1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
SUBROUTINE SPANL1(IARG)
C*****
C THIS ROUTINE COMPUTES PHASE I PARAMETERS FOR STRESS DATA RECOVERY FOR
C THE SHEAR PANEL (IF IARG = 4) AND THE TWIST PANEL (IF IARG = 5).
C MUCH OF THE CODE WAS LIFTED FROM SUBROUTIVE KPANEL
C*****
C
C E C P T F O R B O T H P A N E L S
C ECPT( 1) - IELID ELEMENT ID. NO.
C ECPT( 2) - ISILNO(4) SCALAR INDEX NUMBERS
C ECPT( 3) - ... ...
C ECPT( 4) - ... ...
C ECPT( 5) - ... ...
C ECPT( 6) - MATID MATERIAL ID.
C ECPT( 7) - T THICKNESS
C ECPT( 8) - FMU NON-STRUCTURAL MASS
C ECPT( 9) - ICSID1 COOR. SYS. ID. FOR GRID POINT 1
C ECPT(10) - GP1(3) BASIC COORDINATES FOR GRID POINT 1
C ECPT(11) - ... ...
C ECPT(12) - ... ...
C ECPT(13) - ICSID2 COOR. SYS. ID. FOR GRID POINT 2
C ECPT(14) - GP2(3) BASIC COORDINATES FOR GRID POINT 2
C ECPT(15) - ... ...
C ECPT(16) - ... ...
C ECPT(17) - ICSID3 COOR. SYS. ID. FOR GRID POINT 3
C ECPT(18) - GP3(3) BASIC COORDINATES FOR GRID POINT 3
C ECPT(19) - ... ...
C ECPT(20) - ... ...
C ECPT(21) - ICSID4 COOR. SYS. ID. FOR GRID POINT 4
C ECPT(22) - GP4(3) BASIC COORDINATES FOR GRID POINT 4
C ECPT(23) - ... ...
C ECPT(24) - ... ...
C ECPT(25) - TEMPEL ELEMENT TEMPERATURE
C
C
C
REAL
1 NU
C
C
C
C
C
C
DIMENSION
1 VD1(3) ,VD2(3)
2, VKN(3) ,VK(3)
3, V12(3) ,V41(3)
4, VP12(3) ,VI(3)
5, VJ(3) ,AVEC(4)
6, SMALLU(4) ,SMALLV(4)
7, P(4) ,IECPT(100)
8, ECPT(100)
9, VLEFT(6) ,TI(9)
C
C SDR2 PHASE I INPUT AND OUTPUT BLOCK
C
COMMON /SDR2X5/
1 IELID ,ISILNO(4)
2, MATID ,T
3, FMU ,ICSID1
4, GP1(3) ,ICSID2
5, GP2(3) ,ICSID3
6, GP3(3) ,ICSID4
7, GP4(3) ,TEMPEL
8, XXXXXX(75)
COMMON /SDR2X5/
1 JELID ,JSILNO(4)
2, S(3,4) ,OUT(15)
3, YYYYYY(93)
C
C SDR2 SCRATCH BLOCK
C
COMMON /SDR2X6/
1 VLEFT ,TI
2, SPCON
4, VD1 ,VD2
5, VKN ,VK
6, V12 ,V41
7, VP12 ,VI
8, VJ ,AVEC
9, SMALLU ,SMALLV
T, P ,X1
1, X2 ,X3
2, X4 ,Y1
3, Y2 ,Y3
4, Y4 ,VKL
5, PA ,V12DK
6, CEP1 ,CEP2
7, EP ,TEMP
COMMON /SDR2X6/
1 YP ,XP
2, SA ,XQ
4, B ,XL
5, A ,A2
6, A3 ,A4
7, A5 ,B2
8, B3 ,B4
9, B5 ,C
T, C2 ,C3
1, C4 ,C5
2, D ,D2
3, D3 ,D4
4, D5 ,TERM1
5, TERM2 ,TERM3
6, TERM4 ,TERM5
7, XL13 ,XL24
C
C INPUT AND OUTPUT BLOCKS FOR SUBROUTINE MAT
C
COMMON /MATIN/
1 MATIDC ,MATFLG
2, ELTEMP ,STRESS
3, SINTH ,COSTH
C
C
C
COMMON /MATOUT/
1 E ,G
2, NU ,RHO
3, ALPHA ,TSUBO
4, GSUBE ,SIGT
5, SIGC ,SIGS
C
C
C
EQUIVALENCE
1 (IELID,IECPT(1),ECPT(1))
C
C CALL MAT TO GET MATERIAL PROPERTIES.
