1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
|
SUBROUTINE SQUD41
C
C PHASE 1 STRESS DATA RECOVERY FOR CQUAD4 ELEMENT
C
C EST LISTING
C
C WORD TYPE DESCRIPTION
C --------------------------------------------------------------
C 1 I ELEMENT ID, EID
C 2 THRU 5 I SILS, GRIDS 1 THRU 4
C 6 THRU 9 R MEMBRANE THICKNESSES T AT GRIDS 1 THRU 4
C 10 R MATERIAL PROPERTY ORIENTATION ANGLE, THETA
C OR I COORD. SYSTEM ID (SEE TM ON CQUAD4 CARD)
C 11 I TYPE FLAG FOR WORD 10
C 12 R GRID ZOFF (OFFSET)
C 13 I MATERIAL ID FOR MEMBRANE, MID1
C 14 R ELEMENT THICKNESS, T (MEMBRANE, UNIFORMED)
C 15 I MATERIAL ID FOR BENDING, MID2
C 16 R BENDING INERTIA FACTOR, I
C 17 I MATERIAL ID FOR TRANSVERSE SHEAR, MID3
C 18 R TRANSV. SHEAR CORRECTION FACTOR TS/T
C 19 R NON-STRUCTURAL MASS, NSM
C 20 THRU 21 R Z1, Z2 (STRESS FIBRE DISTANCES)
C 22 I MATERIAL ID FOR MEMBRANE-BENDING COUPLING, MID4
C 23 R MATERIAL ANGLE OF ROTATION, THETA
C OR I COORD. SYSTEM ID (SEE MCSID ON PSHELL CARD)
C 24 I TYPE FLAG FOR WORD 23
C 25 I INTEGRATION ORDER
C 26 R STRESS ANGLE OF ROTATION, THETA
C OR I COORD. SYSTEM ID (SEE SCSID ON PSHELL CARD)
C 27 I TYPE FLAG FOR WORD 26
C 28 R ZOFF1 (OFFSET) OVERRIDDEN BY EST(12)
C 29 THRU 44 I/R CID,X,Y,Z - GRIDS 1 THRU 4
C 45 R ELEMENT TEMPERATURE
C
C
LOGICAL BADJAC,MEMBRN,BENDNG,SHRFLX,MBCOUP,NORPTH,NOCSUB
INTEGER NEST(45),NPHI(2395),SIL(4),KSIL(4),KCID(8),
1 IGPDT(4,4),ELID,SCSID,FLAGS,FLAGM,NECPT(4),
2 INDEX(3,3),MID(4),Q4STRS,IPN(4),HUNMEG,ROWFLG,
3 TYPE,NAME(2)
REAL BGPDM(3,4),CENT(3),GPTH(4),GPNORM(4,4),BGPDT(4,4),
1 MATSET,MOMINR,TMPTHK(4),TGRID(4,4),EPNORM(4,4),
2 EGPDT(4,4),G(6,6),GI(36),SHP(4),DSHP(8),GGE(9),
3 GGU(9),PTINT(2),PTINTP(3),TBS(9),TEU(9),TSE(9),
4 TEB(9),TBG(9),TUB(9),TUM(9),TSU(9),U(9),GT(9),
5 TBM(9),TEM(9),TMI(9),ECPT(4),GPC(3),XA(4),YB(4),
6 ALFA(3),GPTH2(4),RELOUT(300),NUNORX,NUNORY,
7 UGPDM(3,4),CENTE(3),BMATRX(192),XYBMAT(96),
8 JACOB(3,3),PHI(9),PSITRN(9),TMPSHP(4),DSHPTP(8),
9 KHEAT,TMS(9),DQ(24),JACOBU(9),JACBS(9),JACOBE(9),
O ZC(4),VNT(3,4)
CWKBNB 11/93 SPR 93020
REAL VD1(3), VD2(3), VKN(3), VKS(3)
1, V12(3), V41(3), VP12(3),VIS(3), VJS(3)
CWKBNE 11/93 SPR 93020
CHARACTER UFM*23
COMMON /XMSSG / UFM
COMMON /SDR2X5/ EST(100),PHIOUT(2395)
COMMON /SDR2X6/ IELOUT(300)
COMMON /CONDAS/ PI,TWOPI,RADDEG,DEGRAD
COMMON /SYSTEM/ SYSTM(100)
COMMON /MATIN / MATID,INFLAG,ELTEMP
COMMON /MATOUT/ RMTOUT(25)
COMMON /Q4DT / DETJ,HZTA,PSITRN,NNODE,BADJAC,NODE
COMMON /TERMS / MEMBRN,BENDNG,SHRFLX,MBCOUP,NORPTH
COMMON /HMTOUT/ KHEAT(7),TYPE
COMMON /Q4COMS/ ANGLEI(4),EDGSHR(3,4),EDGEL(4),UNV(3,4),
1 UEV(3,4),ROWFLG,IORDER(4)
EQUIVALENCE (IGPDT(1,1),BGPDT(1,1)),(EST(1) ,NEST(1) ),
1 (BGPDT(1,1),EST(29) ),(GPTH(1) ,EST(6) ),
2 (ELTH ,EST(14) ),(SIL(1) ,NEST(2) ),
3 (NPHI(1) ,PHIOUT(1) ),(INT ,NEST(25) ),
4 (ZOFF ,NEST(12) ),(ZOFF1 ,EST(28) ),
5 (IELOUT(1) ,RELOUT(1) ),(MATSET ,RMTOUT(25)),
6 (NECPT(1) ,ECPT(1) ),(SYSTM(2),NOUT ),
7 (PHIOUT(65),GPTH2(1) ),(SYSTM(3),NOGO ),
8 (HTCP ,KHEAT(4) ),(ITHERM ,SYSTM(56) )
DATA EPS1 / 1.0E-16/ ,IPN / 1,4,2,3 /
DATA NAME / 4HQUAD,4H4 /
DATA HUNMEG/ 100000000 /
DATA CONST / 0.57735026918962/
C
C PHIOUT DATA BLOCK
C --------------------------------------------------------------
C PHIOUT(1) = ELID (ELEMENT ID)
C PHIOUT(2-9) = SIL NUMBERS
C PHIOUT(10-17) = ARRAY IORDER
C PHIOUT(18) = TSUB0 (REFERENCE TEMP.)
C PHIOUT(19-20) = Z1 & Z2 (FIBER DISTANCES)
C PHIOUT(21) = AVGTHK (AVERAGE THICKNESS)
C PHIOUT(22) = MOMINR (MOMENT OF INER. FACTOR)
C PHIOUT(23-58) = GBAR (BASIC MAT. PROP. MATRIX)
C (W/O SHEAR)
C PHIOUT(59-61) = THERMAL EXPANSION COEFFICIENTS
C FOR MEMBRANE MATERIAL
C PHIOUT(62-64) = THERMAL EXPANSION COEFFICIENTS
C FOR BENDING MATERIAL
C PHIOUT(65-68) = CORNER NODE THICKNESSES
C PHIOUT(69-77) = 3X3 TRANSFORMATION FROM USER TO
C MATERIAL COORD. SYSTEM
C PHIOUT(78) = OFFSET OF ELEMENT FROM GP PLANE
C PHIOUT(79) = ID OF THE ORIGINAL PCOMP(I)
C PROPERTY ENTRY FOR COMPOSITES
C PHIOUT(80-(79+9*NNODE)) = 3X3 TRANSFORMATIONS FROM GLOBAL
C TO ELEMENT COORDINATE SYSTEM
C FOR EACH EXISTING NODE
C
C THE FOLLOWING IS REPEATED FOR EACH EVALUATION POINT AND THE
C CENTER POINT (10 TIMES). THE EVALUATION POINTS ARE AT THE
C STANDARD 2X2X2 GAUSSIAN POINTS. THE CHOICE OF THE
C FINAL STRESS AND FORCE OUTPUT POINTS IS MADE AT THE SUBCASE
C LEVEL (PHASE 2.)
