File: squd41.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (1339 lines) | stat: -rw-r--r-- 40,924 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
      SUBROUTINE SQUD41
C
C     PHASE 1  STRESS DATA RECOVERY FOR CQUAD4 ELEMENT
C
C                EST  LISTING
C
C     WORD       TYPE         DESCRIPTION
C     --------------------------------------------------------------
C       1          I    ELEMENT ID, EID
C       2 THRU 5   I    SILS, GRIDS 1 THRU 4
C       6 THRU 9   R    MEMBRANE THICKNESSES T AT GRIDS 1 THRU 4
C      10          R    MATERIAL PROPERTY ORIENTATION ANGLE, THETA
C               OR I    COORD. SYSTEM ID (SEE TM ON CQUAD4 CARD)
C      11          I    TYPE FLAG FOR WORD 10
C      12          R    GRID ZOFF  (OFFSET)
C      13          I    MATERIAL ID FOR MEMBRANE, MID1
C      14          R    ELEMENT THICKNESS, T (MEMBRANE, UNIFORMED)
C      15          I    MATERIAL ID FOR BENDING, MID2
C      16          R    BENDING INERTIA FACTOR, I
C      17          I    MATERIAL ID FOR TRANSVERSE SHEAR, MID3
C      18          R    TRANSV. SHEAR CORRECTION FACTOR TS/T
C      19          R    NON-STRUCTURAL MASS, NSM
C      20 THRU 21  R    Z1, Z2  (STRESS FIBRE DISTANCES)
C      22          I    MATERIAL ID FOR MEMBRANE-BENDING COUPLING, MID4
C      23          R    MATERIAL ANGLE OF ROTATION, THETA
C               OR I    COORD. SYSTEM ID (SEE MCSID ON PSHELL CARD)
C      24          I    TYPE FLAG FOR WORD 23
C      25          I    INTEGRATION ORDER
C      26          R    STRESS ANGLE OF ROTATION, THETA
C               OR I    COORD. SYSTEM ID (SEE SCSID ON PSHELL CARD)
C      27          I    TYPE FLAG FOR WORD 26
C      28          R    ZOFF1 (OFFSET)  OVERRIDDEN BY EST(12)
C      29 THRU 44  I/R  CID,X,Y,Z - GRIDS 1 THRU 4
C      45          R    ELEMENT TEMPERATURE
C
C
      LOGICAL         BADJAC,MEMBRN,BENDNG,SHRFLX,MBCOUP,NORPTH,NOCSUB
      INTEGER         NEST(45),NPHI(2395),SIL(4),KSIL(4),KCID(8),
     1                IGPDT(4,4),ELID,SCSID,FLAGS,FLAGM,NECPT(4),
     2                INDEX(3,3),MID(4),Q4STRS,IPN(4),HUNMEG,ROWFLG,
     3                TYPE,NAME(2)
      REAL            BGPDM(3,4),CENT(3),GPTH(4),GPNORM(4,4),BGPDT(4,4),
     1                MATSET,MOMINR,TMPTHK(4),TGRID(4,4),EPNORM(4,4),
     2                EGPDT(4,4),G(6,6),GI(36),SHP(4),DSHP(8),GGE(9),
     3                GGU(9),PTINT(2),PTINTP(3),TBS(9),TEU(9),TSE(9),
     4                TEB(9),TBG(9),TUB(9),TUM(9),TSU(9),U(9),GT(9),
     5                TBM(9),TEM(9),TMI(9),ECPT(4),GPC(3),XA(4),YB(4),
     6                ALFA(3),GPTH2(4),RELOUT(300),NUNORX,NUNORY,
     7                UGPDM(3,4),CENTE(3),BMATRX(192),XYBMAT(96),
     8                JACOB(3,3),PHI(9),PSITRN(9),TMPSHP(4),DSHPTP(8),
     9                KHEAT,TMS(9),DQ(24),JACOBU(9),JACBS(9),JACOBE(9),
     O                ZC(4),VNT(3,4)
CWKBNB 11/93 SPR 93020
      REAL            VD1(3), VD2(3), VKN(3), VKS(3)
     1,               V12(3), V41(3), VP12(3),VIS(3), VJS(3)
CWKBNE 11/93 SPR 93020
      CHARACTER       UFM*23
      COMMON /XMSSG / UFM
      COMMON /SDR2X5/ EST(100),PHIOUT(2395)
      COMMON /SDR2X6/ IELOUT(300)
      COMMON /CONDAS/ PI,TWOPI,RADDEG,DEGRAD
      COMMON /SYSTEM/ SYSTM(100)
      COMMON /MATIN / MATID,INFLAG,ELTEMP
      COMMON /MATOUT/ RMTOUT(25)
      COMMON /Q4DT  / DETJ,HZTA,PSITRN,NNODE,BADJAC,NODE
      COMMON /TERMS / MEMBRN,BENDNG,SHRFLX,MBCOUP,NORPTH
      COMMON /HMTOUT/ KHEAT(7),TYPE
      COMMON /Q4COMS/ ANGLEI(4),EDGSHR(3,4),EDGEL(4),UNV(3,4),
     1                UEV(3,4),ROWFLG,IORDER(4)
      EQUIVALENCE     (IGPDT(1,1),BGPDT(1,1)),(EST(1)  ,NEST(1)   ),
     1                (BGPDT(1,1),EST(29)   ),(GPTH(1) ,EST(6)    ),
     2                (ELTH      ,EST(14)   ),(SIL(1)  ,NEST(2)   ),
     3                (NPHI(1)   ,PHIOUT(1) ),(INT     ,NEST(25)  ),
     4                (ZOFF      ,NEST(12)  ),(ZOFF1   ,EST(28)   ),
     5                (IELOUT(1) ,RELOUT(1) ),(MATSET  ,RMTOUT(25)),
     6                (NECPT(1)  ,ECPT(1)   ),(SYSTM(2),NOUT      ),
     7                (PHIOUT(65),GPTH2(1)  ),(SYSTM(3),NOGO      ),
     8                (HTCP      ,KHEAT(4)  ),(ITHERM  ,SYSTM(56) )
      DATA    EPS1  / 1.0E-16/   ,IPN / 1,4,2,3 /
      DATA    NAME  / 4HQUAD,4H4      /
      DATA    HUNMEG/ 100000000       /
      DATA    CONST / 0.57735026918962/
C
C     PHIOUT DATA BLOCK
C     --------------------------------------------------------------
C     PHIOUT(1)                 = ELID (ELEMENT ID)
C     PHIOUT(2-9)               = SIL NUMBERS
C     PHIOUT(10-17)             = ARRAY IORDER
C     PHIOUT(18)                = TSUB0 (REFERENCE TEMP.)
C     PHIOUT(19-20)             = Z1 & Z2 (FIBER DISTANCES)
C     PHIOUT(21)                = AVGTHK  (AVERAGE THICKNESS)
C     PHIOUT(22)                = MOMINR  (MOMENT OF INER. FACTOR)
C     PHIOUT(23-58)             = GBAR (BASIC MAT. PROP. MATRIX)
C                                 (W/O SHEAR)
C     PHIOUT(59-61)             = THERMAL EXPANSION COEFFICIENTS
C                                 FOR MEMBRANE MATERIAL
C     PHIOUT(62-64)             = THERMAL EXPANSION COEFFICIENTS
C                                 FOR BENDING MATERIAL
C     PHIOUT(65-68)             = CORNER NODE THICKNESSES
C     PHIOUT(69-77)             = 3X3 TRANSFORMATION FROM USER TO
C                                 MATERIAL COORD. SYSTEM
C     PHIOUT(78)                = OFFSET OF ELEMENT FROM GP PLANE
C     PHIOUT(79)                = ID OF THE ORIGINAL PCOMP(I)
C                                 PROPERTY ENTRY FOR COMPOSITES
C     PHIOUT(80-(79+9*NNODE))   = 3X3 TRANSFORMATIONS FROM GLOBAL
C                                 TO ELEMENT COORDINATE SYSTEM
C                                 FOR EACH EXISTING NODE
C
C     THE FOLLOWING IS REPEATED FOR EACH EVALUATION POINT AND THE
C     CENTER POINT (10 TIMES). THE EVALUATION POINTS ARE AT THE
C     STANDARD 2X2X2 GAUSSIAN POINTS. THE CHOICE OF THE
C     FINAL STRESS AND FORCE OUTPUT POINTS IS MADE AT THE SUBCASE
C     LEVEL (PHASE 2.)