C
MATIDC = MATID
MATFLG = 1
ELTEMP = TEMPEL
CALL MAT (IECPT(1))
C
C COMPUTE DIAGONAL VECTORS.
C
DO 10 I=1,3
VD1(I) = GP3(I) - GP1(I)
10 VD2(I) = GP4(I) - GP2(I)
C
C COMPUTE THE NORMAL VECTOR VKN, NORMALIZE, AND COMPUTE THE PROJECTED
C AREA, PA
C
VKN(1) = VD1(2)*VD2(3)-VD1(3)*VD2(2)
VKN(2) = VD1(3)*VD2(1)-VD1(1)*VD2(3)
VKN(3) = VD1(1)*VD2(2)-VD1(2)*VD2(1)
VKL = SQRT(VKN(1)**2+VKN(2)**2+VKN(3)**2)
IF (VKL .EQ. 0.0) GO TO 160
VK(1) = VKN(1)/VKL
VK(2) = VKN(2)/VKL
VK(3) = VKN(3)/VKL
PA = .5 * VKL
C
C COMPUTE SIDES -12- AND -41-
C
DO 20 I=1,3
V12(I) = GP2(I) - GP1(I)
20 V41(I) = GP1(I) - GP4(I)
C
C COMPUTE DOT PRODUCT, V12DK, OF V12 AND VK, THE VECTORS VP12, VI, VJ
C
V12DK = V12(1)*VK(1)+V12(2)*VK(2)+V12(3)*VK(3)
VP12(1) = V12(1)-V12DK*VK(1)
VP12(2) = V12(2)-V12DK*VK(2)
VP12(3) = V12(3)-V12DK*VK(3)
VP12L = SQRT(VP12(1)**2+VP12(2)**2+VP12(3)**2)
IF (VP12L .EQ. 0.0) GO TO 170
VI(1) = VP12(1)/VP12L
VI(2) = VP12(2)/VP12L
VI(3) = VP12(3)/VP12L
VJ(1) = VK(2)*VI(3)-VK(3)*VI(2)
VJ(2) = VK(3)*VI(1)-VK(1)*VI(3)
VJ(3) = VK(1)*VI(2)-VK(2)*VI(1)
C
C NORMALIZE J FOR GOOD MEASURE
C
VJL = SQRT (VJ(1)**2 + VJ(2)**2 + VJ(3)**2)
IF (VJL .EQ. 0.0) GO TO 180
VJ(1) = VJ(1) / VJL
VJ(2) = VJ(2) / VJL
VJ(3) = VJ(3) / VJL
X1 = 0.0
Y1 = 0.0
X2 = VP12L
Y2 = 0.0
X3 = VI(1) * VD1(1) + VI(2) * VD1(2) + VI(3) * VD1(3)
Y3 = VJ(1) * VD1(1) + VJ(2) * VD1(2) + VJ(3) * VD1(3)
X4 =-VI(1) * V41(1) - VI(2) * V41(2) - VI(3) * V41(3)
Y4 =-VJ(1) * V41(1) - VJ(2) * V41(2) - VJ(3) * V41(3)
C
C CHECK TO SEE IF INTERIOR ANGLES ARE LESS THAN 180 DEGREES. IF NOT,
C CALL FATAL ERROR MESSAGE.
C
IF (Y3 .LE. 0.0) GO TO 190
IF (X3 .LE. Y3*X4/Y4) GO TO 200
IF (Y4 .LE. 0.0) GO TO 210
IF (X4 .GE. X2 - (X2-X3)*Y4/Y3) GO TO 220
C
C TEST FOR PARALLEL EFFECTS.
C
TEMP = X3 - X2
EP = 0.01
IF (ABS(Y3-Y4).LT.ABS(X3-X4)*EP) GO TO 30
IF (ABS(Y4*TEMP-Y3*X4).LT.ABS(X4*TEMP+Y4*Y3)*EP) GO TO 40
GO TO 70
30 IF (ABS(Y4*TEMP-Y3*X4).LT.ABS(X4*TEMP+Y4*Y3)*EP) GO TO 50
C
C AT THIS POINT THE LINE CONNECTING POINTS 3 AND 4 IS -PARALLEL- TO THE
C LINE CONNECTING POINTS 1 AND 2.
