEM
C NNODE - THE NO. OF NODES PRESENT IN THE ELEMENT
C MMN - ARRAY OF MISSING MIDSIDE NODES
C NSIL - INTERNALLY ORDERED SIL ARRAY
C IORDER - ARRAY OF ORDER INDICATORS FOR REARRANGED DATA
C IORDRN - ARRAY OF ORDER INDICATORS FOR TRIA
C TEB - TRANSFORMATION FROM ELEMENT TO BASIC COORD.SYSTEM
C TUB - TRANSFORMATION FROM USER TO BASIC COORD. SYSTEM
C CENTE - LOCATION OF THE CENTER OF THE ELEMENT
C AVGTHK - AVERAGE THICKNESS OF THE ELEMENT
C
LOGICAL QUAD
INTEGER SIL(8),IORDER(8),KSIL(8),KCID(8),MMN(8),NSIL(8),
1 IORDRN(8),IGPDT(4,8),ELID
REAL GPTEMP(8),TEMTEM(8),BGPDT(4,8),TGRID(4,8),
1 GPTH(8),TMPTHK(8),BGPDM(3,8)
DOUBLE PRECISION CENT(3),CENTE(3),EGPDT(4,8),GGU(9),GGN(9),TEB(9),
1 TEU(9),SMAX,SMIN,SL(3),GGE(9),TUB(9),CC,DGPTH(8),
2 GPNORM(4,8),EPNORM(4,8),X31,Y31,X42,Y42,EXI,EXJ,
3 AA,BB,UGPDM(3,8),TCE(63),AVGTHK
C
C
IF (MM.NE.3 .AND. MM.NE.4 .AND. MM.NE.6 .AND. MM.NE.8) GO TO 700
C TRIA3 QUAD4 TRIA6 QUAD8
C
QUAD = MM.EQ.8 .OR. MM.EQ.4
MMX = 3
IF (QUAD) MMX = 4
NNODE = MM
DO 10 I = 1,MM
MMN(I) = SIL(I)
KSIL(I)= SIL(I)
IF (SIL(I) .GT. 0) GO TO 10
NNODE = NNODE - 1
10 CONTINUE
C
C FILL IN ARRAY GGU WITH THE COORDINATES OF GRID POINTS 1,2 AND 4
C (3 FOR TRIA). THIS ARRAY WILL BE USED LATER TO DEFINE THE USER
C COORDINATE SYSTEM WHILE CALCULATING TRANSFORMATIONS INVOLVING
C THIS COORDINATE SYSTEM.
C
DO 20 I = 1,3
II = (I-1)*3
IJ = I
IF (QUAD .AND. IJ.EQ.3) IJ = 4
DO 20 J = 1,3
JJ = J + 1
20 GGU(II+J) = DBLE(BGPDT(JJ,IJ))
CALL BETRND (TUB,GGU,0,ELID)
C
C STORE INCOMING BGPDT FOR LUMPED MASS AND ELEMENT COORD. SYSTEM
C
DO 30 I = 1,3
I1 = I + 1
DO 30 J = 1,MM
30 BGPDM(I,J) = BGPDT(I1,J)
C
C TRANSFORM BGPDM FROM BASIC TO USER COORD. SYSTEM
C
DO 40 I = 1,3
IP = (I-1)*3
DO 40 J = 1,MM
UGPDM(I,J) = 0.0D0
DO 40 K = 1,3
KK = IP + K
40 UGPDM(I,J) = UGPDM(I,J) + TUB(KK)*(DBLE(BGPDM(K,J))-GGU(K))
C
IF (QUAD) GO TO 200
C
C FOR TRIA
C CALCULATE THE CENTER COORDINATES
C
CENTE(1) = (GGU(1)+GGU(4)+GGU(7))/3.0D0
CENTE(2) = (GGU(2)+GGU(5)+GGU(8))/3.0D0
CENTE(3) = (GGU(3)+GGU(6)+GGU(9))/3.0D0
C
C ESTABLISH THE INTERNAL COORDINATES:
C X-AXIS IS ALONG THE MIDDLE-SIZED SIDE AND THE XY-PLANE IS
C DETERMINED BY IT TOGETHER WITH THE SHORTEST SIDE
C
CC = (GGU(7)-GGU(4))*(GGU(7)-GGU(4))
1 + (GGU(8)-GGU(5))*(GGU(8)-GGU(5))
2 + (GGU(9)-GGU(6))*(GGU(9)-GGU(6))
IF (CC .LE. 0.0D0) GO TO 700