C
C 1 THICKNESS OF THE ELEMENT AT THIS
C EVALUATION POINT
C 2 - 10 3X3 TRANSFORMATION FROM TANGENT
C TO STRESS C.S. AT THIS EVAL. PT.
C 11 - 19 CORRECTION TO GBAR-MATRIX FOR
C MEMBRANE-BENDING COUPLING AT THIS
C EVALUATION POINT
C 20 - 28 3X3 TRANSFORMATION FROM MATERIAL
C TO INTEGRATION PT. COORDINATE
C SYSTEM
C 29 - 32 2X2 PROPERTY MATRIX FOR OUT-OF-
C PLANE SHEAR (G3)
C 32+1 - 32+NNODE ELEMENT SHAPE FUNCTIONS
C 32+NNODE+1 - 32+NNODE+8*NDOF STRAIN RECOVERY MATRIX
C
C
C IELOUT DATA BLOCK (TOTAL OF NWORDS = 102)
C --------------------------------------------------------------
C 1 ELEMENT ID
C 2 AVERAGE THICKNESS
C
C THE FOLLOWING IS REPEATED FOR EACH CORNER POINT.
C
C WORD 1 SIL NUMBER
C WORD 2-10 TBS TRANSFORMATION FOR Z1
C WORD 11-19 TBS TRANSFORMATION FOR Z2
C WORD 20-22 NORMAL VECTOR IN BASIC C.S.
C WORD 23-25 GRID COORDS IN BASIC C.S.
C
C
Q4STRS = 0
ELID = NEST(1)
NPHI(1)= ELID
NORPTH =.FALSE.
NODE = 4
NNODE = 4
NDOF = NNODE*6
ND2 = NDOF*2
ND3 = NDOF*3
ND4 = NDOF*4
ND5 = NDOF*5
ND6 = NDOF*6
ND7 = NDOF*7
ND8 = NDOF*8
C
C FILL IN ARRAY GGU WITH THE COORDINATES OF GRID POINTS 1, 2 AND 4.
C THIS ARRAY WILL BE USED LATER TO DEFINE THE USER COORD. SYSTEM
C WHILE CALCULATING TRANSFORMATIONS INVOLVING THIS COORD. SYSTEM.
C
DO 10 I = 1,3
II = (I-1)*3
IJ = I
IF (IJ .EQ. 3) IJ = 4
DO 10 J = 1,3
JJ = J + 1
10 GGU(II+J) = BGPDT(JJ,IJ)
CWKBD 11/93 SPR93020 CALL BETRNS (TUB,GGU,0,ELID)
CWKBNB 11/93 SPR93020
C ADD FROM SHEAR ELEMENT
C
C COMPUTE DIAGONAL VECTORS
C
DO 21 I = 1,3
II=I+1
VD1(I) = BGPDT(II,3) - BGPDT(II,1)
21 VD2(I) = BGPDT(II,4) - BGPDT(II,2)
C
C COMPUTE THE NORMAL VECTOR VKN, NORMALIZE, AND COMPUTE THE PROJECTED
C AREA, PA
C
VKN(1) = VD1(2)*VD2(3) - VD1(3)*VD2(2)
VKN(2) = VD1(3)*VD2(1) - VD1(1)*VD2(3)
VKN(3) = VD1(1)*VD2(2) - VD1(2)*VD2(1)
VKL = SQRT( VKN(1)**2 + VKN(2)**2 + VKN(3)**2 )
IF ( VKL .EQ. 0. ) WRITE( NOUT, 2070 ) EST(1)
2070 FORMAT(//,' ILLEGAL GEOMETRY FOR QUAD4 ELEMENT, ID=',I10 )
VKS(1) = VKN(1)/VKL
VKS(2) = VKN(2)/VKL
VKS(3) = VKN(3)/VKL
PA = VKL/2.
C
C COMPUTE SIDES -12- AND -41-
DO 25 I = 1,3
II = I + 1
V12(I) = BGPDT(II,2) - BGPDT(II,1)
V41(I) = BGPDT(II,1) - BGPDT(II,4)
25 CONTINUE
C
C COMPUTE DOT PRODUCT, V12DK, OR V12 AND VK, THE VECTORS VP12, VI, VJ
C
V12DK = V12(1)*VKS(1) + V12(2)*VKS(2) + V12(3)*VKS(3)
VP12(1) = V12(1) - V12DK*VKS(1)
VP12(2) = V12(2) - V12DK*VKS(2)
VP12(3) = V12(3) - V12DK*VKS(3)
VP12L = SQRT( VP12(1)**2 + VP12(2)**2 + VP12(3)**2 )
IF ( VP12L .EQ. 0. ) WRITE( NOUT, 2070 ) EST(1)
VIS(1) = VP12(1) / VP12L
VIS(2) = VP12(2) / VP12L
VIS(3) = VP12(3) / VP12L
VJS(1) = VKS(2)*VIS(3) - VKS(3)*VIS(2)
VJS(2) = VKS(3)*VIS(1) - VKS(1)*VIS(3)
VJS(3) = VKS(1)*VIS(2) - VKS(2)*VIS(1)
C
C NORMALIZE J FOR GOOD MEASURE
C
VJL = SQRT( VJS(1)**2 + VJS(2)**2 + VJS(3)**2 )
IF ( VJL .EQ. 0. ) WRITE ( NOUT, 2070 ) EST(1)
VJS(1) = VJS(1) / VJL
VJS(2) = VJS(2) / VJL
VJS(3) = VJS(3) / VJL
DO 29 I = 1,3
TUB(I) = VIS(I)
TUB(I+3) = VJS(I)
TUB(I+6) = VKS(I)
29 CONTINUE
CWKBNE 11/93 SPR93020
C
C STORE INCOMING BGPDT FOR ELEMENT C.S.
C
DO 20 I = 1,3
I1 = I + 1
DO 20 J = 1,4
20 BGPDM(I,J) = BGPDT(I1,J)
C
C TRANSFORM BGPDM FROM BASIC TO USER C.S.
C
DO 30 I = 1,3
IP = (I-1)*3
DO 30 J = 1,4
UGPDM(I,J) = 0.0
DO 30 K = 1,3
KK = IP + K
30 UGPDM(I,J) = UGPDM(I,J) + TUB(KK)*((BGPDM(K,J))-GGU(K))
C
C THE ORIGIN OF THE ELEMENT C.S. IS IN THE MIDDLE OF THE ELEMENT
C
DO 40 J = 1,3
CENT(J) = 0.0
DO 40 I = 1,4
40 CENT(J) = CENT(J) + UGPDM(J,I)/NNODE
C
C STORE THE CORNER NODE DIFF. IN THE USER C.S.
C
X31 = UGPDM(1,3) - UGPDM(1,1)
Y31 = UGPDM(2,3) - UGPDM(2,1)
X42 = UGPDM(1,4) - UGPDM(1,2)
Y42 = UGPDM(2,4) - UGPDM(2,2)
AA = SQRT(X31*X31 + Y31*Y31)
BB = SQRT(X42*X42 + Y42*Y42)
C
C NORMALIZE XIJ'S
C
X31 = X31/AA
Y31 = Y31/AA
X42 = X42/BB
Y42 = Y42/BB
EXI = X31 - X42
EXJ = Y31 - Y42
C
C STORE GGE ARRAY, THE OFFSET BETWEEN ELEMENT C.S. AND USER C.S.