C
C              1                  THICKNESS OF THE ELEMENT AT THIS
C                                 EVALUATION POINT
C            2 - 10               3X3 TRANSFORMATION FROM TANGENT
C                                 TO STRESS C.S. AT THIS EVAL. PT.
C           11 - 19               CORRECTION TO GBAR-MATRIX FOR
C                                 MEMBRANE-BENDING COUPLING AT THIS
C                                 EVALUATION POINT
C           20 - 28               3X3 TRANSFORMATION FROM MATERIAL
C                                 TO INTEGRATION PT. COORDINATE
C                                 SYSTEM
C           29 - 32               2X2 PROPERTY MATRIX FOR OUT-OF-
C                                 PLANE SHEAR (G3)
C         32+1 - 32+NNODE         ELEMENT SHAPE FUNCTIONS
C   32+NNODE+1 - 32+NNODE+8*NDOF  STRAIN RECOVERY MATRIX
C
C
C              IELOUT DATA BLOCK      (TOTAL OF NWORDS = 102)
C     --------------------------------------------------------------
C              1                  ELEMENT ID
C              2                  AVERAGE THICKNESS
C
C     THE FOLLOWING IS REPEATED FOR EACH CORNER POINT.
C
C         WORD  1                 SIL NUMBER
C         WORD  2-10              TBS TRANSFORMATION FOR Z1
C         WORD 11-19              TBS TRANSFORMATION FOR Z2
C         WORD 20-22              NORMAL VECTOR IN BASIC C.S.
C         WORD 23-25              GRID COORDS IN BASIC C.S.
C
C
      Q4STRS = 0
      ELID   = NEST(1)
      NPHI(1)= ELID
      NORPTH =.FALSE.
      NODE   = 4
      NNODE  = 4
      NDOF   = NNODE*6
      ND2    = NDOF*2
      ND3    = NDOF*3
      ND4    = NDOF*4
      ND5    = NDOF*5
      ND6    = NDOF*6
      ND7    = NDOF*7
      ND8    = NDOF*8
C
C     FILL IN ARRAY GGU WITH THE COORDINATES OF GRID POINTS 1, 2 AND 4.
C     THIS ARRAY WILL BE USED LATER TO DEFINE THE USER COORD. SYSTEM
C     WHILE CALCULATING  TRANSFORMATIONS INVOLVING THIS COORD. SYSTEM.
C
      DO 10 I = 1,3
      II = (I-1)*3
      IJ = I
      IF (IJ .EQ. 3) IJ = 4
      DO 10 J = 1,3
      JJ = J + 1
   10 GGU(II+J) = BGPDT(JJ,IJ)
CWKBD 11/93 SPR93020      CALL BETRNS (TUB,GGU,0,ELID)
CWKBNB 11/93 SPR93020
C    ADD FROM SHEAR ELEMENT
C
C    COMPUTE DIAGONAL VECTORS
C
      DO 21 I = 1,3
      II=I+1
      VD1(I) = BGPDT(II,3) - BGPDT(II,1)
   21 VD2(I) = BGPDT(II,4) - BGPDT(II,2)
C
C    COMPUTE THE NORMAL VECTOR VKN, NORMALIZE, AND COMPUTE THE PROJECTED
C    AREA, PA
C
      VKN(1) = VD1(2)*VD2(3) - VD1(3)*VD2(2)
      VKN(2) = VD1(3)*VD2(1) - VD1(1)*VD2(3)
      VKN(3) = VD1(1)*VD2(2) - VD1(2)*VD2(1)
      VKL = SQRT( VKN(1)**2 + VKN(2)**2 + VKN(3)**2 )
      IF ( VKL .EQ. 0. ) WRITE( NOUT, 2070 ) EST(1)
2070  FORMAT(//,' ILLEGAL GEOMETRY FOR QUAD4 ELEMENT, ID=',I10 )
      VKS(1) = VKN(1)/VKL
      VKS(2) = VKN(2)/VKL
      VKS(3) = VKN(3)/VKL
      PA = VKL/2.
C
C  COMPUTE SIDES -12- AND -41-
      DO 25 I = 1,3
      II = I + 1
      V12(I) = BGPDT(II,2) - BGPDT(II,1)
      V41(I) = BGPDT(II,1) - BGPDT(II,4)
25    CONTINUE
C
C  COMPUTE DOT PRODUCT, V12DK, OR V12 AND VK, THE VECTORS VP12, VI, VJ
C
      V12DK   = V12(1)*VKS(1) + V12(2)*VKS(2) + V12(3)*VKS(3)
      VP12(1) = V12(1) - V12DK*VKS(1)
      VP12(2) = V12(2) - V12DK*VKS(2)
      VP12(3) = V12(3) - V12DK*VKS(3)
      VP12L   = SQRT( VP12(1)**2 + VP12(2)**2 + VP12(3)**2 )
      IF ( VP12L .EQ. 0. ) WRITE( NOUT, 2070 ) EST(1)
      VIS(1) = VP12(1) / VP12L
      VIS(2) = VP12(2) / VP12L
      VIS(3) = VP12(3) / VP12L
      VJS(1) = VKS(2)*VIS(3) - VKS(3)*VIS(2)
      VJS(2) = VKS(3)*VIS(1) - VKS(1)*VIS(3)
      VJS(3) = VKS(1)*VIS(2) - VKS(2)*VIS(1)
C
C   NORMALIZE J FOR GOOD MEASURE
C
      VJL = SQRT( VJS(1)**2 + VJS(2)**2 + VJS(3)**2 )
      IF ( VJL .EQ. 0. ) WRITE ( NOUT, 2070 ) EST(1)
      VJS(1) = VJS(1) / VJL
      VJS(2) = VJS(2) / VJL
      VJS(3) = VJS(3) / VJL
      DO 29 I = 1,3
      TUB(I)   = VIS(I)
      TUB(I+3) = VJS(I)
      TUB(I+6) = VKS(I)
29    CONTINUE
CWKBNE 11/93 SPR93020

C
C     STORE INCOMING BGPDT FOR ELEMENT C.S.
C
      DO 20 I = 1,3
      I1 = I + 1
      DO 20 J = 1,4
   20 BGPDM(I,J) = BGPDT(I1,J)
C
C     TRANSFORM BGPDM FROM BASIC TO USER C.S.
C
      DO 30 I = 1,3
      IP = (I-1)*3
      DO 30 J = 1,4
      UGPDM(I,J) = 0.0
      DO 30 K = 1,3
      KK = IP + K
   30 UGPDM(I,J) = UGPDM(I,J) + TUB(KK)*((BGPDM(K,J))-GGU(K))
C
C     THE ORIGIN OF THE ELEMENT C.S. IS IN THE MIDDLE OF THE ELEMENT
C
      DO 40 J = 1,3
      CENT(J) = 0.0
      DO 40 I = 1,4
   40 CENT(J) = CENT(J) + UGPDM(J,I)/NNODE
C
C     STORE THE CORNER NODE DIFF. IN THE USER C.S.
C
      X31 = UGPDM(1,3) - UGPDM(1,1)
      Y31 = UGPDM(2,3) - UGPDM(2,1)
      X42 = UGPDM(1,4) - UGPDM(1,2)
      Y42 = UGPDM(2,4) - UGPDM(2,2)
      AA  = SQRT(X31*X31 + Y31*Y31)
      BB  = SQRT(X42*X42 + Y42*Y42)
C
C     NORMALIZE XIJ'S
C
      X31 = X31/AA
      Y31 = Y31/AA
      X42 = X42/BB
      Y42 = Y42/BB
      EXI = X31 - X42
      EXJ = Y31 - Y42
C
C     STORE GGE ARRAY, THE OFFSET BETWEEN ELEMENT C.S. AND USER C.S.