SL(1) = DSQRT(CC)
CC = (GGU(7)-GGU(1))*(GGU(7)-GGU(1))
1 + (GGU(8)-GGU(2))*(GGU(8)-GGU(2))
2 + (GGU(9)-GGU(3))*(GGU(9)-GGU(3))
IF (CC .LE. 0.0D0) GO TO 700
SL(2) = DSQRT(CC)
CC = (GGU(4)-GGU(1))*(GGU(4)-GGU(1))
1 + (GGU(5)-GGU(2))*(GGU(5)-GGU(2))
2 + (GGU(6)-GGU(3))*(GGU(6)-GGU(3))
IF (CC .LE. 0.0D0) GO TO 700
SL(3) = DSQRT(CC)
SMAX = SL(1)
ISMAX = 1
DO 100 I = 2,3
IF (SL(I) .LE. SMAX) GO TO 100
SMAX = SL(I)
ISMAX = I
100 CONTINUE
SMIN = SL(1)
ISMIN = 1
DO 110 I = 2,3
IF (SL(I) .GE. SMIN) GO TO 110
SMIN = SL(I)
ISMIN = I
110 CONTINUE
IF (ISMAX .EQ. ISMIN) ISMIN = 3
MIDDL = IABS(ISMAX-ISMIN)
IF (ISMAX+ISMIN .EQ. 3) MIDDL = 3
C
C DETECT THE POSSIBLE REVERSAL OF THE INTERNAL Z-AXIS WITH RESPECT
C TO THE USER Z-AXIS. IF THAT IS THE CASE, SWITCH ISMAX AND ISMIN
C TO AVOID THE PROBLEM. THE SIDE WITH MEDIUM LENGTH WILL STILL BE
C THE X-AXIS.
C
IF (ISMAX .NE. MOD(ISMIN,3)+1) GO TO 120
III = ISMIN
ISMIN = ISMAX
ISMAX = III
C
120 IS3 = 3*(ISMAX-1)
GGN(1) = GGU(IS3+1)
GGN(2) = GGU(IS3+2)
GGN(3) = GGU(IS3+3)
C
IS3 = 3*(ISMIN-1)
GGN(4) = GGU(IS3+1)
GGN(5) = GGU(IS3+2)
GGN(6) = GGU(IS3+3)
C
IS3 = 3*(MIDDL-1)
GGN(7) = GGU(IS3+1)
GGN(8) = GGU(IS3+2)
GGN(9) = GGU(IS3+3)
C
CALL BETRND (TEB,GGN,0,ELID)
GO TO 300
C
C FOR QUAD
C THE ORIGIN OF THE ELEMENT COORD.SYSTEM IS IN THE MIDDLE OF THE
C ELEMENT
C
200 DO 210 J = 1,3
CENT(J) = 0.0D0
DO 210 I = 1,MM
210 CENT(J) = CENT(J) + UGPDM(J,I)/NNODE
C
C STORE THE CORNER NODE DIFF. IN THE USER COORD. SYSTEM
C
X31 = UGPDM(1,3) - UGPDM(1,1)
Y31 = UGPDM(2,3) - UGPDM(2,1)
X42 = UGPDM(1,4) - UGPDM(1,2)
Y42 = UGPDM(2,4) - UGPDM(2,2)
AA = X31*X31 + Y31*Y31
IF (AA .LE. 0.0D0) GO TO 700
AA = DSQRT(AA)
BB = X42*X42 + Y42*Y42
IF (BB .LE. 0.0D0) GO TO 700
BB = DSQRT(BB)
C
C NORMALIZE XIJ'S
C
X31 = X31/AA
Y31 = Y31/AA
X42 = X42/BB
Y42 = Y42/BB
EXI = X31 - X42
EXJ = Y31 - Y42
C
C STORE GGE ARRAY, THE OFFSET BETWEEN ELEMENT COORD. SYSTEM AND USER
C COORD. SYSTEM
C
GGE(1) = CENT(1)
GGE(2) = CENT(2)
GGE(3) = CENT(3)
C
GGE(4) = GGE(1) + EXI
GGE(5) = GGE(2) + EXJ
GGE(6) = GGE(3)
C
GGE(7) = GGE(1) - EXJ
GGE(8) = GGE(2) + EXI
GGE(9) = GGE(3)
C
CALL BETRND (TEU,GGE,0,ELID)
CALL GMMATD (TEU,3,3,0, TUB,3,3,0, TEB)
CALL GMMATD (TUB,3,3,1, CENT,3,1,0, CENTE)
C
C THE ARRAY IORDER STORES THE ELEMENT NODE ID IN INCREASING SIL
C ORDER.
