1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
|
SUBROUTINE SQUD42
C
C PHASE 2 STRESS RECOVERY FOR 4-NODE ISOPARAMETRIC QUADRILATERAL
C SHELL ELEMENT (QUAD4)
C
C NOTE - FOR LAMINATED COMPOSITE ELEMENTS THE FOLLOWING ARE
C NOT SUPPORTED
C
C 1. VARIABLE GRID POINT THICKNESS
C 3. TEMPERATURE AT 'FIBRE' DISTANCE
C
C ALSO STRESSES ARE ONLY EVALUATED AT THE ELEMENT CENTRE
C AND SIMILARILY FOR STRESS RESULTANTS
C
C
C ALGORITHM -
C
C 1- STRAIN RECOVERY DATA IS SENT BY PHASE 1 THRU 'PHIOUT',
C WHICH INCLUDES ALL THE NECESSARY TRANSFORMATIONS AND
C STRAIN RECOVERY MATRICES. THE DATA IS REPEATED FOR EACH
C STRESS EVALUATION POINT.
C 2- GLOBAL DISPLACEMENT VECTOR ENTERS THE ROUTINE IN CORE.
C 3- BASED ON THE DATA IN /SDR2X4/, LOCATION OF THE GLOBAL
C DISPLACEMENT VECTOR FOR THE CURRENT SUBCASE IS DETERMINED.
C 4- WORD 132 OF /SDR2DE/ CONTAINS THE STRESS OUTPUT REQUEST
C OPTION FOR THE CURRENT SUBCASE.
C 5- ELEMENT/GRID POINT TEMPERATURE DATA ENTERS THE ROUTINE
C THRU /SDR2DE/ (POSITIONS 97-103, 104-129 NOT USED.)
C 6- ELEMENT STRAINS ARE CALCULATED, CORRECTED FOR THERMAL
C STRAINS, AND PREMULTIPLIED BY G-MATRIX.
C
EXTERNAL ANDF
LOGICAL EXTRM,LAYER,COMPOS,GRIDS,INTGS,MAXSH,VONMS,BENDNG,
1 TRNFLX,TEMPP1,TEMPP2,SNRVRX,SNRVRY,FOUR,PCMP,
2 PCMP1,PCMP2,DEBUG
CWKBNB NCL93012 3/94
LOGICAL OSTRAI
REAL EPSAVG(6)
CWKBNE NCL93012 3/94
INTEGER INTZ(1),IGRID(5),NPHI(2395),NSTRES(86),ELID,
1 KSIL(8),IORDER(8),CENTER,NFORS(46),EXTRNL,
CWKBR 3/95 SPR94017 2 INDXG2(3,3),INDX(6,3),OPRQST,FLAG,IPN(5),COMPS,
2 INDXG2(3,3),INDX(6,3),FLAG,IPN(5),COMPS,
3 OES1L,OEF1L,PCOMP,PCOMP1,PCOMP2,PIDLOC,SYM,SYMMEM,
4 SOUTI,FTHR,STRAIN,ELEMID,PLYID,ANDF,SDEST,FDEST
C 5, GPSTRS,INDEXU(3,3),INDEXV(2,3)
REAL MOMINR,KHIT,MINTR,TDELTA(6),DELTA(48),TSTB(5,5),
1 TSTT(5,5),TSTN(50),DELTAT(8),U(36),G(36),G2(9),
2 ALFAM(3),ALFAB(3),Z1(5),Z2(5),GPTH(4),STRES(86),
3 G3(4),TMI(9),TRANS(9),STRNT(3),STRNB(3),STRNTC(3),
4 STRNBC(3),EPST(3),EPSB(3),EPSE(3),EPSTOT(3),FB(2),
5 EPSLNE(3),STRESL(3),STRESE(3),EZEROT(6),ALPHA(3),
6 V(2),EI(2),ZBAR(2),TRNAR(2),TRNSHR(2),ULTSTN(6),
7 ABBD(6,6),STIFF(36),MTHER(6),DUMC(6),STEMP(8)
CHARACTER UFM*23,UWM*25
COMMON /XMSSG / UFM,UWM
COMMON /ZZZZZZ/ Z(1)
COMMON /SYSTEM/ KSYSTM(60)
COMMON /SDR2C1/ IPCMP,NPCMP,IPCMP1,NPCMP1,IPCMP2,NPCMP2,
1 NSTROP
COMMON /SDR2X2/ DUMM(30),OES1L,OEF1L
COMMON /SDR2X4/ DUMMY(35),IVEC,IVECN,LDTEMP
COMMON /SDR2X7/ PHIOUT(2395)
COMMON /SDR2X8/ SIGMA(3),ICOUNT,NSTOT,THIKNS(5),ISTRES,KPOINT,
1 EXTRNL(8),TSTR(50),XPOINT(2),SHPFNC(4),EPSLN(8),
2 KHIT(3),G2ALFB(30),TST(20),TES(9),TESU(9),TESV(4),
3 REALI(5),GT(36),EPSLNT(6),TSIGMA(8),SIGNX(4),
4 SIGNY(4),VXCNTR,VYCNTR,FXCNTR,FYCNTR,FXYCNT,
5 STRX(2),STRY(2),STRS(2),FORSUL(46)
COMMON /SDR2DE/ KSDRDE(141)
CWKBR NCL93012 3/94 COMMON /BLANK / APP(2),SORT2,IDUM(2),COMPS
COMMON /BLANK / APP(2),SORT2,IDUM(2),COMPS,SKP(4),OSTRAI
COMMON /CONDAS/ PI,TWOPI,RADDEG,DEGRAD
EQUIVALENCE (Z(1) ,INTZ(1) ), (NFORS(1) ,FORSUL(1) ),
1 (NPHI(1),PHIOUT(1) ), (NSTRES(1),STRES(1) ),
2 (ELID ,NPHI(1) ), (KSIL(1) ,NPHI(2) ),
3 (TSUB0 ,PHIOUT(18)), (IORDER(1),NPHI(10) ),
4 (AVGTHK ,PHIOUT(21)), (MOMINR ,PHIOUT(22)),
5 (G(1) ,PHIOUT(23)), (ALFAM(1) ,PHIOUT(59)),
6 (GPTH(1),PHIOUT(65)), (ALFAB(1) ,PHIOUT(62)),
7 (IPID ,NPHI(79) ), (KSTRS ,KSDRDE(42)),
8 (KFORCE ,KSDRDE(41)), (STEMP(1) ,KSDRDE(97)),
9 (SDEST ,KSDRDE(26)), (FDEST ,KSDRDE(33)),
