File: spanl1.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (382 lines) | stat: -rw-r--r-- 12,911 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
      SUBROUTINE SPANL1(IARG)
C*****
C THIS ROUTINE COMPUTES PHASE I PARAMETERS FOR STRESS DATA RECOVERY FOR
C THE SHEAR PANEL (IF IARG = 4) AND THE TWIST PANEL (IF IARG = 5).
C MUCH OF THE CODE WAS LIFTED FROM SUBROUTIVE KPANEL
C*****
C
C                 E C P T  F O R  B O T H  P A N E L S
C ECPT( 1)  -  IELID          ELEMENT ID. NO.
C ECPT( 2)  -  ISILNO(4)      SCALAR INDEX NUMBERS
C ECPT( 3)  -   ...                   ...
C ECPT( 4)  -   ...                   ...
C ECPT( 5)  -   ...                   ...
C ECPT( 6)  -  MATID          MATERIAL ID.
C ECPT( 7)  -  T              THICKNESS
C ECPT( 8)  -  FMU            NON-STRUCTURAL MASS
C ECPT( 9)  -  ICSID1         COOR. SYS. ID. FOR GRID POINT 1
C ECPT(10)  -  GP1(3)         BASIC COORDINATES FOR GRID POINT 1
C ECPT(11)  -   ...                      ...
C ECPT(12)  -   ...                      ...
C ECPT(13)  -  ICSID2         COOR. SYS. ID. FOR GRID POINT 2
C ECPT(14)  -  GP2(3)         BASIC COORDINATES FOR GRID POINT 2
C ECPT(15)  -   ...                      ...
C ECPT(16)  -   ...                      ...
C ECPT(17)  -  ICSID3         COOR. SYS. ID. FOR GRID POINT 3
C ECPT(18)  -  GP3(3)         BASIC COORDINATES FOR GRID POINT 3
C ECPT(19)  -   ...                      ...
C ECPT(20)  -   ...                      ...
C ECPT(21)  -  ICSID4         COOR. SYS. ID. FOR GRID POINT 4
C ECPT(22)  -  GP4(3)         BASIC COORDINATES FOR GRID POINT 4
C ECPT(23)  -   ...                      ...
C ECPT(24)  -   ...                      ...
C ECPT(25)  -  TEMPEL         ELEMENT TEMPERATURE
C
C
C
      REAL
     1                   NU
C
C
C
C
C
C
      DIMENSION
     1                   VD1(3)             ,VD2(3)
     2,                  VKN(3)             ,VK(3)
     3,                  V12(3)             ,V41(3)
     4,                  VP12(3)            ,VI(3)
     5,                  VJ(3)              ,AVEC(4)
     6,                  SMALLU(4)          ,SMALLV(4)
     7,                  P(4)               ,IECPT(100)
     8,                  ECPT(100)
     9,                  VLEFT(6)           ,TI(9)
C
C SDR2 PHASE I INPUT AND OUTPUT BLOCK
C
      COMMON   /SDR2X5/
     1                   IELID              ,ISILNO(4)
     2,                  MATID              ,T
     3,                  FMU                ,ICSID1
     4,                  GP1(3)             ,ICSID2
     5,                  GP2(3)             ,ICSID3
     6,                  GP3(3)             ,ICSID4
     7,                  GP4(3)             ,TEMPEL
     8,                  XXXXXX(75)
      COMMON   /SDR2X5/
     1                   JELID              ,JSILNO(4)
     2,                  S(3,4)             ,OUT(15)
     3,                  YYYYYY(93)
C
C SDR2 SCRATCH BLOCK
C
      COMMON   /SDR2X6/
     1                   VLEFT              ,TI
     2,                  SPCON
     4,                  VD1                ,VD2
     5,                  VKN                ,VK
     6,                  V12                ,V41
     7,                  VP12               ,VI
     8,                  VJ                 ,AVEC
     9,                  SMALLU             ,SMALLV
     T,                  P                  ,X1
     1,                  X2                 ,X3
     2,                  X4                 ,Y1
     3,                  Y2                 ,Y3
     4,                  Y4                 ,VKL
     5,                  PA                 ,V12DK
     6,                  CEP1               ,CEP2
     7,                  EP                 ,TEMP
      COMMON   /SDR2X6/
     1                   YP                 ,XP
     2,                  SA                 ,XQ
     4,                  B                  ,XL
     5,                  A                  ,A2
     6,                  A3                 ,A4
     7,                  A5                 ,B2
     8,                  B3                 ,B4
     9,                  B5                 ,C
     T,                  C2                 ,C3
     1,                  C4                 ,C5
     2,                  D                  ,D2
     3,                  D3                 ,D4
     4,                  D5                 ,TERM1
     5,                  TERM2              ,TERM3
     6,                  TERM4              ,TERM5
     7,                  XL13               ,XL24
C
C INPUT AND OUTPUT BLOCKS FOR SUBROUTINE MAT
C
      COMMON   /MATIN/
     1                   MATIDC             ,MATFLG
     2,                  ELTEMP             ,STRESS
     3,                  SINTH              ,COSTH
C
C
C
      COMMON   /MATOUT/
     1                   E                  ,G
     2,                  NU                 ,RHO
     3,                  ALPHA              ,TSUBO
     4,                  GSUBE              ,SIGT
     5,                  SIGC               ,SIGS
C
C
C
      EQUIVALENCE
     1                   (IELID,IECPT(1),ECPT(1))
C
C CALL MAT TO GET MATERIAL PROPERTIES.