C
GGE(1) = CENT(1)
GGE(2) = CENT(2)
GGE(3) = CENT(3)
C
GGE(4) = GGE(1) + EXI
GGE(5) = GGE(2) + EXJ
GGE(6) = GGE(3)
C
GGE(7) = GGE(1) - EXJ
GGE(8) = GGE(2) + EXI
GGE(9) = GGE(3)
C
C START FILLING IN IELOUT ARRAY WITH DATA TO BE STORED IN GPSRN
C
IELOUT(1) = ELID
DO 50 I = 1,4
IELOUT(3+(I-1)*25) = SIL(I)
DO 50 J = 1,3
RELOUT(25*I+J-1) = BGPDT(J+1,I)
50 CONTINUE
C
C THE ARRAY IORDER STORES THE ELEMENT NODE ID IN
C INCREASING SIL ORDER.
C
C IORDER(1) = NODE WITH LOWEST SIL NUMBER
C IORDER(4) = NODE WITH HIGHEST SIL NUMBER
C
C ELEMENT NODE NUMBER IS THE INTEGER FROM THE NODE LIST G1,G2,G3,G4.
C THAT IS, THE 'I' PART OF THE 'GI' AS THEY ARE LISTED ON THE
C CONNECTIVITY BULK DATA CARD DESCRIPTION.
C
C
DO 60 I = 1,4
IORDER(I) = 0
60 KSIL(I) = SIL(I)
C
DO 80 I = 1,4
ITEMP = 1
ISIL = KSIL(1)
DO 70 J = 2,4
IF (ISIL .LE. KSIL(J)) GO TO 70
ITEMP = J
ISIL = KSIL(J)
70 CONTINUE
IORDER(I) = ITEMP
KSIL(ITEMP) = 99999999
80 CONTINUE
C
C ADJUST EST DATA
C
C USE THE POINTERS IN IORDER TO COMPLETELY REORDER THE
C GEOMETRY DATA INTO INCREASING SIL ORDER.
C DON'T WORRY!! IORDER ALSO KEEPS TRACK OF WHICH SHAPE
C FUNCTIONS GO WITH WHICH GEOMETRIC PARAMETERS!
C
DO 100 I = 1,4
KSIL(I) = SIL(I)
TMPTHK(I) = GPTH(I)
KCID(I) = IGPDT(1,I)
DO 90 J = 2,4
TGRID(J,I) = BGPDT(J,I)
90 CONTINUE
100 CONTINUE
DO 120 I = 1,4
IPOINT = IORDER(I)
GPTH(I) = TMPTHK(IPOINT)
IGPDT(1,I) = KCID(IPOINT)
SIL(I) = KSIL(IPOINT)
NPHI(I+1 ) = KSIL(IPOINT)
NPHI(I+5 ) = 0
NPHI(I+9 ) = IPOINT
NPHI(I+13) = 0
DO 110 J = 2,4
BGPDT(J,I) = TGRID(J,IPOINT)
110 CONTINUE
120 CONTINUE
C
NPHI(19) = NEST(20)
NPHI(20) = NEST(21)
PHIOUT(18) = 0.0
OFFSET = ZOFF
IF (ZOFF .EQ. 0.0) OFFSET = ZOFF1
PHIOUT(78) = OFFSET
C
C COMPUTE NODE NORMALS
C
CALL Q4NRMS (BGPDT,GPNORM,IORDER,IFLAG)
IF (IFLAG .EQ. 0) GO TO 130
WRITE (NOUT,1710) UFM,ELID
GO TO 1430
130 CONTINUE
C
C PUT NORMALS IN IELOUT
C
DO 140 I = 1,NNODE
IO = IORDER(I)
IOP = (IO-1)*25 + 21
RELOUT(IOP+1) = GPNORM(2,I)
RELOUT(IOP+2) = GPNORM(3,I)
RELOUT(IOP+3) = GPNORM(4,I)
140 CONTINUE
C
C COMPUTE NODE NORMALS
C
AVGTHK = 0.0
DO 160 I = 1,NNODE
IO = IORDER(I)
IF (GPTH(I) .EQ. 0.0) GPTH(I) = ELTH
IF (GPTH(I) .GT. 0.0) GO TO 150
WRITE (NOUT,1700) UFM,ELID,SIL(I)
GO TO 1430
150 AVGTHK = AVGTHK + GPTH(I)/NNODE
GPTH2(IO) = GPTH(I)
160 CONTINUE
C
MOMINR = 0.0
TSFACT = 5.0/6.0
NOCSUB = .FALSE.
IF (NEST(15) .NE. 0) MOMINR = EST(16)
IF (NEST(17) .NE. 0) TS = EST(18)
IF ( EST(18) .EQ. .0) TS = 5.0/6.0
PHIOUT(21) = AVGTHK
PHIOUT(22) = MOMINR
C
C SET LOGICAL NOCSUB IF EITHER MOMINR OR TS ARE NOT DEFAULT
C VALUES. THIS WILL BE USED TO OVERRIDE ALL CSUBB COMPUTATIONS.
C I.E. DEFAULT VALUES OF UNITY ARE USED.
C
EPSI = ABS(MOMINR - 1.0)
EPST = ABS(TS - TSFACT)
EPS = .05
C NOCSUB = EPSI.GT.EPS .OR. EPST.GT.EPS
C
C PUT THE AVERAGE THICKNESS IN RELOUT
C
RELOUT(2) = AVGTHK
C
C THE COORDINATES OF THE ELEMENT GRID POINTS HAVE TO BE
C TRANSFORMED FROM THE BASIC C.S. TO THE ELEMENT C.S.
C
CALL BETRNS (TEU,GGE,0,ELID)
CALL GMMATS (TEU,3,3,0, TUB,3,3,0, TEB)
CALL GMMATS (TUB,3,3,1, CENT,3,1,0, CENTE)
C
DO 170 I = 1,3
II = I + 1
IP = (I-1)*3
DO 170 J = 1,NNODE
EPNORM(II,J) = 0.0
EGPDT (II,J) = 0.0
DO 170 K = 1,3
KK = IP + K
K1 = K + 1
CC = BGPDT(K1,J) - GGU(K) - CENTE(K)
EPNORM(II,J) = EPNORM(II,J) + TEB(KK)*GPNORM(K1,J)
170 EGPDT (II,J) = EGPDT (II,J) + TEB(KK)*CC
C
C INITIALIZE MATERIAL VARIABLES
C
C SET INFLAG = 12 SO THAT SUBROUTINE MAT WILL SEARCH FOR-
C ISOTROPIC MATERIAL PROPERTIES AMONG THE MAT1 CARDS,
C ORTHOTROPIC MATERIAL PROPERTIES AMONG THE MAT8 CARDS, AND
C ANISOTROPIC MATERIAL PROPERTIES AMONG THE MAT2 CARDS.