O (NOUT ,KSYSTM(2) ), (STEMP(7) ,FLAG )
C 1, (INDEXU(1,1),INDEXV(1,1))
DATA DEBUG / .FALSE. /
DATA CENTER/ 4HCNTR /
DATA CONST / 0.57735026918962/
DATA EPSS / 1.0E-11 /
DATA EPSA / 1.0E-7 /
DATA IPN / 1,4,2,3,5/
DATA PCOMP / 0 /
DATA PCOMP1/ 1 /
DATA PCOMP2/ 2 /
DATA SYM / 1 /
DATA MEM / 2 /
DATA SYMMEM/ 3 /
DATA STRAIN/ 5 /
C
C DEFINE PHIOUT(2395), THE TRANSMITTED DATA BLOCK
C
C ADDRESS DESCRIPTIONS
C
C 1 ELID
C 2 - 9 SIL NUMBERS
C 10 - 17 IORDER
C 18 TREF
C 19 - 20 FIBRE DISTANCES Z1, Z2 AS SPECIFIED ON PSHELL CARD
C 21 AVGTHK- AVERAGE THICKNESS OF THE ELEMENT
C 22 MOMINR- MOMENT OF INERTIA FACTOR
C 23 - 58 GBAR-MATRIX, 6X6 MATRIX OF MATERIAL PROPERTY (W/O G3)
C 59 - 61 THERMAL EXPANSION COEFFICIENTS FOR MEMBRANE
C 62 - 64 THERMAL EXPANSION COEFFICIENTS FOR BENDING
C 65 - 68 CORNER NODE THICKNESSES
C 69 - 77 TUM-MATRIX, 3X3 TRANSFORMATION FROM MATERIAL TO USER
C DEFINED COORDINATE SYSTEM
C 78 OFFSET OF ELEMENT FROM GP PLANE
C 79 ORIGINAL PROPERTY ID FOR COMPOSITES
C 80 - 79+9*NNODE
C TEG-MATRIX, A 3X3 MATRIX FOR THE TRANSFORMATION
C MATRIX FROM GLOBAL COORD TO ELMT COORD FOR
C EACH NODE.
C TEG-MATRIX, 3X3 DATA ARE REPEATED FOR NNODES
C --------
C START FROM PHIOUT(79+9*NNODE+1) AS A REFERENCE ADDRESS
C 79+9*4 +1= 116
C
C ADDRESS DESCRIPTIONS
C
C 1 T, MEMBRANE THICKNESS AT THIS EVALUATION POINT
C 2 - 10 TES-MATRIX, A 3X3 TRANSFORMATION MATRIX FROM ELEM.
C C.S. TO USER DEFINED STRESS C.S. AT THIS
C EVALUATION POINT
C 11 - 19 CORRECTION TO GBAR-MATRIX FOR MEMBRANE-BENDING
C COUPLING AT THIS EVALUATION POINT
C 20 - 28 TMI-MATRIX, 3X3 TRANSFORMATION FROM TANGENT TO MATERIA
C 29 - 32 G3-MATRIX
C 33 - 32+NNODE
C ELEMENT SHAPE FUNCTION VALUES AT THIS EVAL. POINT
C 32+NNODE+1 -
C 32+NNODE+8*NDOF
C B-MATRIX, 8 X NDOF
C
C -------- ABOVE DATA BATCH REPEATED 10 TIMES
C
C TOTAL PHIOUT WORDS = (116-1) + (32+4+8*(6*4))*10
C = 115 + (32+4+192)*10 = 115 + 2280 = 2395
C
C
C DEFINE STRES (TOTAL OF 86 WORDS), THE STRESS OUTPUT DATA BLOCK
C
C ADDRESS DESCRIPTIONS
C
C 1 ELID
C -------------------------------------------------------
C 2 INTEGRATION POINT NUMBER
C 3 - 10 STRESSES FOR LOWER POINTS
C 11 - 18 STRESSES FOR UPPER POINTS
C --------- ABOVE DATA REPEATED 4 TIMES
C 70 - 86 STRESSES FOR CENTER POINT
C
C DEFINE FORSUL (TOTAL OF 46 WORDS), THE FORCE RESULTANT OUTPUT
C DATA BLOCK.
C
C ADDRESS DESCRIPTIONS
C
C 1 ELID
C ------------------------------------------------
C 2 GRID POINT NUMBER
C 3 - 10 FORCES
C -------- ABOVE DATA REPEATED 4 TIMES
C 38 - 46 FORCES FOR CENTER POINT
C
C NSTOT = NUMBER OF DATA OUTPUT THRU 'STRES'
C NFORCE = NUMBER OF DATA OUTPUT THRU 'FORSUL'
C NNODE = TOTAL NUMBER OF NODES
C NDOF = TOTAL NUMBER OF DEGREES OF FREEDOM
C LDTEMP = SWITCH TO DETERMINE IF THERMAL EFFECTS ARE PRESENT
C ICOUNT = POINTER FOR PHIOUT DATA
C
C STAGE 1 - INITIALIZATION
C =========================
C
CWKBNB 3/95 SPR94017
DO 5 I = 1,6
EPSAVG( I ) = 0.
5 CONTINUE
CWKBNE 3/95 SPR94017
NSTOT = 1 + 5 + 5*2*8
NFORCE= 1 + 5*9
NNODE = 0
DO 10 ICHK = 1,8
IF (KSIL(ICHK) .GT. 0) NNODE = NNODE + 1
10 EXTRNL(ICHK) = 0
NDOF = 6*NNODE
FOUR = NNODE .EQ. 4
C
C COMMENTS FROM G.C. 2/1990
C EXTRNL ARE SET TO ZEROS ABOVE AND NEVER SET TO ANY VALUE LATER.
C IT IS THEN USED TO SET IGRID. WHAT'S EXTRNL FOR?
C THE ANSWER IS THAT EXTRNL AND IGRID ARE USED ONLY WHEN GRIDS FLAG
C IS TRUE. GRIDS IS FALSE IN COSMIC VERSION.