C
      GGE(1) = CENT(1)
      GGE(2) = CENT(2)
      GGE(3) = CENT(3)
C
      GGE(4) = GGE(1) + EXI
      GGE(5) = GGE(2) + EXJ
      GGE(6) = GGE(3)
C
      GGE(7) = GGE(1) - EXJ
      GGE(8) = GGE(2) + EXI
      GGE(9) = GGE(3)
C
C     START FILLING IN IELOUT ARRAY WITH DATA TO BE STORED IN GPSRN
C
      IELOUT(1) = ELID
      DO 50 I = 1,4
      IELOUT(3+(I-1)*25) = SIL(I)
      DO 50 J = 1,3
      RELOUT(25*I+J-1) = BGPDT(J+1,I)
   50 CONTINUE
C
C     THE ARRAY IORDER STORES THE ELEMENT NODE ID IN
C     INCREASING SIL ORDER.
C
C     IORDER(1) = NODE WITH LOWEST  SIL NUMBER
C     IORDER(4) = NODE WITH HIGHEST SIL NUMBER
C
C     ELEMENT NODE NUMBER IS THE INTEGER FROM THE NODE LIST G1,G2,G3,G4.
C     THAT IS, THE 'I' PART OF THE 'GI' AS THEY ARE LISTED ON THE
C     CONNECTIVITY BULK DATA CARD DESCRIPTION.
C
C
      DO 60 I = 1,4
      IORDER(I) = 0
   60 KSIL(I) = SIL(I)
C
      DO 80 I = 1,4
      ITEMP = 1
      ISIL  = KSIL(1)
      DO 70 J = 2,4
      IF (ISIL .LE. KSIL(J)) GO TO 70
      ITEMP = J
      ISIL  = KSIL(J)
   70 CONTINUE
      IORDER(I)   = ITEMP
      KSIL(ITEMP) = 99999999
   80 CONTINUE
C
C     ADJUST EST DATA
C
C     USE THE POINTERS IN IORDER TO COMPLETELY REORDER THE
C     GEOMETRY DATA INTO INCREASING SIL ORDER.
C     DON'T WORRY!! IORDER ALSO KEEPS TRACK OF WHICH SHAPE
C     FUNCTIONS GO WITH WHICH GEOMETRIC PARAMETERS!
C
      DO 100 I = 1,4
      KSIL(I)   = SIL(I)
      TMPTHK(I) = GPTH(I)
      KCID(I)   = IGPDT(1,I)
      DO 90 J = 2,4
      TGRID(J,I) = BGPDT(J,I)
   90 CONTINUE
  100 CONTINUE
      DO 120 I = 1,4
      IPOINT  = IORDER(I)
      GPTH(I) = TMPTHK(IPOINT)
      IGPDT(1,I) = KCID(IPOINT)
      SIL(I)     = KSIL(IPOINT)
      NPHI(I+1 ) = KSIL(IPOINT)
      NPHI(I+5 ) = 0
      NPHI(I+9 ) = IPOINT
      NPHI(I+13) = 0
      DO 110 J = 2,4
      BGPDT(J,I) = TGRID(J,IPOINT)
  110 CONTINUE
  120 CONTINUE
C
      NPHI(19) = NEST(20)
      NPHI(20) = NEST(21)
      PHIOUT(18) = 0.0
      OFFSET   = ZOFF
      IF (ZOFF .EQ. 0.0) OFFSET = ZOFF1
      PHIOUT(78) = OFFSET
C
C     COMPUTE NODE NORMALS
C
      CALL Q4NRMS (BGPDT,GPNORM,IORDER,IFLAG)
      IF (IFLAG .EQ. 0) GO TO 130
      WRITE (NOUT,1710) UFM,ELID
      GO TO 1430
  130 CONTINUE
C
C     PUT NORMALS IN IELOUT
C
      DO 140 I = 1,NNODE
      IO  = IORDER(I)
      IOP = (IO-1)*25 + 21
      RELOUT(IOP+1) = GPNORM(2,I)
      RELOUT(IOP+2) = GPNORM(3,I)
      RELOUT(IOP+3) = GPNORM(4,I)
  140 CONTINUE
C
C     COMPUTE NODE NORMALS
C
      AVGTHK = 0.0
      DO 160 I = 1,NNODE
      IO = IORDER(I)
      IF (GPTH(I) .EQ. 0.0) GPTH(I) = ELTH
      IF (GPTH(I) .GT. 0.0) GO TO 150
      WRITE (NOUT,1700) UFM,ELID,SIL(I)
      GO TO 1430
  150 AVGTHK = AVGTHK + GPTH(I)/NNODE
      GPTH2(IO) = GPTH(I)
  160 CONTINUE
C
      MOMINR = 0.0
      TSFACT = 5.0/6.0
      NOCSUB = .FALSE.
      IF (NEST(15) .NE.  0) MOMINR = EST(16)
      IF (NEST(17) .NE.  0) TS = EST(18)
      IF ( EST(18) .EQ. .0) TS = 5.0/6.0
      PHIOUT(21) = AVGTHK
      PHIOUT(22) = MOMINR
C
C     SET LOGICAL NOCSUB IF EITHER MOMINR OR TS ARE NOT DEFAULT
C     VALUES. THIS WILL BE USED TO OVERRIDE ALL CSUBB COMPUTATIONS.
C     I.E. DEFAULT VALUES OF UNITY ARE USED.
C
      EPSI = ABS(MOMINR - 1.0)
      EPST = ABS(TS  - TSFACT)
      EPS  = .05
C     NOCSUB = EPSI.GT.EPS .OR. EPST.GT.EPS
C
C     PUT THE AVERAGE THICKNESS IN RELOUT
C
      RELOUT(2) = AVGTHK
C
C     THE COORDINATES OF THE ELEMENT GRID POINTS HAVE TO BE
C     TRANSFORMED FROM THE BASIC C.S. TO THE ELEMENT C.S.
C
      CALL BETRNS (TEU,GGE,0,ELID)
      CALL GMMATS (TEU,3,3,0, TUB,3,3,0, TEB)
      CALL GMMATS (TUB,3,3,1, CENT,3,1,0, CENTE)
C
      DO 170 I = 1,3
      II = I + 1
      IP = (I-1)*3
      DO 170 J = 1,NNODE
      EPNORM(II,J) = 0.0
      EGPDT (II,J) = 0.0
      DO 170 K = 1,3
      KK = IP + K
      K1 = K + 1
      CC = BGPDT(K1,J) - GGU(K) - CENTE(K)
      EPNORM(II,J) = EPNORM(II,J) + TEB(KK)*GPNORM(K1,J)
  170 EGPDT (II,J) = EGPDT (II,J) + TEB(KK)*CC
C
C     INITIALIZE MATERIAL VARIABLES
C
C     SET INFLAG = 12 SO THAT SUBROUTINE MAT WILL SEARCH FOR-
C     ISOTROPIC MATERIAL PROPERTIES AMONG THE MAT1 CARDS,
C     ORTHOTROPIC MATERIAL PROPERTIES AMONG THE MAT8 CARDS, AND
C     ANISOTROPIC MATERIAL PROPERTIES AMONG THE MAT2 CARDS.