C
INFLAG = 12
RHO = 0.0
ELTEMP = EST(45)
MID(1) = NEST(13)
MID(2) = NEST(15)
MID(3) = NEST(17)
MID(4) = NEST(22)
MEMBRN = MID(1).GT.0
BENDNG = MID(2).GT.0 .AND. MOMINR.GT.0.0
SHRFLX = MID(3).GT.0
MBCOUP = MID(4).GT.0
C
C CHECK FOR COMPOSITE MATERIAL
C
NPHI(79) = 0
DO 180 IMG = 1,4
IF (MID(IMG) .GT. HUNMEG) GO TO 190
180 CONTINUE
GO TO 200
190 NPHI(79) = MID(IMG) - IMG*HUNMEG
200 CONTINUE
C
C DETERMINE FACTORS TO BE USED IN CSUBB CALCULATIONS
C
IF (.NOT.BENDNG) GO TO 250
DO 220 I = 1,4
DO 210 J = 1,NNODE
JO = IORDER(J)
IF (I .NE. JO) GO TO 210
XA(I) = EGPDT(2,J)
YB(I) = EGPDT(3,J)
ZC(I) = EGPDT(4,J)
VNT(1,I) = EPNORM(2,J)
VNT(2,I) = EPNORM(3,J)
VNT(3,I) = EPNORM(4,J)
210 CONTINUE
220 CONTINUE
C
A = 0.5*(XA(2) + XA(3) - XA(1) - XA(4))
B = 0.5*(YB(4) + YB(3) - YB(1) - YB(2))
IF (A .GT. B) ASPECT = B/A
IF (A .LE. B) ASPECT = A/B
C
C IRREGULAR 4-NODE CODE- GEOMETRIC VARIABLES
C
C CALCULATE AND NORMALIZE- UNIT EDGE VECTORS,UNIT NORMAL VECTORS
C
DO 230 I = 1,4
J = I + 1
IF (J .EQ. 5) J = 1
UEV(1,I) = XA(J) - XA(I)
UEV(2,I) = YB(J) - YB(I)
UEV(3,I) = ZC(J) - ZC(I)
UNV(1,I) = (VNT(1,J)+VNT(1,I))*0.50
UNV(2,I) = (VNT(2,J)+VNT(2,I))*0.50
UNV(3,I) = (VNT(3,J)+VNT(3,I))*0.50
CC = UEV(1,I)**2 + UEV(2,I)**2 + UEV(3,I)**2
IF (CC .GE. 1.0E-8) CC = SQRT(CC)
EDGEL(I) = CC
UEV(1,I) = UEV(1,I)/CC
UEV(2,I) = UEV(2,I)/CC
UEV(3,I) = UEV(3,I)/CC
CC = SQRT(UNV(1,I)**2 + UNV(2,I)**2 + UNV(3,I)**2)
UNV(1,I) = UNV(1,I)/CC
UNV(2,I) = UNV(2,I)/CC
UNV(3,I) = UNV(3,I)/CC
230 CONTINUE
C
C CALCULATE INTERNAL NODAL ANGLES
C
DO 240 I = 1,4
J = I - 1
IF (J .EQ. 0) J = 4
ANGLEI(I) =-UEV(1,I)*UEV(1,J)-UEV(2,I)*UEV(2,J)-UEV(3,I)*UEV(3,J)
IF (ABS(ANGLEI(I)) .LT. 1.0E-8) ANGLEI(I) = 0.0
240 CONTINUE
250 CONTINUE
C
C SET THE INTEGRATION POINTS
C
PTINT(1) = -CONST
PTINT(2) = CONST
C
IF (ITHERM .NE. 0) GO TO 1500
C
C IN PLANE SHEAR REDUCTION
C
XI = 0.0
ETA = 0.0
KPT = 1
C
CALL Q4SHPS (XI,ETA,SHP,DSHP)
C
C SORT THE SHAPE FUNCTIONS AND THEIR DERIVATIVES INTO SIL ORDER.
C
DO 260 I = 1,4
TMPSHP(I ) = SHP (I )
DSHPTP(I ) = DSHP(I )
260 DSHPTP(I+4) = DSHP(I+4)
DO 270 I = 1,4
KK = IORDER(I)
SHP( I ) = TMPSHP(KK )
DSHP(I ) = DSHPTP(KK )
270 DSHP(I+4) = DSHPTP(KK+4)
C
DO 280 IZTA = 1,2
ZETA = PTINT(IZTA)
C
C COMPUTE THE JACOBIAN AT THIS GAUSS POINT,
C ITS INVERSE AND ITS DETERMINANT.
C
HZTA = ZETA/2.0
C
CALL JACOBS (ELID,SHP,DSHP,GPTH,EGPDT,EPNORM,JACOB)
IF (BADJAC) GO TO 1430
C
C COMPUTE PSI TRANSPOSE X JACOBIAN INVERSE.
C HERE IS THE PLACE WHERE THE INVERSE JACOBIAN IS FLAGED TO BE
C TRANSPOSED BECAUSE OF OPPOSITE MATRIX LOADING CONVENTION BETWEEN
C INVER AND GMMAT.
C
CALL GMMATS (PSITRN,3,3,0, JACOB,3,3,1, PHI)
C
C CALL Q4BMGS TO GET B MATRIX
C SET THE ROW FLAG TO 2. IT WILL SAVE THE 3RD ROW OF B-MATRIX AT
C THE TWO INTEGRATION POINTS.
C
ROWFLG = 2
CALL Q4BMGS (DSHP,GPTH,EGPDT,EPNORM,PHI,XYBMAT(KPT))
KPT = KPT + ND2
280 CONTINUE
C
C FETCH MATERIAL PROPERTIES
C
C SET THE ARRAY OF LENGTH 4 TO BE USED IN CALLING TRANSS.
C NOTE THAT THE FIRST WORD IS THE COORDINATE SYSTEM ID WHICH
C WILL BE SET IN POSITION LATER.
C
290 DO 300 IEC = 2,4
300 ECPT(IEC) = 0.0
C
C
C EACH MATERIAL PROPERTY MATRIX G HAS TO BE TRANSFORMED FROM
C THE MATERIAL COORDINATE SYSTEM TO THE ELEMENT COORDINATE
C SYSTEM. THESE STEPS ARE TO BE FOLLOWED-
C
C 1- IF MCSID HAS BEEN SPECIFIED, SUBROUTINE TRANSS IS CALLED
C TO CALCULATE TBM-MATRIX (MATERIAL TO BASIC TRANSFORMATION).
C THIS WILL BE FOLLOWED BY A CALL TO SUBROUTINE BETRNS
C TO CALCULATE TEB-MATRIX (BASIC TO ELEMENT TRANSFORMATION).
C TBM-MATRIX IS THEN PREMULTIPLIED BY TEB-MATRIX TO OBTAIN
C TEM-MATRIX. THEN STEP 3 WILL BE TAKEN.
C
C 2- IF THETAM HAS BEEN SPECIFIED, SUBROUTINE ANGTRS IS CALLED
C TO CALCULATE TEM-MATRIX (MATERIAL TO ELEMENT TRANSFORMATION).
C
C T
C 3- G = U G U
C E M
C
C
FLAGM = NEST(11)
IF (FLAGM .EQ. 0) GO TO 360
MCSID = NEST(10)
C
C CALCULATE TUM-MATRIX USING MCSID
C
310 IF (MCSID .GT. 0) GO TO 330
DO 320 I = 1,9
320 TEM(I) = TEB(I)
GO TO 340
330 NECPT(1) = MCSID
CALL TRANSS (ECPT,TBM)
C
C MULTIPLY TEB AND TBM MATRICES
C
CALL GMMATS (TEB,3,3,0, TBM,3,3,0, TEM)
C
C CALCULATE THETAM FROM THE PROJECTION OF THE X-AXIS OF THE
C MATERIAL C.S. ON TO THE XY PLANE OF THE ELEMENT C.S.
C
340 CONTINUE
XM = TEM(1)
YM = TEM(4)
IF (ABS(XM).GT.EPS1 .OR. ABS(YM).GT.EPS1) GO TO 350
NEST(2) = MCSID
J = 231
GO TO 1440
350 THETAM = ATAN2(YM,XM)
GO TO 370
C
C CALCULATE TEM-MATRIX USING THETAM
C
360 THETAM = EST(10)*DEGRAD
IF (THETAM .EQ. 0.0) GO TO 380
370 CALL ANGTRS (THETAM,1,TUM)
CALL GMMATS (TEU,3,3,0, TUM,3,3,0, TEM)
GO TO 400
C
C DEFAULT IS CHOSEN, LOOK FOR VALUES OF MCSID AND/OR THETAM
C ON THE PSHELL CARD.