C
C IORDER(1) = NODE WITH LOWEST SIL NUMBER
C IORDER(MM) = NODE WITH HIGHEST SIL NUMBER
C
C ELEMENT NODE NUMBER IS THE INTEGER FROM THE NODE LIST
C G1,G2,G3,G4,G5,G6,G7,G8 . THAT IS, THE "I" PART OF THE "GI" AS
C THEY ARE LISTED ON THE CONNECTIVITY BULK DATA CARD DESCRIPTION.
C
300 KSILD = 99999995
DO 310 I = 1,MM
IORDER(I) = 0
IORDRN(I) = 0
KSIL(I) = SIL(I)
IF (SIL(I) .NE. 0) GO TO 310
KSIL(I) = KSILD
KSILD = KSILD + 1
310 CONTINUE
DO 330 I = 1,MM
ITEMP = 1
ISIL = KSIL(1)
DO 320 J = 2,MM
IF (ISIL .LE. KSIL(J)) GO TO 320
ITEMP = J
ISIL = KSIL(J)
320 CONTINUE
IORDER(I) = ITEMP
IORDRN(I) = ITEMP
KSIL(ITEMP) = 99999999
330 CONTINUE
C
C ADJUST EST DATA
C
C USE THE POINTERS IN IORDER TO COMPLETELY REORDER THE GEOMETRY DATA
C INTO INCREASING SIL ORDER.
C DON'T WORRY!! IORDER ALSO KEEPS TRACK OF WHICH SHAPE FUNCTIONS GO
C WITH WHICH GEOMETRIC PARAMETERS!
C
DO 350 I = 1,MM
KSIL(I) = SIL(I)
TMPTHK(I)= GPTH(I)
IF (MM .NE. 4) TEMTEM(I) = GPTEMP(I)
KCID(I) = IGPDT(1,I)
DO 340 J = 2,4
TGRID(J,I) = BGPDT(J,I)
340 CONTINUE
350 CONTINUE
DO 370 I = 1,MM
IPOINT = IORDER(I)
SIL(I) = KSIL(IPOINT)
NSIL(I) = KSIL(IPOINT)
GPTH(I) = TMPTHK(IPOINT)
IF (MM .NE. 4) GPTEMP(I) = TEMTEM(IPOINT)
IGPDT(1,I) = KCID(IPOINT)
DO 360 J = 2,4
BGPDT(J,I) = TGRID(J,IPOINT)
360 CONTINUE
370 CONTINUE
C
IF (QUAD) GO TO 500
C
C FOR TRIA
C CREATE THE INTERNAL ORDER OF THE NODES OF ELEMENT IN CONNECTION
C WITH THE INTERNAL COORDINATE SYSTEM THEN CALCULATE NORMALS
C
DO 400 I = 1,MM
IF (IORDER(I) .EQ. ISMAX) IORDRN(I) = 1
IF (IORDER(I) .EQ. ISMIN) IORDRN(I) = 2
IF (IORDER(I) .EQ. MIDDL) IORDRN(I) = 3
IF (IORDER(I) .EQ. 4) IND4=I
IF (IORDER(I) .EQ. 5) IND5=I
IF (IORDER(I) .EQ. 6) IND6=I
400 CONTINUE
IF (MM .NE. 6) GO TO 410
IF (ISMAX+ISMIN .EQ. 3) IORDRN(IND4) = 4
IF (ISMAX+ISMIN .EQ. 4) IORDRN(IND6) = 4
IF (ISMAX+ISMIN .EQ. 5) IORDRN(IND5) = 4
IF (ISMIN+MIDDL .EQ. 3) IORDRN(IND4) = 5
IF (ISMIN+MIDDL .EQ. 4) IORDRN(IND6) = 5