C
      INFLAG = 12
      RHO    = 0.0
      ELTEMP =  EST(45)
      MID(1) = NEST(13)
      MID(2) = NEST(15)
      MID(3) = NEST(17)
      MID(4) = NEST(22)
      MEMBRN = MID(1).GT.0
      BENDNG = MID(2).GT.0 .AND. MOMINR.GT.0.0
      SHRFLX = MID(3).GT.0
      MBCOUP = MID(4).GT.0
C
C     CHECK FOR COMPOSITE MATERIAL
C
      NPHI(79) = 0
      DO 180 IMG = 1,4
      IF (MID(IMG) .GT. HUNMEG) GO TO 190
  180 CONTINUE
      GO TO 200
  190 NPHI(79) = MID(IMG) - IMG*HUNMEG
  200 CONTINUE
C
C     DETERMINE FACTORS TO BE USED IN CSUBB CALCULATIONS
C
      IF (.NOT.BENDNG) GO TO 250
      DO 220 I = 1,4
      DO 210 J = 1,NNODE
      JO = IORDER(J)
      IF (I .NE. JO) GO TO 210
      XA(I) = EGPDT(2,J)
      YB(I) = EGPDT(3,J)
      ZC(I) = EGPDT(4,J)
      VNT(1,I) = EPNORM(2,J)
      VNT(2,I) = EPNORM(3,J)
      VNT(3,I) = EPNORM(4,J)
  210 CONTINUE
  220 CONTINUE
C
      A = 0.5*(XA(2) + XA(3) - XA(1) - XA(4))
      B = 0.5*(YB(4) + YB(3) - YB(1) - YB(2))
      IF (A .GT. B) ASPECT = B/A
      IF (A .LE. B) ASPECT = A/B
C
C     IRREGULAR 4-NODE CODE-  GEOMETRIC VARIABLES
C
C     CALCULATE AND NORMALIZE- UNIT EDGE VECTORS,UNIT NORMAL VECTORS
C
      DO 230 I = 1,4
      J = I + 1
      IF (J .EQ. 5) J = 1
      UEV(1,I) = XA(J) - XA(I)
      UEV(2,I) = YB(J) - YB(I)
      UEV(3,I) = ZC(J) - ZC(I)
      UNV(1,I) = (VNT(1,J)+VNT(1,I))*0.50
      UNV(2,I) = (VNT(2,J)+VNT(2,I))*0.50
      UNV(3,I) = (VNT(3,J)+VNT(3,I))*0.50
      CC       = UEV(1,I)**2 + UEV(2,I)**2 + UEV(3,I)**2
      IF (CC .GE. 1.0E-8) CC = SQRT(CC)
      EDGEL(I) = CC
      UEV(1,I) = UEV(1,I)/CC
      UEV(2,I) = UEV(2,I)/CC
      UEV(3,I) = UEV(3,I)/CC
      CC       = SQRT(UNV(1,I)**2 + UNV(2,I)**2 + UNV(3,I)**2)
      UNV(1,I) = UNV(1,I)/CC
      UNV(2,I) = UNV(2,I)/CC
      UNV(3,I) = UNV(3,I)/CC
  230 CONTINUE
C
C     CALCULATE INTERNAL NODAL ANGLES
C
      DO 240 I = 1,4
      J = I - 1
      IF (J .EQ. 0) J = 4
      ANGLEI(I) =-UEV(1,I)*UEV(1,J)-UEV(2,I)*UEV(2,J)-UEV(3,I)*UEV(3,J)
      IF (ABS(ANGLEI(I)) .LT. 1.0E-8) ANGLEI(I) = 0.0
  240 CONTINUE
  250 CONTINUE
C
C     SET THE INTEGRATION POINTS
C
      PTINT(1) = -CONST
      PTINT(2) =  CONST
C
      IF (ITHERM .NE. 0) GO TO 1500
C
C     IN PLANE SHEAR REDUCTION
C
      XI  = 0.0
      ETA = 0.0
      KPT = 1
C
      CALL Q4SHPS (XI,ETA,SHP,DSHP)
C
C     SORT THE SHAPE FUNCTIONS AND THEIR DERIVATIVES INTO SIL ORDER.
C
      DO 260 I = 1,4
      TMPSHP(I  ) = SHP (I  )
      DSHPTP(I  ) = DSHP(I  )
  260 DSHPTP(I+4) = DSHP(I+4)
      DO 270 I = 1,4
      KK = IORDER(I)
      SHP( I  ) = TMPSHP(KK  )
      DSHP(I  ) = DSHPTP(KK  )
  270 DSHP(I+4) = DSHPTP(KK+4)
C
      DO 280 IZTA = 1,2
      ZETA = PTINT(IZTA)
C
C     COMPUTE THE JACOBIAN AT THIS GAUSS POINT,
C     ITS INVERSE AND ITS DETERMINANT.
C
      HZTA = ZETA/2.0
C
      CALL JACOBS (ELID,SHP,DSHP,GPTH,EGPDT,EPNORM,JACOB)
      IF (BADJAC) GO TO 1430
C
C     COMPUTE PSI TRANSPOSE X JACOBIAN INVERSE.
C     HERE IS THE PLACE WHERE THE INVERSE JACOBIAN IS FLAGED TO BE
C     TRANSPOSED BECAUSE OF OPPOSITE MATRIX LOADING CONVENTION BETWEEN
C     INVER AND GMMAT.
C
      CALL GMMATS (PSITRN,3,3,0, JACOB,3,3,1, PHI)
C
C     CALL Q4BMGS TO GET B MATRIX
C     SET THE ROW FLAG TO 2. IT WILL SAVE THE 3RD ROW OF B-MATRIX AT
C     THE TWO INTEGRATION POINTS.
C
      ROWFLG = 2
      CALL Q4BMGS (DSHP,GPTH,EGPDT,EPNORM,PHI,XYBMAT(KPT))
      KPT = KPT + ND2
  280 CONTINUE
C
C     FETCH MATERIAL PROPERTIES
C
C     SET THE ARRAY OF LENGTH 4 TO BE USED IN CALLING TRANSS.
C     NOTE THAT THE FIRST WORD IS THE COORDINATE SYSTEM ID WHICH
C     WILL BE SET IN POSITION LATER.
C
  290 DO 300 IEC = 2,4
  300 ECPT(IEC) = 0.0
C
C
C     EACH MATERIAL PROPERTY MATRIX G HAS TO BE TRANSFORMED FROM
C     THE MATERIAL COORDINATE SYSTEM TO THE ELEMENT COORDINATE
C     SYSTEM. THESE STEPS ARE TO BE FOLLOWED-
C
C     1- IF MCSID HAS BEEN SPECIFIED, SUBROUTINE TRANSS IS CALLED
C        TO CALCULATE TBM-MATRIX (MATERIAL TO BASIC TRANSFORMATION).
C        THIS WILL BE FOLLOWED BY A CALL TO SUBROUTINE BETRNS
C        TO CALCULATE TEB-MATRIX (BASIC TO ELEMENT TRANSFORMATION).
C        TBM-MATRIX IS THEN PREMULTIPLIED BY TEB-MATRIX TO OBTAIN
C        TEM-MATRIX. THEN STEP 3 WILL BE TAKEN.
C
C     2- IF THETAM HAS BEEN SPECIFIED, SUBROUTINE ANGTRS IS CALLED
C        TO CALCULATE TEM-MATRIX (MATERIAL TO ELEMENT TRANSFORMATION).
C
C                          T
C     3-           G   =  U   G   U
C                   E          M
C
C
      FLAGM = NEST(11)
      IF (FLAGM .EQ. 0) GO TO 360
      MCSID = NEST(10)
C
C     CALCULATE TUM-MATRIX USING MCSID
C
  310 IF (MCSID .GT. 0) GO TO 330
      DO 320 I = 1,9
  320 TEM(I) = TEB(I)
      GO TO 340
  330 NECPT(1) = MCSID
      CALL TRANSS (ECPT,TBM)
C
C     MULTIPLY TEB AND TBM MATRICES
C
      CALL GMMATS (TEB,3,3,0, TBM,3,3,0, TEM)
C
C     CALCULATE THETAM FROM THE PROJECTION OF THE X-AXIS OF THE
C     MATERIAL C.S. ON TO THE XY PLANE OF THE ELEMENT C.S.
C
  340 CONTINUE
      XM = TEM(1)
      YM = TEM(4)
      IF (ABS(XM).GT.EPS1 .OR. ABS(YM).GT.EPS1) GO TO 350
      NEST(2) = MCSID
      J = 231
      GO TO 1440
  350 THETAM = ATAN2(YM,XM)
      GO TO 370
C
C     CALCULATE TEM-MATRIX USING THETAM
C
  360 THETAM = EST(10)*DEGRAD
      IF (THETAM .EQ. 0.0) GO TO 380
  370 CALL ANGTRS (THETAM,1,TUM)
      CALL GMMATS (TEU,3,3,0, TUM,3,3,0, TEM)
      GO TO 400
C
C     DEFAULT IS CHOSEN, LOOK FOR VALUES OF MCSID AND/OR THETAM
C     ON THE PSHELL CARD.