C
380 FLAGM = NEST(24)
IF (FLAGM .EQ. 0) GO TO 390
MCSID = NEST(23)
GO TO 310
C
390 THETAM = EST(23)*DEGRAD
GO TO 370
C
400 CONTINUE
C
C STORE TUM IN PHIOUT
C
DO 410 IEM = 1,9
410 PHIOUT(68+IEM) = TUM(IEM)
C
IF (ITHERM .NE. 0) GO TO 1600
C
C BEGIN THE LOOP TO FETCH PROPERTIES FOR EACH MATERIAL ID
C
DO 420 LL = 1,36
420 GI(LL) = 0.0
C
M = 0
IT0 = 0
IGOBK= 0
430 M = M + 1
IF (M .GT. 4) GO TO 680
IF (M.EQ.4 .AND. IGOBK.EQ.1) GO TO 690
MATID = MID(M)
IF (MATID.EQ.0 .AND. M.NE.3) GO TO 430
IF (MATID.EQ.0 .AND. M.EQ.3 .AND. .NOT.BENDNG) GO TO 430
IF (MATID.EQ.0 .AND. M.EQ.3 .AND. BENDNG) MATID = MID(2)
C
IF (M-1) 460,450,440
440 IF (MATID.EQ.MID(M-1) .AND. IGOBK.EQ.0) GO TO 460
450 CALL MAT (ELID)
460 CONTINUE
C
IF (IT0 .GT. 0) GO TO 470
TSUB0 = RMTOUT(11)
IF (MATSET .EQ. 8.0) TSUB0 = RMTOUT(10)
PHIOUT(18) = TSUB0
IT0 = 1
470 CONTINUE
C
COEFF = 1.0
C IF (M .EQ. 2) COEFF = MOMINR
IF (M .EQ. 3) COEFF = TS
LPOINT = (M-1)*9 + 1
C
CALL Q4GMGS (M,COEFF,GI(LPOINT))
C
CWKBDB 11/93 SPR93020
C IF (M .GT. 0) GO TO 490
C IF (.NOT.SHRFLX .AND. BENDNG) GO TO 480
C NEST(2) = MATID
C J = 231
C GO TO 1440
C
C 480 M = -M
C 490 CONTINUE
C MTYPE = IFIX(MATSET+.05) - 2
C IF (NOCSUB) GO TO 580
C GO TO (580,500,540,580), M
CC
C 500 IF (MTYPE) 510,520,530
C 510 ENORX = RMTOUT(16)
C ENORY = RMTOUT(16)
C GO TO 580
C 520 ENORX = RMTOUT(1)
C ENORY = RMTOUT(4)
C GO TO 580
C 530 ENORX = RMTOUT(1)
C ENORY = RMTOUT(3)
C GO TO 580
C
C 540 IF (MTYPE) 550,560,570
C 550 GNORX = RMTOUT(6)
C GNORY = RMTOUT(6)
C GO TO 580
C 560 GNORX = RMTOUT(1)
C GNORY = RMTOUT(4)
C GO TO 580
C 570 GNORX = RMTOUT(6)
C GNORY = RMTOUT(5)
C IF (GNORX .EQ. 0.0) GNORX = RMTOUT(4)
C IF (GNORY .EQ. 0.0) GNORY = RMTOUT(4)
C 580 CONTINUE
CWKBDE 11/93 SPR93020
CWKBNB 11/93 SPR93020
IF (M .GT. 0) GO TO 490
IF (.NOT.SHRFLX .AND. BENDNG) GO TO 480
NEST(2) = MATID
J = 231
GO TO 1440
480 M = -M
490 CONTINUE
MTYPE = IFIX(MATSET+.05) - 2
IF (NOCSUB) GO TO 580
GO TO (580,500,540,580), M
CWKBNE 11/93 SPR93020
CWKBNB 2/94 SPR93020
500 IF ( MTYPE ) 510, 520, 530
510 ENORX = RMTOUT(16)
ENORY = RMTOUT(16)
DNUX = GI( LPOINT+1 ) / GI( LPOINT )
DNUY = GI( LPOINT+3 ) / GI( LPOINT+4 )
GO TO 580
520 ENORX = RMTOUT(1)
ENORY = RMTOUT(4)
DNUX = GI( LPOINT+1 ) / GI( LPOINT )
DNUY = GI( LPOINT+3 ) / GI( LPOINT+4 )
GO TO 580
530 ENORX = RMTOUT(1)
ENORY = RMTOUT(3)
DNUX = GI( LPOINT+1 ) / GI( LPOINT )
DNUY = GI( LPOINT+3 ) / GI( LPOINT+4 )
GO TO 580
540 IF ( MTYPE ) 550, 560, 570
550 GNORX = RMTOUT(6)
GNORY = RMTOUT(6)
GO TO 580
560 GNORX = RMTOUT(1)
GNORY = RMTOUT(4)
GO TO 580
570 GNORX = RMTOUT(6)
GNORY = RMTOUT(5)
IF ( GNORX .EQ. 0.0D0 ) GNORX = RMTOUT(4)
IF ( GNORY .EQ. 0.0D0 ) GNORY = RMTOUT(4)
580 CONTINUE
CWKBNE 2/94 SPR93020
IF (MATSET .EQ. 1.0) GO TO 610
IF (M .EQ. 3) GO TO 590
U(1) = TEM(1)*TEM(1)
U(2) = TEM(2)*TEM(2)
U(3) = TEM(1)*TEM(2)
U(4) = TEM(4)*TEM(4)
U(5) = TEM(5)*TEM(5)
U(6) = TEM(4)*TEM(5)
U(7) = TEM(1)*TEM(4)*2.0
U(8) = TEM(2)*TEM(5)*2.0
U(9) = TEM(1)*TEM(5) + TEM(2)*TEM(4)
L = 3
GO TO 600
C
590 U(1) = TEM(5)*TEM(9) + TEM(6)*TEM(8)
U(2) = TEM(4)*TEM(9) + TEM(6)*TEM(7)
U(3) = TEM(2)*TEM(9) + TEM(3)*TEM(8)
U(4) = TEM(1)*TEM(9) + TEM(3)*TEM(7)
L = 2
C
600 CALL GMMATS (U(1),L,L,1, GI(LPOINT),L,L,0, GT(1))
CALL GMMATS (GT(1),L,L,0, U(1),L,L,0, GI(LPOINT))
C
C TRANSFORM THERMAL EXPANSION COEFF'S AND STORE THEM IN PHIOUT
C
610 CONTINUE
IF (M .GT. 2 ) GO TO 430
IF (MATSET .EQ. 2.) GO TO 620
IF (MATSET .EQ. 8.) GO TO 640
C
C MAT1
C
ALFA(1) = RMTOUT(8)
ALFA(2) = RMTOUT(8)
ALFA(3) = 0.0
GO TO 650
C
C MAT2
C
620 DO 630 IMAT = 1,3
630 ALFA(IMAT) = RMTOUT(7+IMAT)
GO TO 650
C
C MAT8
C
640 ALFA(1) = RMTOUT(8)
ALFA(2) = RMTOUT(9)
ALFA(3) = 0.0
C
650 MPOINT = (M-1)*3 + 59
IF (MATSET .EQ. 1.0) GO TO 660
CALL INVERS (3,U,3,BDUM,0,DETU,ISNGU,INDEX)
CALL GMMATS (U,3,3,0, ALFA,3,1,0, PHIOUT(MPOINT))
GO TO 430
660 DO 670 IALF = 1,3
MP = MPOINT - 1 + IALF
670 PHIOUT(MP) = ALFA(IALF)
GO TO 430
680 CONTINUE
IF (MID(3) .LT. HUNMEG) GO TO 690
IF (GI(19).NE.0. .OR. GI(20).NE.0. .OR. GI(21).NE.0. .OR.