C
C ALSO, A MISSING ROUTINE, FNDGID, SUPPOSELY RETURNS EXTERNAL GRID
C NUMBER FROM SIL INDEX. FNDGID IS LOCATED A FEW LINES BELOW 80
C
C CHECK THE OUTPUT AND STRESS REQUEST
C
GRIDS = .FALSE.
INTGS = .TRUE.
MAXSH = ANDF(NSTROP,1) .EQ. 0
VONMS = ANDF(NSTROP,1) .NE. 0
EXTRM = ANDF(NSTROP,2) .EQ. 0
LAYER = ANDF(NSTROP,2) .NE. 0
BENDNG= MOMINR .GT. 0.0
C
C NOTE - MAXSH AND EXTRM ARE NO LONGER USED
C
C IF LAYERED STRESS/STARIN OUTPUT IS REQUESTED, AND THERE ARE NO
C LAYERED COMPOSITE DATA, SET LAYER FLAG TO FALSE
C
IF (LAYER .AND. NPCMP+NPCMP1+NPCMP2.LE.0) LAYER = .FALSE.
C
C IF LAYERED OUTPUT IS REQUESTED BUT THE CURRENT ELEMENT IS NOT A
C LAYERED COMPOSITE, SET LAYER FLAG TO FALSE
C
IF (LAYER .AND. IPID.LT.0) LAYER = .FALSE.
C
CWKBDB 3/95 SPR94017
C OPRQST = -2
C IF (KSTRS .EQ. 1) OPRQST = OPRQST + 1
C IF (KFORCE .EQ. 1) OPRQST = OPRQST + 2
CWKBI NCL93012 3/94
C IF ( OSTRAI ) OPRQST = OPRQST + 1
C IF (OPRQST .EQ.-2) RETURN
CWKBDE 3/95 SPR94017
CWKBI 3/95 SPR94017
IF ( ( KSTRS .NE. 1 ) .AND.
& ( KFORCE .NE. 1 ) .AND.
& (.NOT.OSTRAI) )RETURN
C
C CHECK FOR FIBRE DISTANCES Z1 AND Z2 BEING BLANK
C
LOGZ12 = -4
IF (NPHI(19) .EQ. 0) LOGZ12 = LOGZ12 + 2
IF (NPHI(20) .EQ. 0) LOGZ12 = LOGZ12 + 4
C
C CHECK FOR THE TYPE OF TEMPERATURE DATA
C NOTES 1- TYPE TEMPP1 ALSO INCLUDES TYPE TEMPP3
C 2- IF NIETHER TYPE IS TRUE, GRID POINT TEMPERATURES
C ARE PRESENT.
C
TEMPP1 = FLAG .EQ. 13
TEMPP2 = FLAG .EQ. 2
C
C CHECK FOR OFFSET AND COMPOSITES
C
OFFSET = PHIOUT(78)
COMPOS = COMPS.EQ.-1 .AND. IPID.GT.0
C
C ZERO OUT STRESS AND FORCE RESULTANT ARRAYS
C
DO 20 K = 1,NSTOT
20 STRES(K) = 0.0
DO 30 I = 1,NFORCE
30 FORSUL(I)= 0.0
NSTRES(1)= ELID
NFORS(1) = ELID
C
C ZERO OUT THE COPY OF GBAR-MATRIX TO BE USED BY THIS ROUTINE
C
DO 40 K = 1,36
40 GT(K) = 0.0
C
C STAGE 2 - ARRANGEMENT OF INCOMING DATA
C ======================================
C
C SORT THE GRID TEMPERATURE CHANGES INTO SIL ORDER (IF PRESENT)
C
IF (LDTEMP .EQ. -1) GO TO 60
IF (TEMPP1 .OR. TEMPP2) GO TO 60
C
C DO 50 K = 1,NNODE
C KPOINT = IORDER(K)
C 50 DELTAT(K) = STEMP(KPOINT)
C
C COMMENTS FORM G.CHAN/UNISYS 2/93
C THE ABOVE DO 50 LOOP DOES NOT WORK SINCE STEMP(2 THRU NNODE) = 0.0
C
DO 50 K = 1,NNODE
50 DELTAT(K) = STEMP(1)
C
C PICK UP THE GLOBAL DISPLACEMENT VECTOR AND TRANSFORM IT
C INTO THE ELEMENT C.S.
C
60 DO 80 IDELT = 1,NNODE
JDELT = IVEC + KSIL(IDELT) - 2
KDELT = 6*(IDELT-1)
DO 70 LDELT = 1,6
TDELTA(LDELT) = Z(JDELT+LDELT)
70 CONTINUE
C
C FETCH TEG-MATRIX 3X3 FOR EACH NODE AND LOAD IT IN A 6X6 MATRIX
C INCLUDE THE EFFECTS OF OFFSET
C
CALL TLDRS (OFFSET,IDELT,PHIOUT(80),U)
CALL GMMATS (U,6,6,0, TDELTA,6,1,0, DELTA(KDELT+1))
80 CONTINUE
C
C GET THE EXTERNAL GRID POINT ID NUMBERS FOR CORRESPONDING SIL
C NUMBERS.
C
C CALL FNDGID (ELID,8,KSIL,EXTRNL)
C
C STAGE 3 - CALCULATION OF STRAINS
C ================================
C
C INTEGRATION DATA IN PHIOUT IS ARRANGED IN ETA, XI INCREASING
C SEQUENCE.