C
  380 FLAGM = NEST(24)
      IF (FLAGM .EQ. 0) GO TO 390
      MCSID = NEST(23)
      GO TO 310
C
  390 THETAM = EST(23)*DEGRAD
      GO TO 370
C
  400 CONTINUE
C
C     STORE TUM IN PHIOUT
C
      DO 410 IEM = 1,9
  410 PHIOUT(68+IEM) = TUM(IEM)
C
      IF (ITHERM .NE. 0) GO TO 1600
C
C     BEGIN THE LOOP TO FETCH PROPERTIES FOR EACH MATERIAL ID
C
      DO 420 LL = 1,36
  420 GI(LL) = 0.0
C
      M    = 0
      IT0  = 0
      IGOBK= 0
  430 M    = M + 1
      IF (M .GT. 4) GO TO 680
      IF (M.EQ.4 .AND. IGOBK.EQ.1) GO TO 690
      MATID = MID(M)
      IF (MATID.EQ.0 .AND. M.NE.3) GO TO 430
      IF (MATID.EQ.0 .AND. M.EQ.3 .AND. .NOT.BENDNG) GO TO 430
      IF (MATID.EQ.0 .AND. M.EQ.3 .AND. BENDNG) MATID = MID(2)
C
      IF (M-1) 460,450,440
  440 IF (MATID.EQ.MID(M-1) .AND. IGOBK.EQ.0) GO TO 460
  450 CALL MAT (ELID)
  460 CONTINUE
C
      IF (IT0 .GT. 0) GO TO 470
      TSUB0 = RMTOUT(11)
      IF (MATSET .EQ. 8.0) TSUB0 = RMTOUT(10)
      PHIOUT(18) = TSUB0
      IT0 = 1
  470 CONTINUE
C
      COEFF = 1.0
C     IF (M .EQ. 2) COEFF = MOMINR
      IF (M .EQ. 3) COEFF = TS
      LPOINT = (M-1)*9 + 1
C
      CALL Q4GMGS (M,COEFF,GI(LPOINT))
C
CWKBDB 11/93 SPR93020
C      IF (M .GT. 0) GO TO 490
C      IF (.NOT.SHRFLX .AND. BENDNG) GO TO 480
C      NEST(2) = MATID
C      J = 231
C      GO TO 1440
C
C  480 M = -M
C  490 CONTINUE
C      MTYPE = IFIX(MATSET+.05) - 2
C      IF (NOCSUB) GO TO 580
C      GO TO (580,500,540,580), M
CC
C  500 IF (MTYPE) 510,520,530
C  510 ENORX = RMTOUT(16)
C      ENORY = RMTOUT(16)
C      GO TO 580
C  520 ENORX = RMTOUT(1)
C      ENORY = RMTOUT(4)
C      GO TO 580
C  530 ENORX = RMTOUT(1)
C      ENORY = RMTOUT(3)
C      GO TO 580
C
C  540 IF (MTYPE) 550,560,570
C  550 GNORX = RMTOUT(6)
C      GNORY = RMTOUT(6)
C      GO TO 580
C  560 GNORX = RMTOUT(1)
C      GNORY = RMTOUT(4)
C      GO TO 580
C  570 GNORX = RMTOUT(6)
C      GNORY = RMTOUT(5)
C      IF (GNORX .EQ. 0.0) GNORX = RMTOUT(4)
C      IF (GNORY .EQ. 0.0) GNORY = RMTOUT(4)
C  580 CONTINUE
CWKBDE 11/93 SPR93020
CWKBNB 11/93 SPR93020
      IF (M .GT. 0) GO TO 490
      IF (.NOT.SHRFLX .AND. BENDNG) GO TO 480
      NEST(2) = MATID
      J = 231
      GO TO 1440
  480 M = -M
  490 CONTINUE
      MTYPE = IFIX(MATSET+.05) - 2
      IF (NOCSUB) GO TO 580
      GO TO (580,500,540,580), M
CWKBNE 11/93 SPR93020
CWKBNB 2/94 SPR93020
  500 IF ( MTYPE ) 510, 520, 530
  510 ENORX = RMTOUT(16)
      ENORY = RMTOUT(16)
      DNUX  = GI( LPOINT+1 ) / GI( LPOINT )
      DNUY  = GI( LPOINT+3 ) / GI( LPOINT+4 )
      GO TO 580
  520 ENORX = RMTOUT(1)
      ENORY = RMTOUT(4)
      DNUX  = GI( LPOINT+1 ) / GI( LPOINT )
      DNUY  = GI( LPOINT+3 ) / GI( LPOINT+4 )
      GO TO 580
  530 ENORX = RMTOUT(1)
      ENORY = RMTOUT(3)
      DNUX  = GI( LPOINT+1 ) / GI( LPOINT )
      DNUY  = GI( LPOINT+3 ) / GI( LPOINT+4 )
      GO TO 580
  540 IF ( MTYPE ) 550, 560, 570
  550 GNORX = RMTOUT(6)
      GNORY = RMTOUT(6)
      GO TO 580
  560 GNORX = RMTOUT(1)
      GNORY = RMTOUT(4)
      GO TO 580
  570 GNORX = RMTOUT(6)
      GNORY = RMTOUT(5)
      IF ( GNORX .EQ. 0.0D0 ) GNORX = RMTOUT(4)
      IF ( GNORY .EQ. 0.0D0 ) GNORY = RMTOUT(4)
  580 CONTINUE
CWKBNE 2/94 SPR93020
      IF (MATSET .EQ. 1.0) GO TO 610
      IF (M      .EQ.   3) GO TO 590
      U(1) = TEM(1)*TEM(1)
      U(2) = TEM(2)*TEM(2)
      U(3) = TEM(1)*TEM(2)
      U(4) = TEM(4)*TEM(4)
      U(5) = TEM(5)*TEM(5)
      U(6) = TEM(4)*TEM(5)
      U(7) = TEM(1)*TEM(4)*2.0
      U(8) = TEM(2)*TEM(5)*2.0
      U(9) = TEM(1)*TEM(5) + TEM(2)*TEM(4)
      L    = 3
      GO TO 600
C
  590 U(1) = TEM(5)*TEM(9) + TEM(6)*TEM(8)
      U(2) = TEM(4)*TEM(9) + TEM(6)*TEM(7)
      U(3) = TEM(2)*TEM(9) + TEM(3)*TEM(8)
      U(4) = TEM(1)*TEM(9) + TEM(3)*TEM(7)
      L    = 2
C
  600 CALL GMMATS (U(1),L,L,1, GI(LPOINT),L,L,0, GT(1))
      CALL GMMATS (GT(1),L,L,0, U(1),L,L,0, GI(LPOINT))
C
C     TRANSFORM THERMAL EXPANSION COEFF'S AND STORE THEM IN PHIOUT
C
  610 CONTINUE
      IF (M      .GT. 2 ) GO TO 430
      IF (MATSET .EQ. 2.) GO TO 620
      IF (MATSET .EQ. 8.) GO TO 640
C
C     MAT1
C
      ALFA(1) = RMTOUT(8)
      ALFA(2) = RMTOUT(8)
      ALFA(3) = 0.0
      GO TO 650
C
C     MAT2
C
  620 DO 630 IMAT = 1,3
  630 ALFA(IMAT) = RMTOUT(7+IMAT)
      GO TO 650
C
C     MAT8
C
  640 ALFA(1) = RMTOUT(8)
      ALFA(2) = RMTOUT(9)
      ALFA(3) = 0.0
C
  650 MPOINT = (M-1)*3 + 59
      IF (MATSET .EQ. 1.0) GO TO 660
      CALL INVERS (3,U,3,BDUM,0,DETU,ISNGU,INDEX)
      CALL GMMATS (U,3,3,0, ALFA,3,1,0, PHIOUT(MPOINT))
      GO TO 430
  660 DO 670 IALF = 1,3
      MP = MPOINT - 1 + IALF
  670 PHIOUT(MP) = ALFA(IALF)
      GO TO 430
  680 CONTINUE
      IF (MID(3) .LT. HUNMEG) GO TO 690
      IF (GI(19).NE.0. .OR. GI(20).NE.0. .OR. GI(21).NE.0. .OR.