1 GI(22).NE.0.) GO TO 690
IGOBK = 1
M = 2
MID(3) = MID(2)
GO TO 430
690 CONTINUE
C
NOCSUB = ENORX.EQ.0.0 .OR. ENORY.EQ.0.0 .OR.
1 GNORX.EQ.0.0 .OR. GNORY.EQ.0.0 .OR.
2 MOMINR.EQ.0.0
C
C
C FILL IN THE BASIC 6X6 MATERIAL PROPERTY MATRIX G
C
DO 700 IG = 1,6
DO 700 JG = 1,6
700 G(IG,JG) = 0.0
C
IF (.NOT.MEMBRN) GO TO 720
DO 710 IG = 1,3
IG1 = (IG-1)*3
DO 710 JG = 1,3
JG1 = JG + IG1
G(IG,JG) = GI(JG1)
710 CONTINUE
C
720 IF (.NOT.BENDNG) GO TO 750
DO 730 IG = 4,6
IG2 = (IG-2)*3
DO 730 JG = 4,6
JG2 = JG + IG2
G(IG,JG) = GI(JG2)
730 CONTINUE
C
IF (.NOT.MEMBRN) GO TO 750
DO 740 IG = 1,3
KG = IG + 3
IG1 = (IG-1)*3
DO 740 JG = 1,3
LG = JG + 3
JG1 = JG + IG1
G(IG,LG) = GI(JG1)
G(KG,JG) = GI(JG1)
740 CONTINUE
C
C STORE 6X6 GBAR-MATRIX IN PHIOUT
C
750 IG1 = 22
DO 760 IG = 1,6
DO 760 JG = 1,6
IG1 = IG1 + 1
760 PHIOUT(IG1) = G(IG,JG)
C
C
C STRESS TRANSFORMATIONS
C ----------------------
C
C THE NECESSARY TRANSFORMATIONS ARE PERFORMED IN THE FOLLOWING
C MANNER-
C
C 1- ALL THE TRANSFORMATIONS ARE CALCULATED IN PHASE I AND THEN
C TRANSFERED THRU DATA BLOCK 'PHIOUT' TO PHASE II WHERE THE
C ACTUAL MULTIPLICATIONS ARE PERFORMED.
C
C 2- THE STRAIN RECOVERY MATRIX B
C IS EVALUATED IN THE ELEMENT COORDINATE SYSTEM IN PHASE I
C AND TRANSFERED TO PHASE II. THE DISPLACEMENTS, HOWEVER,
C ENTER PHASE II IN GLOBAL COORDINATES. THEREFORE,
C 2A) 3X3 TRANSFORMATIONS FROM GLOBAL TO ELEMENT COORDINATE
C SYSTEM (TEG) FOR EACH GRID POINT ARE CALCULATED AND
C STORED IN PHIOUT (80 - (79+9*NNODE)).
C USING THESE TRANSFORMATIONS THE DISPLACEMENTS AT
C EACH GRID POINT WILL BE EVALUATED IN THE ELEMENT
C COORDINATE SYSTEM AFTER ENTERING PHASE II.
C
C 2B) A 3X3 TRANSFORMATION FROM THE TANGENT TO THE USER-
C DEFINED STRESS COORDINATE SYSTEM (TSI) IS CALCULATED
C FOR EACH INTEGRATION POINT AND STORED ALONG WITH OTHER
C DATA FOR THAT INTEGRATION POINT AT POSITIONS 2-10 OF
C THE REPEATED DATA FOR EACH EVALUATION POINT.
C IT WILL BE USED TO TRANSFORM THE STRESS OUTPUT TO
C ANY DESIRED COORDINATE SYSTEM.
C NOTE THAT THESE CALCULATIONS WILL BE PERFORMED INSIDE
C THE DOUBLE LOOP.
C
C CALCULATIONS FOR TEG-MATRIX
C
C CALCULATE TBG-MATRIX (GLOBAL TO BASIC), THEN
C MULTIPLY TEB AND TBG MATRICES TO GET TEG-MATRIX
C FOR THIS GRID POINT AND STORE IT IN PHIOUT.
C
DO 820 I = 1,NNODE
IP = 80 + (I-1)*9
IF (IGPDT(1,I) .LE. 0) GO TO 800
CALL TRANSS (IGPDT(1,I),TBG)
CALL GMMATS (TEB,3,3,0, TBG,3,3,0, PHIOUT(IP))
GO TO 820
C
800 DO 810 J = 1,9
810 PHIOUT(IP+J-1) = TEB(J)
820 CONTINUE
C
C INITIALIZE THE ARRAYS USED IN THE DOUBLE LOOP CALCULATION.
C EVALUATION OF STRESSES IS DONE AT 2X2 POINTS AND AT THE
C CENTER OF THE ELEMENT, AT THE MID-SURFACE.
C
IF (BENDNG) GO TO 840
J = ND3 + 1
DO 830 IBMX = J,ND8
830 BMATRX(IBMX) = 0.0
840 CONTINUE
C
ICOUNT = -(8*NDOF+NNODE+32) + 79 + 9*NNODE
C
PTINTP(1) =-CONST
PTINTP(2) = CONST
PTINTP(3) = 0.0
C
C
C HERE BEGINS THE TRIPLE LOOP ON STATEMENTS 835 AND 840
C -----------------------------------------------------
C
DO 1420 IXSI = 1,3
XI = PTINTP(IXSI)
C
DO 1420 IETA = 1,3
ETA = PTINTP(IETA)
IF (IXSI.EQ.3 .AND. IETA.NE.3) GO TO 1420
IF (IXSI.NE.3 .AND. IETA.EQ.3) GO TO 1420
C
CALL Q4SHPS (XI,ETA,SHP,DSHP)
C
C SORT THE SHAPE FUNCTIONS AND THEIR DERIVATIVES INTO SIL ORDER.