C
ISIG = 1
ICOUNT= -(8*NDOF+NNODE+32) + 79 + 9*NNODE
C
DO 350 INPLAN = 1,5
INPLN1 = IPN(INPLAN)
C
C MATCH GRID ID NUMBER WHICH IS IN SIL ORDER
C
IF (INPLAN .EQ. 5) GO TO 100
DO 90 I = 1,NNODE
IF (IORDER(I) .NE. INPLN1) GO TO 90
IGRID(INPLAN) = EXTRNL(I)
GO TO 110
90 CONTINUE
GO TO 110
C
100 IGRID(INPLAN) = CENTER
110 CONTINUE
C
DO 340 IZTA = 1,2
ZETA = (IZTA*2-3)*CONST
C
ICOUNT = ICOUNT + 8*NDOF + NNODE + 32
IF (IZTA .EQ. 2) GO TO 160
C
C THICKNESS AND MOMENT OF INERTIA AT THIS POINT
C
THIKNS(INPLAN) = PHIOUT(ICOUNT+1)
IF (GRIDS .AND. INPLAN.NE.5) THIKNS(INPLAN) = GPTH(INPLN1)
REALI(INPLAN) = MOMINR*THIKNS(INPLAN)**3/12.0
C
C DETERMINE FIBER DISTANCE VALUES
C
IF (LOGZ12 .EQ. -4) GO TO 150
IF (LOGZ12) 120,130,140
C
120 Z1(INPLAN) = -0.5*THIKNS(INPLAN)
Z2(INPLAN) = PHIOUT(20)
GO TO 160
C
130 Z1(INPLAN) = PHIOUT(19)
Z2(INPLAN) = 0.5*THIKNS(INPLAN)
GO TO 160
C
140 Z1(INPLAN) = -0.5*THIKNS(INPLAN)
Z2(INPLAN) = -Z1(INPLAN)
GO TO 160
C
150 Z1(INPLAN) = PHIOUT(19)
Z2(INPLAN) = PHIOUT(20)
160 CONTINUE
C
C FIRST COMPUTE LOCAL STRAINS UNCORRECTED FOR THERMAL STRAINS
C AT THIS EVALUATION POINT.
C
C EPSLN = PHIOUT(KSIG) * DELTA
C EPS = B * U
C 8X1 8XNDOF NDOFX1
C
KSIG = ICOUNT+NNODE+33
CALL GMMATS (PHIOUT(KSIG),8,NDOF,0, DELTA(1),NDOF,1,0, EPSLN)
C
C CALCULATE THERMAL STRAINS IF TEMPERATURES ARE PRESENT
C
IF (LDTEMP .EQ. -1) GO TO 260
DO 170 IET = 1,6
170 EPSLNT(IET) = 0.0
C
C A) MEMBRANE STRAINS
C
IF (TEMPP1 .OR. TEMPP2) GO TO 190
C
C GRID TEMPERATURES
C
KSHP = ICOUNT + 32
TBAR = 0.0
DO 180 ISH = 1,NNODE
KSH = KSHP + ISH
180 TBAR = TBAR + PHIOUT(KSH)*DELTAT(ISH)
TMEAN= TBAR
GO TO 200
C
C ELEMENT TEMPERATURES
C
190 TBAR = STEMP(1)
200 TBAR = TBAR - TSUB0
DO 210 IEPS = 1,3
210 EPSLNT(IEPS) = -TBAR*ALFAM(IEPS)
C
C B) BENDING STRAINS (ELEMENT TEMPERATURES ONLY)
C
IF (.NOT.BENDNG) GO TO 260
IF (.NOT.(TEMPP1 .OR. TEMPP2)) GO TO 260
C
C EXTRACT G2-MATRIX FROM GBAR-MATRIX AND CORRECT IT FOR COUPLING
C
IG21 = 0
DO 220 IG2 = 1,3
IG22 = (IG2-1)*6 + 21
DO 220 JG2 = 1,3
IG21 = IG21 + 1
JG22 = JG2 + IG22
220 G2(IG21) = G(JG22) + PHIOUT(ICOUNT+10+IG21)
C
IG2AB = (ISIG*3)/5 + 1
CALL GMMATS (G2,3,3,0, ALFAB,3,1,0, G2ALFB(IG2AB))
C
IF (TEMPP1) GO TO 240
CALL INVERS (3,G2,3,GDUM,0,DETG2,ISNGG2,INDXG2)
CALL GMMATS (G2,3,3,0, STEMP(2),3,1,0, KHIT)
DO 230 IEPS = 4,6
230 EPSLNT(IEPS) = KHIT(IEPS-3)*ZETA*THIKNS(INPLAN)/(2.*REALI(INPLAN))
GO TO 260
C
240 TPRIME = STEMP(2)
DO 250 IEPS = 4,6
250 EPSLNT(IEPS) = -TPRIME*ALFAB(IEPS-3)*ZETA*THIKNS(INPLAN)/2.
C
C MODIFY GBAR-MATRIX
C
260 I1 = -6
I2 = 12
I3 = 11 + ICOUNT
DO 270 I = 1,3
I1 = I1 + 6
I2 = I2 + 6
DO 270 J = 1,3
J1 = J + I1
J3 = J1 + 3
J4 = J + I2
J2 = J4 + 3
GT(J1) = G(J1)
GT(J2) = G(J2)
GT(J3) = G(J3) + PHIOUT(I3)
GT(J4) = G(J4) + PHIOUT(I3)
270 I3 = I3 + 1
C
C DETERMINE G MATRIX FOR THIS EVALUATION POINT
C
DO 280 I = 1,4
280 G3(I) = PHIOUT(ICOUNT+28+I)
C
IF (LDTEMP .EQ. -1) GO TO 300
C
C CORRECT STRAINS FOR THERMAL EFFECTS
C
DO 290 I = 1,6
290 EPSLN(I) = EPSLN(I) + EPSLNT(I)
C
C CALCULATE STRESS VECTOR
C
300 CALL GMMATS (GT(1),6,6,0, EPSLN(1),6,1,0, TSIGMA(1))
CALL GMMATS (G3(1),2,2,0, EPSLN(7),2,1,0, TSIGMA(7))
CWKBNB NCL93012 3/94
IF ( IZTA .NE. 1 ) GO TO 303
DO 301 IAV = 1, 3
EPSAVG(IAV) = EPSAVG(IAV) + EPSLN(IAV)
301 CONTINUE
DO 302 IAV = 4, 6
EPSAVG(IAV) = EPSAVG(IAV) + EPSLN(IAV) / CONST
302 CONTINUE
303 CONTINUE
CWKBNE NCL93012 3/94
IF (.NOT.BENDNG) GO TO 320
C
C COMBINE STRESSES ONLY IF 'BENDING'
C
DO 310 I = 1,3
310 TSIGMA(I) = TSIGMA(I+3)
C
320 CONTINUE
C
C TRANSFORM STRESSES FROM ELEMENT TO STRESS C.S.