     1    GI(22).NE.0.) GO TO 690
      IGOBK = 1
      M = 2
      MID(3) = MID(2)
      GO TO 430
  690 CONTINUE
C
      NOCSUB = ENORX.EQ.0.0 .OR. ENORY.EQ.0.0 .OR.
     1         GNORX.EQ.0.0 .OR. GNORY.EQ.0.0 .OR.
     2        MOMINR.EQ.0.0
C
C
C     FILL IN THE BASIC 6X6 MATERIAL PROPERTY MATRIX G
C
      DO 700 IG = 1,6
      DO 700 JG = 1,6
  700 G(IG,JG) = 0.0
C
      IF (.NOT.MEMBRN) GO TO 720
      DO 710 IG = 1,3
      IG1 = (IG-1)*3
      DO 710 JG = 1,3
      JG1 = JG + IG1
      G(IG,JG) = GI(JG1)
  710 CONTINUE
C
  720 IF (.NOT.BENDNG) GO TO 750
      DO 730 IG = 4,6
      IG2 = (IG-2)*3
      DO 730 JG = 4,6
      JG2 = JG + IG2
      G(IG,JG) = GI(JG2)
  730 CONTINUE
C
      IF (.NOT.MEMBRN) GO TO 750
      DO 740 IG = 1,3
      KG  = IG + 3
      IG1 = (IG-1)*3
      DO 740 JG = 1,3
      LG  = JG + 3
      JG1 = JG + IG1
      G(IG,LG) = GI(JG1)
      G(KG,JG) = GI(JG1)
  740 CONTINUE
C
C     STORE 6X6 GBAR-MATRIX IN PHIOUT
C
  750 IG1 = 22
      DO 760 IG = 1,6
      DO 760 JG = 1,6
      IG1 = IG1 + 1
  760 PHIOUT(IG1) = G(IG,JG)
C
C
C     STRESS TRANSFORMATIONS
C     ----------------------
C
C     THE NECESSARY TRANSFORMATIONS ARE PERFORMED IN THE FOLLOWING
C     MANNER-
C
C     1- ALL THE TRANSFORMATIONS ARE CALCULATED IN PHASE I AND THEN
C        TRANSFERED THRU DATA BLOCK 'PHIOUT' TO PHASE II WHERE THE
C        ACTUAL MULTIPLICATIONS ARE PERFORMED.
C
C     2- THE STRAIN RECOVERY MATRIX B
C        IS EVALUATED IN THE ELEMENT COORDINATE SYSTEM IN PHASE I
C        AND TRANSFERED TO PHASE II. THE DISPLACEMENTS, HOWEVER,
C        ENTER PHASE II IN GLOBAL COORDINATES. THEREFORE,
C        2A) 3X3 TRANSFORMATIONS FROM GLOBAL TO ELEMENT COORDINATE
C            SYSTEM (TEG) FOR EACH GRID POINT ARE CALCULATED AND
C            STORED IN  PHIOUT (80 - (79+9*NNODE)).
C            USING THESE TRANSFORMATIONS THE DISPLACEMENTS AT
C            EACH GRID POINT WILL BE EVALUATED IN THE ELEMENT
C            COORDINATE SYSTEM AFTER ENTERING PHASE II.
C
C        2B) A 3X3 TRANSFORMATION FROM THE TANGENT TO THE USER-
C            DEFINED STRESS COORDINATE SYSTEM (TSI) IS CALCULATED
C            FOR EACH INTEGRATION POINT AND STORED ALONG WITH OTHER
C            DATA FOR THAT INTEGRATION POINT AT POSITIONS 2-10 OF
C            THE REPEATED DATA FOR EACH EVALUATION POINT.
C            IT WILL BE USED TO TRANSFORM THE STRESS OUTPUT TO
C            ANY DESIRED COORDINATE SYSTEM.
C            NOTE THAT THESE CALCULATIONS WILL BE PERFORMED INSIDE
C            THE DOUBLE LOOP.
C
C     CALCULATIONS FOR TEG-MATRIX
C
C     CALCULATE  TBG-MATRIX (GLOBAL TO BASIC), THEN
C     MULTIPLY  TEB AND TBG MATRICES  TO GET  TEG-MATRIX
C     FOR THIS GRID POINT AND STORE IT IN PHIOUT.
C
      DO 820 I = 1,NNODE
      IP = 80 + (I-1)*9
      IF (IGPDT(1,I) .LE. 0) GO TO 800
      CALL TRANSS (IGPDT(1,I),TBG)
      CALL GMMATS (TEB,3,3,0, TBG,3,3,0, PHIOUT(IP))
      GO TO 820
C
  800 DO 810 J = 1,9
  810 PHIOUT(IP+J-1) = TEB(J)
  820 CONTINUE
C
C     INITIALIZE THE ARRAYS USED IN THE DOUBLE LOOP CALCULATION.
C     EVALUATION OF STRESSES IS DONE AT 2X2 POINTS AND AT THE
C     CENTER OF THE ELEMENT, AT THE MID-SURFACE.
C
      IF (BENDNG) GO TO 840
      J = ND3 + 1
      DO 830 IBMX = J,ND8
  830 BMATRX(IBMX) = 0.0
  840 CONTINUE
C
      ICOUNT = -(8*NDOF+NNODE+32) + 79 + 9*NNODE
C
      PTINTP(1) =-CONST
      PTINTP(2) = CONST
      PTINTP(3) = 0.0
C
C
C     HERE BEGINS THE TRIPLE LOOP ON STATEMENTS 835 AND 840
C     -----------------------------------------------------
C
      DO 1420 IXSI = 1,3
      XI = PTINTP(IXSI)
C
      DO 1420 IETA = 1,3
      ETA = PTINTP(IETA)
      IF (IXSI.EQ.3 .AND. IETA.NE.3) GO TO 1420
      IF (IXSI.NE.3 .AND. IETA.EQ.3) GO TO 1420
C
      CALL Q4SHPS (XI,ETA,SHP,DSHP)
C
C     SORT THE SHAPE FUNCTIONS AND THEIR DERIVATIVES INTO SIL ORDER.