C
TEMP = Y3*X4 - Y4 * (X3-X2)
YP = X2*Y3*Y4 / TEMP
P(1) = YP - Y1
P(2) = YP - Y2
P(3) = YP - Y3
P(4) = YP - Y4
XP = X2*Y3*X4 / TEMP
SA =(X2 - XP) / YP
C =(X1 - XP) / YP
Z =( (P(1)*P(2)*PA) / (P(3)*P(4)*2.0*G*T) ) *
1 ( 1.0 + 2.0/(3.0 + 3.0*NU) * (SA**2 + SA*C + C**2) )
GO TO 80
C
C AT THIS POINT THE LINE CONNECTING POINTS 1 AND 4 IS -PARALLEL- TO THE
C LINE CONNECTING POINTS 2 AND 3.
C
40 D = -.5 * ( X4/Y4 + (X3-X2)/Y3 )
XQ = X4 - Y4 * (X3-X4)/(Y3-Y4)
TEMP = 1.0 / SQRT (1.0 + D**2)
P(1) = ( XQ - X1 - D*Y1) * TEMP
P(2) = ( XQ - X2 - D*Y2) * TEMP
P(3) = ( XQ - X3 - D*Y3) * TEMP
P(4) = ( XQ - X4 - D*Y4) * TEMP
TEMP = XQ - X4
B = (TEMP * D + Y4) / (TEMP - Y4*D)
Z =( (P(1)*P(2)*PA) / (P(3)*P(4)*2.0*G*T) ) *
1 ( 1.0 + 2.0/(3.0 + 3.0*NU) * (B**2 + B*D + D**2) )
GO TO 80
C
C IN THIS CASE THE PANEL APPROXIMATES A PARALLELOGRAM.
C
50 DO 60 I=1,4
60 P(I) = 1.0
D = -.5 * ( X4/Y4 + (X3-X2)/Y3 + (Y3-Y4)/(X3-X4) )
Z = PA / (2.0*G*T) * (1.0 + 2.0*D**2/(1.0+NU))
GO TO 80
C
C IN THIS CASE NO PARALLEL EFFECTS EXIST.
C
70 XQ = X4 - (X3-X4)/(Y3-Y4) * Y4
TEMP = Y3*X4 - Y4*(X3-X2)
XP = X2*Y3*X4 / TEMP
YP = X2*Y3*Y4 / TEMP
XL = SQRT ( (XQ-XP)**2 + YP**2 )
D = (XQ-XP)/YP
TEMP = YP/XL
P(1) = TEMP * (XQ - X1 - D*Y1)
P(2) = TEMP * (XQ - X2 - D*Y2)
P(3) = TEMP * (XQ - X3 - D*Y3)
P(4) = TEMP * (XQ - X4 - D*Y4)
C = XL/P(1) - D
B = XL/P(4) - C
A = XL/P(2) - D
A2 = A**2
B2 = B**2
C2 = C**2
D2 = D**2
A3 = A2*A
B3 = B2*B
C3 = C2*C
D3 = D2*D
A4 = A3*A
B4 = B3*B
C4 = C3*C
D4 = D3*D
A5 = A4*A
B5 = B4*B
C5 = C4*C
D5 = D4*D
TEMP = .5 * P(1) * P(2) * P(3) * P(4) / XL**2
TERM = A + B + 2.0*(A3+B3)/3.0 + .2*(A5+B5)
TERM1= C + D + 2.0*(C3+D3)/3.0 + .2*(C5+D5)
TERM2= B + C + 2.0*(B3+C3)/3.0 + .2*(B5+C5)
TERM3= D + A + 2.0*(D3+A3)/3.0 + .2*(D5+A5)
TERM = TERM * ALOG(ABS(A+B))
TERM1= TERM1 * ALOG(ABS(C+D))
TERM2= TERM2 * ALOG(ABS(B+C))
TERM3= TERM3 * ALOG(ABS(D+A))
TERM4= .1*( (A2-C2)*(B3-D3) + (B2-D2)*(A3-C3) )
TERM5= .2*( (A -C )*(B4-D4) + (B -D )*(A4-C4) )
F = TEMP * (TERM + TERM1 - TERM2 - TERM3 + TERM4 - TERM5)
Z = P(1)*P(2) / (P(3)*P(4)*2.0*G*T) * (PA + 4.0/(1.0+NU) *
1 (F - 2.0*PA/3.0))
80 XL13 = SQRT (X3**2 + Y3**2)
XL24 = SQRT ( (X4-X2)**2 + Y4**2 )
SMALLU(1) = X3/XL13
SMALLU(2) = (X4-X2)/XL24
SMALLU(3) = SMALLU(1)
SMALLU(4) = SMALLU(2)
SMALLV(1) = Y3/XL13
SMALLV(2) = Y4/XL24
SMALLV(3) = SMALLV(1)
SMALLV(4) = SMALLV(2)
TEMP = X4 * Y3 - X3 * Y4
AVEC(1) = -.5 * X2 * Y4 * XL13 / TEMP
AVEC(2) = .5 * X2 * Y3 * XL24 / (TEMP - X2 * (Y3-Y4) )
AVEC(3) = - AVEC(1)
AVEC(4) = - AVEC(2)
C
C IF IARG = 4, WE HAVE A SHEAR PANEL, AND IF IARG = 5, A TWIST PANEL.