C
DO 330 I = 1,9
330 TES(I) = PHIOUT(ICOUNT+1+I)
C
TESU(1) = TES(1)*TES(1)
TESU(2) = TES(4)*TES(4)
TESU(3) = TES(1)*TES(4)
TESU(4) = TES(2)*TES(2)
TESU(5) = TES(5)*TES(5)
TESU(6) = TES(2)*TES(5)
TESU(7) = TES(1)*TES(2)*2.0
TESU(8) = TES(4)*TES(5)*2.0
TESU(9) = TES(1)*TES(5) + TES(2)*TES(4)
C
CALL GMMATS (TESU(1),3,3,1, TSIGMA(1),3,1,0, TSTR(ISIG))
C
TESV(1) = TES(5)*TES(9) + TES(6)*TES(8)
TESV(2) = TES(2)*TES(9) + TES(8)*TES(3)
TESV(3) = TES(4)*TES(9) + TES(7)*TES(6)
TESV(4) = TES(1)*TES(9) + TES(3)*TES(7)
C
ISIG = ISIG + 3
CALL GMMATS (TESV(1),2,2,1, TSIGMA(7),2,1,0, TSTR(ISIG))
C
340 ISIG = ISIG + 2
350 CONTINUE
C
C IF REQUIRED, EXTRAPOLATE STRESSES FROM INTEGRATION POINTS
C TO CORNER POINTS.
C
C FIRST EXTRAPOLATE ACROSS ZETA, REGARDLESS OF INPLANE REQUEST
C
DO 370 IKK = 1,5
ITB = (IKK-1)*10
DO 360 IJJ = 1,5
TSTB(IKK,IJJ) = TSTR(ITB+ IJJ)
TSTT(IKK,IJJ) = TSTR(ITB+5+IJJ)
360 CONTINUE
370 CONTINUE
C
X1 = -CONST
X2 = -X1
C
DO 380 K = 1,2
IK = 0
XX = -1.0
IF (K .EQ. 2) XX =-XX
IF (K .EQ. 2) IK = 5
C
XN22 = (XX-X1)/(X2-X1)
XN11 = 1.0 - XN22
C
DO 380 I = 1,5
IKKN = (I-1)*10 + IK
DO 380 J = 1,5
380 TSTN(IKKN+J) = TSTB(I,J)*XN11 + TSTT(I,J)*XN22
C
DO 390 II = 1,50
390 TSTR(II) = TSTN(II)
C
IF (INTGS .OR. COMPOS) GO TO 540
C
IXTR = 5
JXTR = IXTR*4
C
IZ1 = 0
DO 530 IZ = 1,2
C
DO 400 I = 1,JXTR
400 TST(I) = 0.0
C
C FOR THE SAKE OF COMPATIBILITY BETWEEN THE CONVENTION FOR
C SHEAR FORCES, AND THE CONVENTION FOR EXTRAPOLATION, WE MAY
C HAVE TO CHANGE THE SIGNS AROUND FOR SPECIFIC POINTS. THEY
C WILL BE RETURNED TO THE ORIGINAL SIGNS AFTER EXTRAPOLATION IS
C COMPLETE.
C
CWKBR 3/95 SPR94017 IF (OPRQST .LT. 0) GO TO 460
IF ( KFORCE .NE. 1 ) GO TO 460
DO 440 I = 1,4
J = (I-1)*2*IXTR + IZ1 + 4
IF (TSTR(J) .EQ. 0.0) GO TO 410
SIGNY(I) = TSTR(J)/ABS(TSTR(J))
GO TO 420
410 SIGNY(I) = 0.0
420 IF (TSTR(J+1) .EQ. 0.0) GO TO 430
SIGNX(I) = TSTR(J+1)/ABS(TSTR(J+1))
GO TO 440
430 SIGNX(I) = 0.0
440 CONTINUE
C
SNRVRY = .FALSE.
IF (SIGNY(1)*SIGNY(2).LE.0.0 .OR. SIGNY(3)*SIGNY(4).LE.0.0 .OR.
1 SIGNY(3)*SIGNY(1).LE.0.0) SNRVRY = .TRUE.
SNRVRX = .FALSE.
IF (SIGNX(1)*SIGNX(2).LE.0.0 .OR. SIGNX(3)*SIGNX(4).LE.0.0 .OR.
1 SIGNX(3)*SIGNX(1).LE.0.0) SNRVRX = .TRUE.
C
IF (.NOT.SNRVRY) GO TO 450
TSTR(IZ1+4) = -TSTR(IZ1+4)
TSTR(IZ1+4+4*IXTR) = -TSTR(IZ1+4+4*IXTR)
450 IF (.NOT.SNRVRX) GO TO 460
TSTR(IZ1+5) = -TSTR(IZ1+5)
TSTR(IZ1+5+2*IXTR) = -TSTR(IZ1+5+2*IXTR)
460 CONTINUE
C
XPOINT(1) = -1.0
XPOINT(2) = +1.0
IR = 0
C
DO 490 IX = 1,2
XI = XPOINT(IX)
C
DO 490 IE = 1,2
ETA = XPOINT(IE)
C
SHPFNC(1) = 0.75*(CONST-XI)*(CONST-ETA)
SHPFNC(2) = 0.75*(CONST-XI)*(CONST+ETA)
SHPFNC(3) = 0.75*(CONST+XI)*(CONST-ETA)
SHPFNC(4) = 0.75*(CONST+XI)*(CONST+ETA)
C
LI = IR*IXTR
IR = IR + 1
C
DO 480 IS = 1,4
LK = (IS-1)*2*IXTR + IZ1
C
DO 470 IT = 1,IXTR
TST(LI+IT) = TST(LI+IT) + SHPFNC(IS)*TSTR(LK+IT)
470 CONTINUE
480 CONTINUE
490 CONTINUE
C
J1 = 0
DO 500 IS = 1,4
J2 = (IS-1)*2*IXTR + IZ1
DO 500 JS = 1,IXTR
J1 = J1 + 1
J2 = J2 + 1
500 TSTR(J2) = TST(J1)
C
C CHANGE THE SIGNS BACK, IF NECESSARY
C
CWKBR 3/95 SPR94017 IF (OPRQST .LT. 0) GO TO 520
IF ( KFORCE .NE. 1 ) GO TO 520
IF (.NOT.SNRVRY) GO TO 510
TSTR(IZ1+4) = -TSTR(IZ1+4)
TSTR(IZ1+4+4*IXTR) = -TSTR(IZ1+4+4*IXTR)
510 IF (.NOT.SNRVRX) GO TO 520
TSTR(IZ1+5) = -TSTR(IZ1+5)
TSTR(IZ1+5+2*IXTR) = -TSTR(IZ1+5+2*IXTR)
520 CONTINUE
530 IZ1 = IZ1 + IXTR
540 CONTINUE
C
C STAGE 4 - CALCULATION OF OUTPUT STRESSES
C ========================================
C
CWKBR 3/95 SPR94017 IF (OPRQST .EQ. 0) GO TO 740
IF ( (KSTRS .NE. 1) .AND. (.NOT. OSTRAI) ) GO TO 740
C
CWKBNB NCL93012 3/94
DO 731 IAV = 1, 3
EPSAVG(IAV) = EPSAVG(IAV) / 5.