C
      DO 900 I = 1,4
      TMPSHP(I  ) = SHP (I  )
      DSHPTP(I  ) = DSHP(I  )
  900 DSHPTP(I+4) = DSHP(I+4)
      DO 910 I = 1,4
      KK = IORDER(I)
      SHP (I  ) = TMPSHP(KK  )
      DSHP(I  ) = DSHPTP(KK  )
  910 DSHP(I+4) = DSHPTP(KK+4)
C
      TH = 0.0
      DO 920 ITH = 1,NNODE
  920 TH = TH + SHP(ITH)*GPTH(ITH)
      REALI = MOMINR*TH*TH*TH/12.0
      TSI = TS*TH
C
      IF (NOCSUB) GO TO 970
      IF (.NOT.BENDNG) GO TO 970
C      NUNORX = MOMINR*ENORX/(2.0*GNORX) - 1.0
C      NUNORY = MOMINR*ENORY/(2.0*GNORY) - 1.0
CWKBNB 2/94 SPR93020
      NUNORX = MOMINR*ENORX/(2.0*GNORX) - 1.0
      NUNORY = MOMINR*ENORY/(2.0*GNORY) - 1.0
      IF ( NUNORX .LT. 0. ) NUNORX = DNUX
      IF ( NUNORY .LT. 0. ) NUNORY = DNUY
CWKBNE 2/94 SPR93020
CWKBDB 2/94 SPR93020
C      EIX = MOMINR*ENORX
C      EIY = MOMINR*ENORY
C      TGX = 2.0*GNORX
C      TGY = 2.0*GNORY
C      NUNORX = EIX/TGX - 1.0
C      IF (EIX .GT. TGX) NUNORX = 1.0 - TGX/EIX
C      NUNORY = EIY/TGY - 1.0
C      IF (EIY .GT. TGY) NUNORY = 1.0 - TGY/EIY
C      IF (NUNORX .GT. 0.999999) NUNORX = 0.999999
C      IF (NUNORY .GT. 0.999999) NUNORY = 0.999999
CWKBDE 2/94 SPR93020
C     IF (NUNORX .GT. .49) NUNORX = 0.49
C     IF (NUNORY .GT. .49) NUNORY = 0.49
      CC = ASPECT
      AX = A
      IF (ETA .LT. 0.0) AX = A + CONST*(XA(2)-XA(1)-A)
      IF (ETA .GT. 0.0) AX = A + CONST*(XA(3)-XA(4)-A)
      PSIINX = 32.0*REALI/((1.0-NUNORX)*TSI*AX*AX)
      BY = B
      IF (XI .LT. 0.0) BY = B + CONST*(YB(4)-YB(1)-B)
      IF (XI .GT. 0.0) BY = B + CONST*(YB(3)-YB(2)-B)
      PSIINY = 32.0*REALI/((1.0-NUNORY)*TSI*BY*BY)
      IF (.NOT.SHRFLX) GO TO 930
      TSMFX = PSIINX
      TSMFY = PSIINY
      IF (TSMFX .GT. 1.0) TSMFX = 1.0
      IF (TSMFY .GT. 1.0) TSMFY = 1.0
      GO TO 980
  930 IF (PSIINX .GE. 1.0) GO TO 940
      TSMFX = PSIINX/(1.0-PSIINX)
      IF (TSMFX .LE. 1.0) GO TO 950
  940 TSMFX = 1.0
  950 IF (PSIINY .GE. 1.0) GO TO 960
      TSMFY = PSIINY/(1.0-PSIINY)
      IF (TSMFY .LE. 1.0) GO TO 980
  960 TSMFY = 1.0
      GO TO 980
C
  970 TSMFX = 1.0
      TSMFY = 1.0
  980 CONTINUE
C
C     IRREGULAR 4-NODE CODE-  CALCULATION OF NODAL EDGE SHEARS
C                             AT THIS INTEGRATION POINT
C
C
      DO 1050 IJ = 1,4
      II = IJ - 1
      IF (II .EQ. 0) II = 4
      IK = IJ + 1
      IF (IK .EQ. 5) IK = 1
C
      DO 1000 IR = 1,4
      IF (IJ .NE. IORDER(IR)) GO TO 1000
      IOJ = IR
      GO TO 1010
 1000 CONTINUE
 1010 DO 1020 IR = 1,4
      IF (IK .NE. IORDER(IR)) GO TO 1020
      IOK = IR
      GO TO 1030
 1020 CONTINUE
 1030 AA = SHP(IOJ)
      BB = SHP(IOK)
C
      DO 1040 IS = 1,3
      EDGSHR(IS,IJ) = (UEV(IS,IJ)+ANGLEI(IJ)*UEV(IS,II))*AA/
     1                (1.0-ANGLEI(IJ)*ANGLEI(IJ))
     2              + (UEV(IS,IJ)+ANGLEI(IK)*UEV(IS,IK))*BB/
     3                (1.0-ANGLEI(IK)*ANGLEI(IK))
 1040 CONTINUE
 1050 CONTINUE
C
      DO 1410 IZTA = 1,2
      ZETA = PTINT(IZTA)
      HZTA = ZETA/2.0
      IBOT = (IZTA-1)*ND2
C
C     SET THE PHIOUT POINTER
C
      ICOUNT = ICOUNT + 32 + NNODE + 8*NDOF
C
      PHIOUT(ICOUNT+1) = TH
C
C     STORE SHAPE FUNCTION VALUES IN PHIOUT
C
      DO 1060 I = 1,NNODE
      PHIOUT(ICOUNT+32+I) = SHP(I)
 1060 CONTINUE
C
C     STORE THE CORRECTION TO GBAR-MATRIX IN PHIOUT
C
      IG1 = ICOUNT + 10
      IG4 = 28
      DO 1070 IG = 1,9
      IG1 = IG1 + 1
      PHIOUT(IG1) = -GI(IG4)*ZETA*6.0
 1070 IG4 = IG4 + 1
C
C     STORE G3-MATRIX IN PHIOUT
C
      IPH = ICOUNT + 28
      PHIOUT(IPH+1) = TSMFY*GI(19)
      PHIOUT(IPH+2) = SQRT(TSMFX*TSMFY)*GI(20)
      PHIOUT(IPH+3) = SQRT(TSMFX*TSMFY)*GI(21)
      PHIOUT(IPH+4) = TSMFX*GI(22)
C
C     COMPUTE THE JACOBIAN AT THIS GAUSS POINT,
C     ITS INVERSE AND ITS DETERMINANT.
C
      CALL JACOBS (ELID,SHP,DSHP,GPTH,EGPDT,EPNORM,JACOB)
      IF (BADJAC) GO TO 1430
C
C     COMPUTE PSI TRANSPOSE X JACOBIAN INVERSE.
C     HERE IS THE PLACE WHERE THE INVERSE JACOBIAN IS FLAGED TO BE
C     TRANSPOSED BECAUSE OF OPPOSITE MATRIX LOADING CONVENTION BETWEEN
C     INVER AND GMMAT.
C
      CALL GMMATS (PSITRN,3,3,0, JACOB,3,3,1, PHI)
C
      CALL GMMATS (TEM,3,3,1, PSITRN,3,3,1, TMI)
C
C     STORE TMI-MATRIX IN PHIOUT
C
      IPH = ICOUNT + 20
      DO 1080 I = 1,9
      PHIOUT(IPH) = TMI(I)
 1080 IPH = IPH + 1
C
C     ARRAY ECPT(4) WHICH IS USED IN TRANSS CONSISTS OF THE C.S. ID
C     AND THE COORDINATES (IN BASIC C.S.) OF THE POINT FROM (OR TO)
C     WHICH THE TRANSFORMATION IS BEING PERFORMED. THE COORDINATES
C     ARE NOT USED IF THE DESIGNATED COORDINATE SYSTEM IS RECTANGULAR.
C
      DO 1100 I = 1,3
      GPC(I) = 0.0
      II = I + 1
      DO 1090 J = 1,NNODE
 1090 GPC(I) = GPC(I) + SHP(J)*(BGPDT(II,J) + HZTA*GPTH(J)*GPNORM(II,J))
 1100 ECPT(II) = GPC(I)
C
C     CALCULATIONS FOR TSE-MATRIX
C
      FLAGS = NEST(27)
      IF (FLAGS .EQ. 0) GO TO 1300
C
C     FLAGS IS 1, I.E. SCSID HAS BEEN SPECIFIED.
C     CALCULATE TBS-MATRIX (STRESS TO BASIC)
C
      SCSID = NEST(26)
      IF (SCSID .LE. 0) GO TO 1200
      NECPT(1) = SCSID
      CALL TRANSS (ECPT,TBS)
      GO TO 1220
 1200 DO 1210 I = 1,3
      II = (I-1)*3
      DO 1210 J = 1,3
      JJ = (J-1)*3
 1210 TSU(II+J) = TUB(I+JJ)
      GO TO 1230
C
C     MULTIPLY
C               T         T
C            TBS  AND  TUB  TO GET TSU-MATRIX (USER TO STRESS)
C
 1220 CALL GMMATS (TBS,3,3,1, TUB,3,3,1, TSU)
C
C     CALCULATE THETAS FROM THE PROJECTION OF THE X-AXIS OF THE
C     STRESS C.S. ON TO THE XY PLANE OF THE ELEMENT C.S.
C
 1230 CONTINUE
      XS = TSU(1)
      YS = TSU(2)
      IF (ABS(XS).GT.EPS1 .OR. ABS(YS).GT.EPS1) GO TO 1240
      NEST(2) = SCSID
      J = 233
      GO TO 1440
 1240 THETAS = ATAN2(YS,XS)
      GO TO 1310
C
C     FLAGS IS 0, I.E. THETAS HAS BEEN SPECIFIED.
C     SUBROUTINE ANGTRS RETURNS THE 3X3 TRANSFORMATION USING THETAS.