C
DO 900 I = 1,4
TMPSHP(I ) = SHP (I )
DSHPTP(I ) = DSHP(I )
900 DSHPTP(I+4) = DSHP(I+4)
DO 910 I = 1,4
KK = IORDER(I)
SHP (I ) = TMPSHP(KK )
DSHP(I ) = DSHPTP(KK )
910 DSHP(I+4) = DSHPTP(KK+4)
C
TH = 0.0
DO 920 ITH = 1,NNODE
920 TH = TH + SHP(ITH)*GPTH(ITH)
REALI = MOMINR*TH*TH*TH/12.0
TSI = TS*TH
C
IF (NOCSUB) GO TO 970
IF (.NOT.BENDNG) GO TO 970
C NUNORX = MOMINR*ENORX/(2.0*GNORX) - 1.0
C NUNORY = MOMINR*ENORY/(2.0*GNORY) - 1.0
CWKBNB 2/94 SPR93020
NUNORX = MOMINR*ENORX/(2.0*GNORX) - 1.0
NUNORY = MOMINR*ENORY/(2.0*GNORY) - 1.0
IF ( NUNORX .LT. 0. ) NUNORX = DNUX
IF ( NUNORY .LT. 0. ) NUNORY = DNUY
CWKBNE 2/94 SPR93020
CWKBDB 2/94 SPR93020
C EIX = MOMINR*ENORX
C EIY = MOMINR*ENORY
C TGX = 2.0*GNORX
C TGY = 2.0*GNORY
C NUNORX = EIX/TGX - 1.0
C IF (EIX .GT. TGX) NUNORX = 1.0 - TGX/EIX
C NUNORY = EIY/TGY - 1.0
C IF (EIY .GT. TGY) NUNORY = 1.0 - TGY/EIY
C IF (NUNORX .GT. 0.999999) NUNORX = 0.999999
C IF (NUNORY .GT. 0.999999) NUNORY = 0.999999
CWKBDE 2/94 SPR93020
C IF (NUNORX .GT. .49) NUNORX = 0.49
C IF (NUNORY .GT. .49) NUNORY = 0.49
CC = ASPECT
AX = A
IF (ETA .LT. 0.0) AX = A + CONST*(XA(2)-XA(1)-A)
IF (ETA .GT. 0.0) AX = A + CONST*(XA(3)-XA(4)-A)
PSIINX = 32.0*REALI/((1.0-NUNORX)*TSI*AX*AX)
BY = B
IF (XI .LT. 0.0) BY = B + CONST*(YB(4)-YB(1)-B)
IF (XI .GT. 0.0) BY = B + CONST*(YB(3)-YB(2)-B)
PSIINY = 32.0*REALI/((1.0-NUNORY)*TSI*BY*BY)
IF (.NOT.SHRFLX) GO TO 930
TSMFX = PSIINX
TSMFY = PSIINY
IF (TSMFX .GT. 1.0) TSMFX = 1.0
IF (TSMFY .GT. 1.0) TSMFY = 1.0
GO TO 980
930 IF (PSIINX .GE. 1.0) GO TO 940
TSMFX = PSIINX/(1.0-PSIINX)
IF (TSMFX .LE. 1.0) GO TO 950
940 TSMFX = 1.0
950 IF (PSIINY .GE. 1.0) GO TO 960
TSMFY = PSIINY/(1.0-PSIINY)
IF (TSMFY .LE. 1.0) GO TO 980
960 TSMFY = 1.0
GO TO 980
C
970 TSMFX = 1.0
TSMFY = 1.0
980 CONTINUE
C
C IRREGULAR 4-NODE CODE- CALCULATION OF NODAL EDGE SHEARS
C AT THIS INTEGRATION POINT
C
C
DO 1050 IJ = 1,4
II = IJ - 1
IF (II .EQ. 0) II = 4
IK = IJ + 1
IF (IK .EQ. 5) IK = 1
C
DO 1000 IR = 1,4
IF (IJ .NE. IORDER(IR)) GO TO 1000
IOJ = IR
GO TO 1010
1000 CONTINUE
1010 DO 1020 IR = 1,4
IF (IK .NE. IORDER(IR)) GO TO 1020
IOK = IR
GO TO 1030
1020 CONTINUE
1030 AA = SHP(IOJ)
BB = SHP(IOK)
C
DO 1040 IS = 1,3
EDGSHR(IS,IJ) = (UEV(IS,IJ)+ANGLEI(IJ)*UEV(IS,II))*AA/
1 (1.0-ANGLEI(IJ)*ANGLEI(IJ))
2 + (UEV(IS,IJ)+ANGLEI(IK)*UEV(IS,IK))*BB/
3 (1.0-ANGLEI(IK)*ANGLEI(IK))
1040 CONTINUE
1050 CONTINUE
C
DO 1410 IZTA = 1,2
ZETA = PTINT(IZTA)
HZTA = ZETA/2.0
IBOT = (IZTA-1)*ND2
C
C SET THE PHIOUT POINTER
C
ICOUNT = ICOUNT + 32 + NNODE + 8*NDOF
C
PHIOUT(ICOUNT+1) = TH
C
C STORE SHAPE FUNCTION VALUES IN PHIOUT
C
DO 1060 I = 1,NNODE
PHIOUT(ICOUNT+32+I) = SHP(I)
1060 CONTINUE
C
C STORE THE CORRECTION TO GBAR-MATRIX IN PHIOUT
C
IG1 = ICOUNT + 10
IG4 = 28
DO 1070 IG = 1,9
IG1 = IG1 + 1
PHIOUT(IG1) = -GI(IG4)*ZETA*6.0
1070 IG4 = IG4 + 1
C
C STORE G3-MATRIX IN PHIOUT
C
IPH = ICOUNT + 28
PHIOUT(IPH+1) = TSMFY*GI(19)
PHIOUT(IPH+2) = SQRT(TSMFX*TSMFY)*GI(20)
PHIOUT(IPH+3) = SQRT(TSMFX*TSMFY)*GI(21)
PHIOUT(IPH+4) = TSMFX*GI(22)
C
C COMPUTE THE JACOBIAN AT THIS GAUSS POINT,
C ITS INVERSE AND ITS DETERMINANT.
C
CALL JACOBS (ELID,SHP,DSHP,GPTH,EGPDT,EPNORM,JACOB)
IF (BADJAC) GO TO 1430
C
C COMPUTE PSI TRANSPOSE X JACOBIAN INVERSE.
C HERE IS THE PLACE WHERE THE INVERSE JACOBIAN IS FLAGED TO BE
C TRANSPOSED BECAUSE OF OPPOSITE MATRIX LOADING CONVENTION BETWEEN
C INVER AND GMMAT.
C
CALL GMMATS (PSITRN,3,3,0, JACOB,3,3,1, PHI)
C
CALL GMMATS (TEM,3,3,1, PSITRN,3,3,1, TMI)
C
C STORE TMI-MATRIX IN PHIOUT
C
IPH = ICOUNT + 20
DO 1080 I = 1,9
PHIOUT(IPH) = TMI(I)
1080 IPH = IPH + 1
C
C ARRAY ECPT(4) WHICH IS USED IN TRANSS CONSISTS OF THE C.S. ID
C AND THE COORDINATES (IN BASIC C.S.) OF THE POINT FROM (OR TO)
C WHICH THE TRANSFORMATION IS BEING PERFORMED. THE COORDINATES
C ARE NOT USED IF THE DESIGNATED COORDINATE SYSTEM IS RECTANGULAR.
C
DO 1100 I = 1,3
GPC(I) = 0.0
II = I + 1
DO 1090 J = 1,NNODE
1090 GPC(I) = GPC(I) + SHP(J)*(BGPDT(II,J) + HZTA*GPTH(J)*GPNORM(II,J))
1100 ECPT(II) = GPC(I)
C
C CALCULATIONS FOR TSE-MATRIX
C
FLAGS = NEST(27)
IF (FLAGS .EQ. 0) GO TO 1300
C
C FLAGS IS 1, I.E. SCSID HAS BEEN SPECIFIED.
C CALCULATE TBS-MATRIX (STRESS TO BASIC)
C
SCSID = NEST(26)
IF (SCSID .LE. 0) GO TO 1200
NECPT(1) = SCSID
CALL TRANSS (ECPT,TBS)
GO TO 1220
1200 DO 1210 I = 1,3
II = (I-1)*3
DO 1210 J = 1,3
JJ = (J-1)*3
1210 TSU(II+J) = TUB(I+JJ)
GO TO 1230
C
C MULTIPLY
C T T
C TBS AND TUB TO GET TSU-MATRIX (USER TO STRESS)
C
1220 CALL GMMATS (TBS,3,3,1, TUB,3,3,1, TSU)
C
C CALCULATE THETAS FROM THE PROJECTION OF THE X-AXIS OF THE
C STRESS C.S. ON TO THE XY PLANE OF THE ELEMENT C.S.
C
1230 CONTINUE
XS = TSU(1)
YS = TSU(2)
IF (ABS(XS).GT.EPS1 .OR. ABS(YS).GT.EPS1) GO TO 1240
NEST(2) = SCSID
J = 233
GO TO 1440
1240 THETAS = ATAN2(YS,XS)
GO TO 1310
C
C FLAGS IS 0, I.E. THETAS HAS BEEN SPECIFIED.
C SUBROUTINE ANGTRS RETURNS THE 3X3 TRANSFORMATION USING THETAS.