731 CONTINUE
DO 732 IAV = 4, 6
EPSAVG(IAV) = EPSAVG(IAV) / ( 5. * PHIOUT(21)/2. )
732 CONTINUE
CWKBNE NCL93012 3/94
ISIG = 0
IG2A = 0
STRX(1) = 0.0
STRX(2) = 0.0
STRY(1) = 0.0
STRY(2) = 0.0
STRS(1) = 0.0
STRS(2) = 0.0
DO 730 INPLAN = 1,5
INPLN1 = INPLAN
IF (INPLAN .EQ. 2) INPLN1 = 4
IF (INPLAN .EQ. 3) INPLN1 = 2
IF (INPLAN .EQ. 4) INPLN1 = 3
C
ISTRES = (INPLN1-1)*17 + 2
C
IDPONT = IGRID(INPLAN)
IF (INTGS) IDPONT = INPLN1
IF (INTGS .AND. INPLAN.EQ.5) IDPONT = CENTER
NSTRES(ISTRES) = IDPONT
THICK = THIKNS(INPLAN)
C
DO 720 IZ = 1,2
IF (IZ .EQ. 2) ISTRES = ISTRES + 8
FIBRE = Z1(INPLAN)
IF (IZ .EQ. 2) FIBRE = Z2(INPLAN)
CWKBNB NCL93012 3/94
IF ( .NOT. OSTRAI ) GO TO 545
IF ( IZ .NE. 1 ) GO TO 542
NSTRES( ISTRES+1 ) = 0
SIGMA( 1 ) = EPSAVG( 1 )
SIGMA( 2 ) = EPSAVG( 2 )
SIGMA( 3 ) = EPSAVG( 3 )
GO TO 630
542 CONTINUE
NSTRES( ISTRES+1 ) = -1
SIGMA( 1 ) = EPSAVG( 4 )
SIGMA( 2 ) = EPSAVG( 5 )
SIGMA( 3 ) = EPSAVG( 6 )
GO TO 630
545 CONTINUE
CWKBNE NCL93012 3/94
STRES(ISTRES+1) = FIBRE
C
C EVALUATE STRESSES AT THIS FIBRE DISTANCE
C
DO 550 I = 1,3
SIGMA(I) = (0.5-FIBRE/THICK)*TSTR(ISIG+I) + (0.5+FIBRE/THICK)
1 *TSTR(ISIG+I+5)
550 CONTINUE
C
C IF TEMPERATURES ARE PRESENT, CORRECT STRESSES FOR THERMAL
C STRESSES ASSOCIATED WITH THE DATA RELATED TO FIBRE DISTANCES.
C
IF (LDTEMP .EQ. -1) GO TO 610
C
C IF NO BENDING, TREAT IT LIKE GRID POINT TEMPERATURES
C
IF (.NOT.BENDNG) GO TO 610
IF (TEMPP1) GO TO 560
IF (TEMPP2) GO TO 570
GO TO 610
C
560 TSUBI = STEMP(2+IZ)
IF (ABS(TSUBI) .LT. EPSS) GO TO 610
TSUBI = TSUBI - TPRIME*FIBRE
GO TO 590
C
570 TSUBI = STEMP(4+IZ)
IF (ABS(TSUBI) .LT. EPSS) GO TO 610
DO 580 IST = 1,3
580 SIGMA(IST) = SIGMA(IST) - STEMP(IST+1)*FIBRE/REALI(INPLAN)
590 TSUBI = TSUBI - TBAR
DO 600 ITS = 1,3
SIGMA(ITS) = SIGMA(ITS) - TSUBI*G2ALFB(IG2A+ITS)
600 CONTINUE
C
C AVERAGE THE VALUES FROM OTHER 4 POINTS FOR THE CENTER POINT
C
610 IF (INPLAN .EQ. 5) GO TO 620
STRX(IZ) = STRX(IZ) + 0.25*SIGMA(1)
STRY(IZ) = STRY(IZ) + 0.25*SIGMA(2)
STRS(IZ) = STRS(IZ) + 0.25*SIGMA(3)
GO TO 630
620 SIGMA(1) = STRX(IZ)
SIGMA(2) = STRY(IZ)
SIGMA(3) = STRS(IZ)
630 DO 640 IS = 1,3
640 STRES(ISTRES+1+IS) = SIGMA(IS)
C
C CALCULATE PRINCIPAL STRESSES
C
SIGAVG = 0.5*(SIGMA(1) + SIGMA(2))
PROJ = 0.5*(SIGMA(1) - SIGMA(2))
TAUMAX = PROJ*PROJ + SIGMA(3)*SIGMA(3)
CWKBNB 7/94 SPR94004
IF ( .NOT. OSTRAI ) GO TO 645
TAUMAX = PROJ*PROJ + SIGMA(3)*SIGMA(3)/4.