IF (ISMIN+MIDDL .EQ. 5) IORDRN(IND5) = 5
IF (MIDDL+ISMAX .EQ. 3) IORDRN(IND4) = 6
IF (MIDDL+ISMAX .EQ. 4) IORDRN(IND6) = 6
IF (MIDDL+ISMAX .EQ. 5) IORDRN(IND5) = 6
C
410 DO 420 I = 1,3
II = I + 1
IP = (I-1)*3
DO 420 J = 1,NNODE
EGPDT(II,J) = 0.0D0
DO 420 K = 1,3
KK = IP + K
EGPDT(II,J) = EGPDT(II,J) + TEB(KK)*(DBLE(BGPDT(K+1,J))-GGN(K))
420 CONTINUE
C
C USE THE POINTERS IN IORDER AND IORDRN TO REORDER MMN
C
DO 430 I = 1,MM
IPOINT = IORDRN(I)
JPOINT = IORDER(I)
MMN(IPOINT) = KSIL(JPOINT)
430 CONTINUE
C
IF (MM .NE. 3) GO TO 520
DO 440 II=1,3
EPNORM(1,II) = 0.0D0
EPNORM(2,II) = 0.0D0
EPNORM(3,II) = 0.0D0
EPNORM(4,II) = 1.0D0
GPNORM(1,II) = 0.0D0
GPNORM(2,II) = TEB(7)
GPNORM(3,II) = TEB(8)
GPNORM(4,II) = TEB(9)
440 CONTINUE
GO TO 520
C
C FOR QUAD - COMPUTE NODAL NORMALS
C THE COORDINATES OF THE ELEMENT GRID POINTS HAVE TO BE TRANSFORMED
C FROM THE BASIC COORD. SYSTEM TO THE ELEMENT COORD. SYSTEM
C
500 IFLAG = 0
IF (MM .EQ. 4) CALL Q4NRMD (BGPDT,GPNORM,IORDER,IFLAG)
IF (IFLAG .NE. 0) GO TO 700
C
DO 510 I = 1,3
II = I + 1
IP = (I-1)*3
DO 510 J = 1,NNODE
EPNORM(II,J) = 0.0D0
EGPDT (II,J) = 0.0D0
DO 510 K = 1,3
KK = IP + K
K1 = K + 1
CC = DBLE(BGPDT(K1,J)) - GGU(K) - CENTE(K)
EPNORM(II,J) = EPNORM(II,J) + TEB(KK)*GPNORM(K1,J)
EGPDT (II,J) = EGPDT (II,J) + TEB(KK)*CC
510 CONTINUE
C
C SET AVGTHK TO ZERO
C
520 AVGTHK = 0.0D0
DO 550 I = 1,NNODE
IO = IORDER(I)
IF (IO .GT. MMX) GO TO 550
C
IF (GPTH(I)) 700,530,540
530 IF (ELTH .LE. 0.0) GO TO 700
GPTH(I) = ELTH
540 DGPTH(I) = DBLE(GPTH(I))
AVGTHK = AVGTHK + DGPTH(I)/NNODE
550 CONTINUE
C
DO 620 I = 1,NNODE
IO = IORDER(I)
IF (IO .LE. MMX) GO TO 620
IF (GPTH(I) .GT. 0.0) GO TO 610
IO1 = IO - MMX
IO2 = IO1 + 1
IF (IO2 .EQ. MMX+1) IO2 = 1
DO 600 J = 1,MM
JO = IORDER(J)
IF (JO .EQ. IO1) IC1 = J
IF (JO .EQ. IO2) IC2 = J
600 CONTINUE
GPTH (I) = (GPTH(IC1)+GPTH(IC2))/2.0
610 DGPTH(I) = DBLE(GPTH(I))
AVGTHK = AVGTHK + DGPTH(I)/NNODE
620 CONTINUE
RETURN
C
700 RETURN 1
END
|