C NOTE THAT IF THETAS IS LEFT BLANK (DEFAULT), THE TRANSFORMATION
C WILL BE IDENTITY, I.E. THE STRESSES WILL BE OUTPUT IN THE
C ELEMENT COORDINATE SYSTEM.
C IF Q4STRS IS SET EQUAL TO 1, STRESSES WILL BE OUTPUT IN THE E C.S.
C WHICH COOINCIDES WITH MSC'S VERSION OF ELEMENT COORDINATE SYSTEM.
C
1300 THETAS = EST(26)*DEGRAD
1310 IF (Q4STRS .EQ. 1) GO TO 1320
CALL ANGTRS (THETAS,0,TSU)
CALL GMMATS (TSU,3,3,0, TEU,3,3,1, TSE)
GO TO 1330
1320 CALL ANGTRS (THETAS,0,TSE)
C T
C CALCULATE TSI = TSE X PSITRN AND STORE IT IN PHIOUT
C
1330 CALL GMMATS (TSE,3,3,0, PSITRN,3,3,1, PHIOUT(ICOUNT+2))
C
C FOR CORNER POINTS (THE STRESS EVALUATION POINTS EXCEPT FOR THE
C ONES AT THE CENTER), CALCULATE TSB-MATRIX AND STORE IT IN IELOUT.
C
IF (IXSI+IETA .GT. 4) GO TO 1340
IP = (IXSI-1)*2 + IETA
IP1 = IPN(IP)
IP2 = (IP1-1)*25 + 4 + (IZTA-1)*9
CALL GMMATS (TSE,3,3,0, TEB,3,3,0, RELOUT(IP2))
1340 CONTINUE
C
C CALL Q4BMGS TO GET B MATRIX
C SET THE ROW FLAG TO 3 TO CREATE THE FIRST 6 ROWS. THEN SET IT
C TO 1 FOR THE LAST 2 ROWS.
C
ROWFLG = 3
CALL Q4BMGS (DSHP,GPTH,EGPDT,EPNORM,PHI,BMATRX(1))
DO 1350 IX = 1,NDOF
1350 BMATRX(IX+ND2) = XYBMAT(IBOT+IX)
C
IF (.NOT.BENDNG) GO TO 1370
ROWFLG = 1
CALL Q4BMGS (DSHP,GPTH,EGPDT,EPNORM,PHI,BMATRX(1+ND6))
DO 1360 IX = 1,NDOF
1360 BMATRX(IX+ND5) = XYBMAT(IBOT+IX+NDOF)
1370 CONTINUE
C
C
C HERE WE SHIP OUT THE STRAIN RECOVERY MATRIX.
C --------------------------------------------
C
KCOUNT = ICOUNT + 32 + NNODE
DO 1400 IPH = 1,ND8
1400 PHIOUT(KCOUNT+IPH) = BMATRX(IPH)
1410 CONTINUE
1420 CONTINUE
RETURN
C
1430 NOGO = 1
RETURN
C
1440 CALL MESAGE (30,J,NAME)
GO TO 1430
C
C BEGINNING OF HEAT RECOVERY.
C
1500 CONTINUE
MATID = NEST(13)
INFLAG = 2
NPHI(22) = 2
NPHI(23) = NNODE
NPHI(24) = NAME(1)
NPHI(25) = NAME(2)
XI = 0.0
ETA = 0.0
CALL Q4SHPS (XI,ETA,SHP,DSHP)
C
C SORT THE SHAPE FUNCTIONS AND THEIR DERIVATIVES INTO SIL ORDER.
C
DO 1510 I = 1,4
TMPSHP(I ) = SHP (I )
DSHPTP(I ) = DSHP(I )
1510 DSHPTP(I+4) = DSHP(I+4)
DO 1520 I = 1,4
KK = IORDER(I)
SHP (I ) = TMPSHP(KK )
DSHP(I ) = DSHPTP(KK )
1520 DSHP(I+4) = DSHPTP(KK+4)
C
HZTA = 0.0
CALL JACOBS (ELID,SHP,DSHP,GPTH,EGPDT,EPNORM,JACOBE)
IF (BADJAC) GO TO 1430
C
DO 1530 I = 2,4
ECPT(I) = 0.0
DO 1530 J = 1,NNODE
1530 ECPT(I) = ECPT(I) + SHP(J)*BGPDT(I,J)
C
FLAGS = NEST(27)
IF (FLAGS .EQ. 0) GO TO 1580
SCSID = NEST(26)
IF (SCSID .LE. 0) GO TO 1540
NECPT(1) = SCSID
CALL TRANSS (ECPT,TBS)
CALL GMMATS (TBS,3,3,1, TUB,3,3,1, TSU)
GO TO 1560
1540 DO 1550 I = 1,3
II = (I-1)*3
DO 1550 J = 1,3
JJ = (J-1)*3
1550 TSU(II+J) = TUB(I+JJ)
1560 CONTINUE
XS = TSU(1)
YS = TSU(2)
IF (ABS(XS).GT.EPS1 .OR. ABS(YS).GT.EPS1) GO TO 1570
NEST(2) = SCSID
J = 233
GO TO 1440
1570 THETAS = ATAN2(YS,XS)
GO TO 1590
1580 THETAS = EST(26)*DEGRAD
1590 CALL ANGTRS (THETAS,0,TSU)
SINMAT = 0.0
COSMAT = 1.0
CALL HMAT (ELID)
PHIOUT(26) = KHEAT(1)
PHIOUT(27) = KHEAT(2)
PHIOUT(28) = KHEAT(2)
PHIOUT(29) = KHEAT(3)
C
C BRANCH IF THERMAL CONDUCTIVITY KHEAT IS ISOTROPIC.
C OTHERWISE, FIND TBM, TBS AND TMS AND COMPUTE THE KHEAT
C TENSOR IN 2-DIMENSIONAL STRESS COORDINATE SYSTEM.
C
C COMMENTS FROM G.CHAN/UNISYS 10/88
C HMAT ROUTINE DOES NOT RETURN 'TYPE' IN COSMIC NASTRAN
C SO WE CAN ONLY ASSUME THERMAL CONDUCTIVITY IS ISOTROPIC AND
C BRANCH TO 1610 UNCONDITIOANLLY BY SETTING TYPE =-1
C
TYPE =-1
C
IF (TYPE.EQ.4 .OR. TYPE.EQ.-1) GO TO 1610
GO TO 290
1600 CONTINUE
CALL GMMATS (TUM,3,3,1, TSU,3,3,1, TMS)
TMS(3) = TMS(4)
TMS(4) = TMS(5)
CALL GMMATS (TMS,2,2,1, PHIOUT(26),2,2,0, TUM)
CALL GMMATS (TUM,2,2,0, TMS,2,2,0, PHIOUT(26))
1610 CONTINUE
CALL GMMATS (TEU,3,3,1, JACOBE,3,3,0, JACOBU)
CALL GMMATS (TSU,3,3,0, JACOBU,3,3,0, JACBS)
DO 1620 J = 1,NNODE
DQ(J) = DSHP(J)
JN = J + NNODE
DQ(JN) = DSHP(J+4)
JN = JN + NNODE
1620 DQ(JN) = 0.0
CALL GMMATS (JACBS,3,3,0, DQ,3,NNODE,0, PHIOUT(35))
RETURN
C
1700 FORMAT (A23,', QUAD4 ELEMENT HAS UNDEFINED THICKNESS. ELEMENT',
1 ' ID =',I8,', SIL ID =',I8)
1710 FORMAT (A23,', MODULE SDR2 DETECTS BAD OR REVERSE GEOMETRY FOR ',
1 'ELEMENT ID =',I8)
END
|