GO TO 649
645 CONTINUE
CWKBNE 7/94 SPR94004
IF (ABS(TAUMAX) .LE. EPSS) GO TO 650
CWKBI 7/94 SPR94004
649 CONTINUE
TAUMAX = SQRT(TAUMAX)
GO TO 660
650 TAUMAX = 0.0
C
C PRINCIPAL ANGLE
C
660 TXY2 = SIGMA(3)*2.0
PROJ = PROJ*2.0
IF (ABS(TXY2).LE.EPSA .AND. ABS(PROJ).LE.EPSA) GO TO 670
STRES(ISTRES+5) = 28.647890*ATAN2(TXY2,PROJ)
GO TO 680
670 STRES(ISTRES+5) = 0.0
680 SIGMA1 = SIGAVG + TAUMAX
SIGMA2 = SIGAVG - TAUMAX
STRES(ISTRES+6) = SIGMA1
STRES(ISTRES+7) = SIGMA2
C
C OUTPUT VON MISES YIELD STRESS IF ASKED FOR BY THE USER
C
IF (VONMS) GO TO 690
STRES(ISTRES+8) = TAUMAX
CWKBI NCL93012 3/94
IF ( OSTRAI ) STRES(ISTRES+8) = 2.*TAUMAX
GO TO 720
C
690 SIGYP = SIGMA1*SIGMA1 + SIGMA2*SIGMA2 - SIGMA1*SIGMA2
IF (ABS(SIGYP) .LE. EPSS) GO TO 700
SIGYP = SQRT(SIGYP)
GO TO 710
700 SIGYP = 0.0
710 STRES(ISTRES+8) = SIGYP
C
720 IG2A = IG2A + 3
730 ISIG = ISIG + 10
CWKBNB NCL93012 3/94
DO 733 IAV = 1, 6
EPSAVG( IAV ) = 0.
733 CONTINUE
CWKBNE NCL93012 3/94
C
C STAGE 5 - ELEMENT FORCE OUTPUT
C ==============================
C
740 IF (LAYER) GO TO 750
CWKBR 3/95 SPR94017 IF (OPRQST .LT. 0) GO TO 790
IF ( KFORCE .NE. 1 ) GO TO 790
C
750 CONTINUE
ISIG = 0
VXCNTR = 0.0
VYCNTR = 0.0
FXCNTR = 0.0
FYCNTR = 0.0
FXYCNT = 0.0
DO 780 INPLAN = 1,5
INPLN1 = INPLAN
IF (INPLAN .EQ. 2) INPLN1 = 4
IF (INPLAN .EQ. 3) INPLN1 = 2
IF (INPLAN .EQ. 4) INPLN1 = 3
THICK = THIKNS(INPLAN)
C
IFORCE = (INPLN1-1)*9 + 2
C
IDPONT = IGRID(INPLAN)
IF (INTGS) IDPONT = INPLN1
IF (INTGS .AND. INPLAN.EQ.5) IDPONT = CENTER
NFORS(IFORCE) = IDPONT
C
C CALCULATE FORCES AT MID-SURFACE LEVEL
C
DO 760 IFOR = 1,3
FORSUL(IFORCE+IFOR )=(TSTR(ISIG+IFOR)+TSTR(ISIG+IFOR+5))*THICK/2.
FORSUL(IFORCE+IFOR+3)=(TSTR(ISIG+IFOR)-TSTR(ISIG+IFOR+5))*
1 REALI(INPLAN)/THICK
760 CONTINUE
C
C INTERCHANGE 7 AND 8 POSITIONS TO BE COMPATIBLE WITH THE
C OUTPUT FORMAT OF VX AND VY (WE HAVE CALCULATED VY AND VX)
C
IF (INPLAN .EQ. 5) GO TO 770
FORSUL(IFORCE+7) = (TSTR(ISIG+5) + TSTR(ISIG+10))*THICK*0.5
FORSUL(IFORCE+8) = (TSTR(ISIG+4) + TSTR(ISIG+ 9))*THICK*0.5
C
C SUBSTITUTE THE AVERAGE OF CORNER (OR INTEGRATION) POINT
C MEMBRANE AND SHEAR FORCES FOR THE CENTER POINT
C
FXCNTR = FXCNTR + FORSUL(IFORCE+1)*0.25
FYCNTR = FYCNTR + FORSUL(IFORCE+2)*0.25
FXYCNT = FXYCNT + FORSUL(IFORCE+3)*0.25
VXCNTR = VXCNTR + FORSUL(IFORCE+7)*0.25
VYCNTR = VYCNTR + FORSUL(IFORCE+8)*0.25
GO TO 780
770 CONTINUE
FORSUL(IFORCE+1) = FXCNTR
FORSUL(IFORCE+2) = FYCNTR
FORSUL(IFORCE+3) = FXYCNT
FORSUL(IFORCE+7) = VXCNTR
FORSUL(IFORCE+8) = VYCNTR
C
780 ISIG = ISIG + 10
C
C DO NOT WRITE TO PHIOUT IF LAYER STRESSES ARE REQUESTED
C BECAUSE PHIOUT NEEDS TO BE INTACT
IF (LAYER) GO TO 900
C
C STAGE 7 - SHIPPING OF NORMAL STRESSES
C =====================================
C
C STORE THE STRESSES WHERE THE HIGHER LEVEL ROUTINES EXPECT
C TO FIND THEM.
C BUT FIRST, MOVE THE CENTER POINT STRESSES TO THE TOP.
C
CWKBR 3/95 SPR94017 IF (OPRQST .EQ. 0) GO TO 840
IF ( (KSTRS .NE. 1) .AND. (.NOT.OSTRAI) ) GO TO 840
790 NPHI(101) = NSTRES(1)
DO 800 I = 3,18
I99 = I + 99
800 NPHI(I99) = NSTRES(I+68)
C
C DEBUG PRINTOUT
C
IF (DEBUG) WRITE (NOUT,810) (STRES(I),I=71,86)
810 FORMAT (' SQUD42 - STRESSES', (/1X,8E13.5))
C
DO 830 I = 19,86
I99 = I + 99
830 NPHI(I99) = NSTRES(I-17)
C
C STORE FORCES IN THEIR APPROPRIATE LOCATION
C
CWKBR 3/95 SPR94017 IF (OPRQST .LT. 0) RETURN
IF ( KFORCE .NE. 1 ) RETURN
840 NPHI(201) = NFORS(1)
DO 850 I = 3,10
I199 = I + 199
850 NPHI(I199) = NFORS(I+36)
C
C DEBUG PRINTOUT
C
IF (DEBUG) WRITE (NOUT,860) (FORSUL(I),I=39,46)
860 FORMAT (' SQUD42 - FORCES', (/1X,8E13.5))
C
DO 870 I = 11,46
I199 = I + 199
870 NPHI(I199) = NFORS(I-9)
C
C PROCESSING FOR NORMAL STRESS REQUEST COMPLETED
C
GO TO 2100
C
C ELEMENT LAYER STRESS CALCULATION
C
C CHECK STRESS AND FORCE OUTPUT REQUEST
C
900 IF ((KFORCE.NE.0 .OR. KSTRS.NE.0) .AND. .NOT.COMPOS) GO TO 2220
C
C WRITE FORCE RESULTANTS TO OEF1L IF REQUESTED
C 1. 10*ELEMENT ID + DEVICE CODE (FDEST)
C 2-9. FORCE RESULTANTS
C FX, FY, FXY, MX, MY, MXY, VX, VY
C
IF (KFORCE .EQ. 0) GO TO 910
ELEMID = 10*ELID + FDEST
IF (LDTEMP .NE. -1) GO TO 910
CALL WRITE (OEF1L,ELEMID,1,0)
CALL WRITE (OEF1L,FORSUL(39),8,0)
C
910 IF (KSTRS.EQ.0 .AND. LDTEMP.EQ.-1) RETURN
ELEMID = 10*ELID + SDEST
C
C LOCATE PID BY CARRYING OUT A SEQUENTIAL SEARCH
C OF THE PCOMPS DATA BLOCK, AND ALSO DETERMINE
C THE TYPE OF 'PCOMP' BULK DATA ENTRY.