C     NOTE THAT IF THETAS IS LEFT BLANK (DEFAULT), THE TRANSFORMATION
C     WILL BE IDENTITY,  I.E. THE STRESSES WILL BE OUTPUT IN THE
C     ELEMENT COORDINATE SYSTEM.
C     IF Q4STRS IS SET EQUAL TO 1, STRESSES WILL BE OUTPUT IN THE E C.S.
C     WHICH COOINCIDES WITH MSC'S  VERSION OF ELEMENT COORDINATE SYSTEM.
C
 1300 THETAS = EST(26)*DEGRAD
 1310 IF (Q4STRS .EQ. 1) GO TO 1320
      CALL ANGTRS (THETAS,0,TSU)
      CALL GMMATS (TSU,3,3,0, TEU,3,3,1, TSE)
      GO TO 1330
 1320 CALL ANGTRS (THETAS,0,TSE)
C                                   T
C     CALCULATE  TSI  = TSE X PSITRN  AND STORE IT IN PHIOUT
C
 1330 CALL GMMATS (TSE,3,3,0, PSITRN,3,3,1, PHIOUT(ICOUNT+2))
C
C     FOR CORNER POINTS (THE STRESS EVALUATION POINTS EXCEPT FOR THE
C     ONES AT THE CENTER), CALCULATE TSB-MATRIX AND STORE IT IN IELOUT.
C
      IF (IXSI+IETA .GT. 4) GO TO 1340
      IP  = (IXSI-1)*2 + IETA
      IP1 = IPN(IP)
      IP2 = (IP1-1)*25 + 4 + (IZTA-1)*9
      CALL GMMATS (TSE,3,3,0, TEB,3,3,0, RELOUT(IP2))
 1340 CONTINUE
C
C     CALL Q4BMGS TO GET B MATRIX
C     SET THE ROW FLAG TO 3 TO CREATE THE FIRST 6 ROWS. THEN SET IT
C     TO 1 FOR THE LAST 2 ROWS.
C
      ROWFLG = 3
      CALL Q4BMGS (DSHP,GPTH,EGPDT,EPNORM,PHI,BMATRX(1))
      DO 1350 IX = 1,NDOF
 1350 BMATRX(IX+ND2) = XYBMAT(IBOT+IX)
C
      IF (.NOT.BENDNG) GO TO 1370
      ROWFLG = 1
      CALL Q4BMGS (DSHP,GPTH,EGPDT,EPNORM,PHI,BMATRX(1+ND6))
      DO 1360 IX = 1,NDOF
 1360 BMATRX(IX+ND5) = XYBMAT(IBOT+IX+NDOF)
 1370 CONTINUE
C
C
C     HERE WE SHIP OUT THE STRAIN RECOVERY MATRIX.
C     --------------------------------------------
C
      KCOUNT = ICOUNT + 32 + NNODE
      DO 1400 IPH = 1,ND8
 1400 PHIOUT(KCOUNT+IPH) = BMATRX(IPH)
 1410 CONTINUE
 1420 CONTINUE
      RETURN
C
 1430 NOGO = 1
      RETURN
C
 1440 CALL MESAGE (30,J,NAME)
      GO TO 1430
C
C     BEGINNING OF HEAT RECOVERY.
C
 1500 CONTINUE
      MATID    = NEST(13)
      INFLAG   = 2
      NPHI(22) = 2
      NPHI(23) = NNODE
      NPHI(24) = NAME(1)
      NPHI(25) = NAME(2)
      XI  = 0.0
      ETA = 0.0
      CALL Q4SHPS (XI,ETA,SHP,DSHP)
C
C     SORT THE SHAPE FUNCTIONS AND THEIR DERIVATIVES INTO SIL ORDER.
C
      DO 1510 I = 1,4
      TMPSHP(I  ) = SHP (I  )
      DSHPTP(I  ) = DSHP(I  )
 1510 DSHPTP(I+4) = DSHP(I+4)
      DO 1520 I = 1,4
      KK = IORDER(I)
      SHP (I  ) = TMPSHP(KK  )
      DSHP(I  ) = DSHPTP(KK  )
 1520 DSHP(I+4) = DSHPTP(KK+4)
C
      HZTA = 0.0
      CALL JACOBS (ELID,SHP,DSHP,GPTH,EGPDT,EPNORM,JACOBE)
      IF (BADJAC) GO TO 1430
C
      DO 1530 I = 2,4
      ECPT(I) = 0.0
      DO 1530 J = 1,NNODE
 1530 ECPT(I) = ECPT(I) + SHP(J)*BGPDT(I,J)
C
      FLAGS = NEST(27)
      IF (FLAGS .EQ. 0) GO TO 1580
      SCSID = NEST(26)
      IF (SCSID .LE. 0) GO TO 1540
      NECPT(1) = SCSID
      CALL TRANSS (ECPT,TBS)
      CALL GMMATS (TBS,3,3,1, TUB,3,3,1, TSU)
      GO TO 1560
 1540 DO 1550 I = 1,3
      II = (I-1)*3
      DO 1550 J = 1,3
      JJ = (J-1)*3
 1550 TSU(II+J) = TUB(I+JJ)
 1560 CONTINUE
      XS = TSU(1)
      YS = TSU(2)
      IF (ABS(XS).GT.EPS1 .OR. ABS(YS).GT.EPS1) GO TO 1570
      NEST(2) = SCSID
      J = 233
      GO TO 1440
 1570 THETAS = ATAN2(YS,XS)
      GO TO 1590
 1580 THETAS = EST(26)*DEGRAD
 1590 CALL ANGTRS (THETAS,0,TSU)
      SINMAT = 0.0
      COSMAT = 1.0
      CALL HMAT (ELID)
      PHIOUT(26) = KHEAT(1)
      PHIOUT(27) = KHEAT(2)
      PHIOUT(28) = KHEAT(2)
      PHIOUT(29) = KHEAT(3)
C
C     BRANCH IF THERMAL CONDUCTIVITY KHEAT IS ISOTROPIC.
C     OTHERWISE, FIND TBM, TBS AND TMS AND COMPUTE THE KHEAT
C     TENSOR IN 2-DIMENSIONAL STRESS COORDINATE SYSTEM.
C
C     COMMENTS FROM G.CHAN/UNISYS     10/88
C     HMAT ROUTINE DOES NOT RETURN 'TYPE' IN COSMIC NASTRAN
C     SO WE CAN ONLY ASSUME THERMAL CONDUCTIVITY IS ISOTROPIC AND
C     BRANCH TO 1610 UNCONDITIOANLLY BY SETTING TYPE =-1
C
                                                TYPE =-1
C
      IF (TYPE.EQ.4 .OR. TYPE.EQ.-1) GO TO 1610
      GO TO 290
 1600 CONTINUE
      CALL GMMATS (TUM,3,3,1, TSU,3,3,1, TMS)
      TMS(3) = TMS(4)
      TMS(4) = TMS(5)
      CALL GMMATS (TMS,2,2,1, PHIOUT(26),2,2,0, TUM)
      CALL GMMATS (TUM,2,2,0, TMS,2,2,0, PHIOUT(26))
 1610 CONTINUE
      CALL GMMATS (TEU,3,3,1, JACOBE,3,3,0, JACOBU)
      CALL GMMATS (TSU,3,3,0, JACOBU,3,3,0, JACBS)
      DO 1620 J = 1,NNODE
      DQ(J) = DSHP(J)
      JN = J + NNODE
      DQ(JN) = DSHP(J+4)
      JN = JN + NNODE
 1620 DQ(JN) = 0.0
      CALL GMMATS (JACBS,3,3,0, DQ,3,NNODE,0, PHIOUT(35))
      RETURN
C
 1700 FORMAT (A23,', QUAD4 ELEMENT HAS UNDEFINED THICKNESS.  ELEMENT',
     1       ' ID =',I8,', SIL ID =',I8)
 1710 FORMAT (A23,', MODULE SDR2 DETECTS BAD OR REVERSE GEOMETRY FOR ',
     1       'ELEMENT ID =',I8)
      END