C
      MATIDC = MATID
      MATFLG = 1
      ELTEMP = TEMPEL
      CALL MAT (IECPT(1))
C
C COMPUTE DIAGONAL VECTORS.
C
      DO 10 I=1,3
      VD1(I) = GP3(I) - GP1(I)
   10 VD2(I) = GP4(I) - GP2(I)
C
C COMPUTE THE NORMAL VECTOR VKN, NORMALIZE, AND COMPUTE THE PROJECTED
C AREA, PA
C
      VKN(1) = VD1(2)*VD2(3)-VD1(3)*VD2(2)
      VKN(2) = VD1(3)*VD2(1)-VD1(1)*VD2(3)
      VKN(3) = VD1(1)*VD2(2)-VD1(2)*VD2(1)
      VKL = SQRT(VKN(1)**2+VKN(2)**2+VKN(3)**2)
      IF (VKL .EQ. 0.0) GO TO 160
      VK(1) = VKN(1)/VKL
      VK(2) = VKN(2)/VKL
      VK(3) = VKN(3)/VKL
      PA = .5 * VKL
C
C COMPUTE  SIDES -12- AND -41-
C
      DO 20 I=1,3
      V12(I) = GP2(I) - GP1(I)
   20 V41(I) = GP1(I) - GP4(I)
C
C COMPUTE DOT PRODUCT, V12DK, OF V12 AND VK, THE VECTORS VP12, VI, VJ
C
      V12DK = V12(1)*VK(1)+V12(2)*VK(2)+V12(3)*VK(3)
      VP12(1) = V12(1)-V12DK*VK(1)
      VP12(2) = V12(2)-V12DK*VK(2)
      VP12(3) = V12(3)-V12DK*VK(3)
      VP12L = SQRT(VP12(1)**2+VP12(2)**2+VP12(3)**2)
      IF (VP12L .EQ. 0.0) GO TO 170
      VI(1) = VP12(1)/VP12L
      VI(2) = VP12(2)/VP12L
      VI(3) = VP12(3)/VP12L
      VJ(1) = VK(2)*VI(3)-VK(3)*VI(2)
      VJ(2) = VK(3)*VI(1)-VK(1)*VI(3)
      VJ(3) = VK(1)*VI(2)-VK(2)*VI(1)
C
C NORMALIZE J FOR GOOD MEASURE
C
      VJL = SQRT (VJ(1)**2  +  VJ(2)**2  +  VJ(3)**2)
      IF (VJL .EQ. 0.0) GO TO 180
      VJ(1) = VJ(1) / VJL
      VJ(2) = VJ(2) / VJL
      VJ(3) = VJ(3) / VJL
      X1 = 0.0
      Y1 = 0.0
      X2 = VP12L
      Y2 = 0.0
      X3 = VI(1) * VD1(1)  +  VI(2) * VD1(2)  +  VI(3) * VD1(3)
      Y3 = VJ(1) * VD1(1)  +  VJ(2) * VD1(2)  +  VJ(3) * VD1(3)
      X4 =-VI(1) * V41(1)  -  VI(2) * V41(2)  -  VI(3) * V41(3)
      Y4 =-VJ(1) * V41(1)  -  VJ(2) * V41(2)  -  VJ(3) * V41(3)
C
C CHECK TO SEE IF INTERIOR ANGLES ARE LESS THAN 180 DEGREES.  IF NOT,
C CALL FATAL ERROR MESSAGE.
C
      IF (Y3 .LE. 0.0) GO TO 190
      IF (X3 .LE. Y3*X4/Y4) GO TO 200
      IF (Y4 .LE. 0.0) GO TO 210
      IF (X4 .GE. X2 - (X2-X3)*Y4/Y3) GO TO 220
C
C TEST FOR PARALLEL EFFECTS.