C
IF (IARG .EQ. 4) GO TO 100
C
C SINCE WE ARE DEALING WITH A TWIST PANEL STORE -SMALLV IN SMALLU AND
C SMALLU IN SMALLV.
C
DO 90 I=1,4
TEMP = SMALLU(I)
SMALLU(I) = -SMALLV(I)
90 SMALLV(I) = TEMP
C
C COMPUTE THE SINGLE PRECISION CONSTANT SPCON
C
100 IF (IARG .EQ. 5) GO TO 110
SPCON = -1.0/ (2.0 * Z * T)
GO TO 120
110 SPCON = -1.0/ (4.0 * Z)
C
C COMPUTE THE FOUR 1 X 3 MATRICES S
C
120 DO 140 I=1,4
IVLBEG = 1
VLEFT(1) = SMALLU(I) * VI(1) + SMALLV(I) * VJ(1)
VLEFT(2) = SMALLU(I) * VI(2) + SMALLV(I) * VJ(2)
VLEFT(3) = SMALLU(I) * VI(3) + SMALLV(I) * VJ(3)
IF (IECPT(4*I+5) .EQ. 0) GO TO 130
IVLBEG = 4
CALL TRANSS (IECPT(4*I+5),TI)
CALL GMMATS (VLEFT(1),3,1,1, TI,3,3,0, VLEFT(4) )
130 CONTINUE
S(1,I) = SPCON * VLEFT(IVLBEG ) * AVEC(I)
S(2,I) = SPCON * VLEFT(IVLBEG+1) * AVEC(I)
S(3,I) = SPCON * VLEFT(IVLBEG+2) * AVEC(I)
140 CONTINUE
OUT(1) = AVEC(1)
OUT(2) = AVEC(2)
OUT(3) = T
OUT(4) = P(2) / P(1)
OUT(5) = P(1) * P(2) / P(3)**2
OUT(6) = P(1) * P(2) / P(4)**2
OUT(7) = SIGS
JELID = IELID
DO 150 I=1,4
150 JSILNO(I) = ISILNO(I)
IF( IARG .NE. 4 ) RETURN
C*****
C ADDITIONAL PHASE-1 OUTPUTS FOR SHEAR PANEL FORCES IN PHASE 2
C*****
OUT(8) = P(1) / P(3) *T
OUT(9) = ( P(1)*P(2) ) / ( P(3)*P(4) ) * T
OUT(10) = P(2) / P(4) * T
OUT(11)= -V12DK / 2.0
OUT(12)= X2 / 2.0
OUT(13)= SQRT( (X3-X2)**2 + Y3**2 ) / 2.0
OUT(14)= SQRT( (X4-X3)**2 + (Y4-Y3)**2 ) / 2.0
OUT(15)= SQRT( X4**2 + Y4**2 ) / 2.0
RETURN
160 CONTINUE
170 CONTINUE
180 CALL MESAGE (-30,26,IECPT(1))
190 IECPT(2) = 2
GO TO 230
200 IECPT(2) = 4
GO TO 230
210 IECPT(2) = 1
GO TO 230
220 IECPT(2) = 3
230 CALL MESAGE (-30,27,IECPT(1))
RETURN
END
|