C
      TEMP = X3 - X2
      EP = 0.01
      IF (ABS(Y3-Y4).LT.ABS(X3-X4)*EP) GO TO 30
      IF (ABS(Y4*TEMP-Y3*X4).LT.ABS(X4*TEMP+Y4*Y3)*EP) GO TO 40
      GO TO 70
   30 IF (ABS(Y4*TEMP-Y3*X4).LT.ABS(X4*TEMP+Y4*Y3)*EP) GO TO 50
C
C AT THIS POINT THE LINE CONNECTING POINTS 3 AND 4 IS -PARALLEL- TO THE
C LINE CONNECTING POINTS 1 AND 2.
C
      TEMP = Y3*X4  -  Y4 * (X3-X2)
      YP   = X2*Y3*Y4 / TEMP
      P(1) = YP - Y1
      P(2) = YP - Y2
      P(3) = YP - Y3
      P(4) = YP - Y4
      XP   = X2*Y3*X4 / TEMP
      SA   =(X2 - XP) / YP
      C    =(X1 - XP) / YP
      Z    =(  (P(1)*P(2)*PA) / (P(3)*P(4)*2.0*G*T)  ) *
     1      (  1.0  +  2.0/(3.0 + 3.0*NU) * (SA**2 + SA*C + C**2)  )
      GO TO 80
C
C AT THIS POINT THE LINE CONNECTING POINTS 1 AND 4 IS -PARALLEL- TO THE
C LINE CONNECTING POINTS 2 AND 3.
C
   40 D    = -.5 * (  X4/Y4  +  (X3-X2)/Y3  )
      XQ   = X4  - Y4  *  (X3-X4)/(Y3-Y4)
      TEMP = 1.0 / SQRT (1.0 + D**2)
      P(1) = ( XQ - X1 - D*Y1) * TEMP
      P(2) = ( XQ - X2 - D*Y2) * TEMP
      P(3) = ( XQ - X3 - D*Y3) * TEMP
      P(4) = ( XQ - X4 - D*Y4) * TEMP
      TEMP =   XQ - X4
      B    =   (TEMP * D  +  Y4)  /  (TEMP  -  Y4*D)
      Z    =(  (P(1)*P(2)*PA) / (P(3)*P(4)*2.0*G*T)  ) *
     1      (  1.0  +  2.0/(3.0 + 3.0*NU) * (B**2 + B*D + D**2)  )
      GO TO 80
C
C IN THIS CASE THE PANEL APPROXIMATES A PARALLELOGRAM.
C
   50 DO 60 I=1,4
   60 P(I) = 1.0
      D    = -.5 * (  X4/Y4  +  (X3-X2)/Y3  +  (Y3-Y4)/(X3-X4)  )
      Z    = PA / (2.0*G*T) * (1.0 + 2.0*D**2/(1.0+NU))
      GO TO 80
C
C IN THIS CASE NO PARALLEL EFFECTS EXIST.
C
   70 XQ   = X4  -  (X3-X4)/(Y3-Y4) * Y4
      TEMP = Y3*X4  -  Y4*(X3-X2)
      XP   = X2*Y3*X4 / TEMP
      YP   = X2*Y3*Y4 / TEMP
      XL   = SQRT ( (XQ-XP)**2 + YP**2 )
      D    = (XQ-XP)/YP
      TEMP = YP/XL
      P(1) = TEMP * (XQ - X1 - D*Y1)
      P(2) = TEMP * (XQ - X2 - D*Y2)
      P(3) = TEMP * (XQ - X3 - D*Y3)
      P(4) = TEMP * (XQ - X4 - D*Y4)
      C    = XL/P(1) - D
      B    = XL/P(4) - C
      A    = XL/P(2) - D
      A2   = A**2
      B2   = B**2
      C2   = C**2
      D2   = D**2
      A3   = A2*A
      B3   = B2*B
      C3   = C2*C
      D3   = D2*D
      A4   = A3*A
      B4   = B3*B
      C4   = C3*C
      D4   = D3*D
      A5   = A4*A
      B5   = B4*B
      C5   = C4*C
      D5   = D4*D
      TEMP = .5 * P(1) * P(2) * P(3) * P(4) / XL**2
      TERM =    A  +  B  +  2.0*(A3+B3)/3.0  +  .2*(A5+B5)
      TERM1=    C  +  D  +  2.0*(C3+D3)/3.0  +  .2*(C5+D5)
      TERM2=    B  +  C  +  2.0*(B3+C3)/3.0  +  .2*(B5+C5)
      TERM3=    D  +  A  +  2.0*(D3+A3)/3.0  +  .2*(D5+A5)
      TERM =   TERM  * ALOG(ABS(A+B))
      TERM1=   TERM1 * ALOG(ABS(C+D))
      TERM2=   TERM2 * ALOG(ABS(B+C))
      TERM3=   TERM3 * ALOG(ABS(D+A))
      TERM4=  .1*( (A2-C2)*(B3-D3)  +  (B2-D2)*(A3-C3) )
      TERM5=  .2*( (A -C )*(B4-D4)  +  (B -D )*(A4-C4) )
      F    =  TEMP * (TERM + TERM1 - TERM2 - TERM3 + TERM4 - TERM5)
      Z    =  P(1)*P(2) / (P(3)*P(4)*2.0*G*T) * (PA + 4.0/(1.0+NU) *
     1                                               (F - 2.0*PA/3.0))
   80 XL13 =  SQRT (X3**2 + Y3**2)
      XL24 =  SQRT (  (X4-X2)**2  +  Y4**2  )
      SMALLU(1) = X3/XL13
      SMALLU(2) = (X4-X2)/XL24
      SMALLU(3) = SMALLU(1)
      SMALLU(4) = SMALLU(2)
      SMALLV(1) = Y3/XL13
      SMALLV(2) = Y4/XL24
      SMALLV(3) = SMALLV(1)
      SMALLV(4) = SMALLV(2)
      TEMP = X4 * Y3  -  X3 * Y4
      AVEC(1) = -.5 * X2 * Y4 * XL13 / TEMP
      AVEC(2) = .5 * X2 * Y3 * XL24 / (TEMP - X2 * (Y3-Y4) )
      AVEC(3) = - AVEC(1)
      AVEC(4) = - AVEC(2)
C
C IF IARG = 4, WE HAVE A SHEAR PANEL, AND IF IARG = 5, A TWIST PANEL.
C
      IF (IARG .EQ. 4) GO TO 100
C
C SINCE WE ARE DEALING WITH A TWIST PANEL STORE -SMALLV IN SMALLU AND
C SMALLU IN SMALLV.
C
      DO 90 I=1,4
      TEMP = SMALLU(I)
      SMALLU(I) = -SMALLV(I)
   90 SMALLV(I) = TEMP
C
C COMPUTE THE SINGLE PRECISION CONSTANT SPCON
C
  100 IF (IARG .EQ. 5) GO TO 110
      SPCON = -1.0/ (2.0 * Z * T)
      GO TO 120
  110 SPCON = -1.0/ (4.0 * Z)
C
C COMPUTE THE FOUR 1 X 3 MATRICES S
C
  120 DO 140 I=1,4
      IVLBEG = 1
      VLEFT(1) = SMALLU(I) * VI(1)  +  SMALLV(I) * VJ(1)
      VLEFT(2) = SMALLU(I) * VI(2)  +  SMALLV(I) * VJ(2)
      VLEFT(3) = SMALLU(I) * VI(3)  +  SMALLV(I) * VJ(3)
      IF (IECPT(4*I+5) .EQ. 0) GO TO 130
      IVLBEG = 4
      CALL TRANSS (IECPT(4*I+5),TI)
      CALL GMMATS (VLEFT(1),3,1,1, TI,3,3,0, VLEFT(4) )
  130 CONTINUE
      S(1,I) = SPCON * VLEFT(IVLBEG  ) * AVEC(I)
      S(2,I) = SPCON * VLEFT(IVLBEG+1) * AVEC(I)
      S(3,I) = SPCON * VLEFT(IVLBEG+2) * AVEC(I)
  140 CONTINUE
      OUT(1) = AVEC(1)
      OUT(2) = AVEC(2)
      OUT(3) = T
      OUT(4) = P(2) / P(1)
      OUT(5) = P(1) * P(2) / P(3)**2
      OUT(6) = P(1) * P(2) / P(4)**2
      OUT(7) = SIGS
      JELID = IELID
      DO 150 I=1,4
  150 JSILNO(I) = ISILNO(I)
      IF( IARG .NE. 4 ) RETURN
C*****
C  ADDITIONAL PHASE-1 OUTPUTS FOR SHEAR PANEL FORCES  IN PHASE 2
C*****
      OUT(8) = P(1) / P(3) *T
      OUT(9) = ( P(1)*P(2) ) / ( P(3)*P(4) ) * T
      OUT(10) = P(2) / P(4) * T
      OUT(11)= -V12DK / 2.0
      OUT(12)= X2 / 2.0
      OUT(13)= SQRT( (X3-X2)**2 + Y3**2 ) / 2.0
      OUT(14)= SQRT( (X4-X3)**2 + (Y4-Y3)**2 ) / 2.0
      OUT(15)= SQRT( X4**2 + Y4**2 ) / 2.0
      RETURN
  160 CONTINUE
  170 CONTINUE
  180 CALL MESAGE (-30,26,IECPT(1))
  190 IECPT(2) = 2
      GO TO 230
  200 IECPT(2) = 4
      GO TO 230
  210 IECPT(2) = 1
      GO TO 230
  220 IECPT(2) = 3
  230 CALL MESAGE (-30,27,IECPT(1))
      RETURN
      END