C
C SET POINTER LPCOMP
C
LPCOMP = IPCMP + NPCMP + NPCMP1 + NPCMP2
C
C
C POINTER DESCRIPITION
C --------------------
C IPCMP - LOCATION OF START OF PCOMP DATA IN CORE
C NPCMP - NUMBER OF WORDS OF PCOMP DATA
C IPCMP1 - LOCATION OF START OF PCOMP1 DATA IN CORE
C NPCMP1 - NUMBER OF WORDS OF PCOMP1 DATA
C IPCMP2 - LOCATION OF START OF PCOMP2 DATA IN CORE
C NPCMP2 - NUMBER OF WORDS OF PCOMP2 DATA
C
C ITYPE - TYPE OF PCOMP BULK DATA ENTRY
C
C LAMOPT - LAMINATION GENERATION OPTION
C = SYM (SYMMETRIC)
C = MEM (MEMBRANE )
C = SYMMEM (SYMMETRIC-MEMBRANE)
C
C FTHR - FAILURE THEORY
C = 1 HILL
C = 2 HOFFMAN
C = 3 TSAI-WU
C = 4 MAX-STRESS
C = 5 MAX-STRAIN
C
C ULTSTN - ULTIMATE STRENGTH VALUES
C
C SET POINTERS
C
ITYPE = -1
C
PCMP = .FALSE.
PCMP1 = .FALSE.
PCMP2 = .FALSE.
C
PCMP = NPCMP .GT. 0
PCMP1 = NPCMP1 .GT. 0
PCMP2 = NPCMP2 .GT. 0
C
C CHECK IF NO 'PCOMP' DATA HAS BEEN READ INTO CORE
C
IF (.NOT.PCMP .AND. .NOT.PCMP1 .AND. .NOT.PCMP2) GO TO 2200
C
C SEARCH FOR PID IN PCOMP DATA
C
IF (.NOT.PCMP) GO TO 960
C
IP = IPCMP
IF (INTZ(IP) .EQ. IPID) GO TO 950
IPC11 = IPCMP1 - 1
DO 930 IP = IPCMP,IPC11
IF (INTZ(IP).EQ.-1 .AND. IP.LT.(IPCMP1-1)) GO TO 920
GO TO 930
920 IF (INTZ(IP+1) .EQ. IPID) GO TO 940
930 CONTINUE
GO TO 960
C
940 IP = IP + 1
950 ITYPE = PCOMP
GO TO 1070
C
C SEARCH FOR PID IN PCOMP1 DATA
C
960 IF (.NOT.PCMP1) GO TO 1010
IP = IPCMP1
IF (INTZ(IP) .EQ. IPID) GO TO 1000
IPC21 = IPCMP2 - 1
DO 980 IP = IPCMP1,IPC21
IF (INTZ(IP).EQ.-1 .AND. IP.LT.(IPCMP2-1)) GO TO 970
GO TO 980
970 IF (INTZ(IP+1) .EQ. IPID) GO TO 990
980 CONTINUE
GO TO 1010
C
990 IP = IP + 1
1000 ITYPE = PCOMP1
GO TO 1070
C
C SEARCH FOR PID IN PCOMP2 DATA
C
1010 IF (.NOT.PCMP2) GO TO 1060
C
IP = IPCMP2
IF (INTZ(IP) .EQ. IPID) GO TO 1050
LPC11 = LPCOMP - 1
DO 1030 IP = IPCMP2,LPC11
IF (INTZ(IP).EQ.-1 .AND. IP.LT.(LPCOMP-1)) GO TO 1020
GO TO 1030
1020 IF (INTZ(IP+1) .EQ. IPID) GO TO 1040
1030 CONTINUE
GO TO 1060
C
1040 IP = IP + 1
1050 ITYPE = PCOMP2
GO TO 1070
C
C CHECK IF PID HAS NOT BEEN LOCATED
C
1060 IF (ITYPE .EQ. -1) GO TO 2200
C
C LOCATION OF PID
C
1070 PIDLOC = IP
LAMOPT = INTZ(PIDLOC+8)
C
C INTILIZE
C
DO 1080 IR = 1,3
STRNT(IR) = 0.0
STRNB(IR) = 0.0
1080 CONTINUE
C
C CALCULATION OF STRAINS
C
C INTEGRATION DATA IN PHIOUT IS ARRANGED IN ETA,XI INCREASING
C SEQUENCE.
C
ISIG = 1
ICOUNT = -(8*NDOF+NNODE+32) + 79 + 9*NNODE
C
DO 1200 INPLAN = 1,5
INPLN1 = IPN(INPLAN)
C
C MATCH GRID ID NUMBER WHICH IS IN SIL ORDER
C
IF (INPLAN .EQ. 5) GO TO 1100
DO 1090 I = 1,NNODE
IF (IORDER(I) .NE. INPLN1) GO TO 1090
IGRID(INPLAN) = EXTRNL(I)
GO TO 1110
1090 CONTINUE
GO TO 1110
C
1100 IGRID(INPLAN) = CENTER
1110 CONTINUE
C
DO 1190 IZTA = 1,2
ZETA = (IZTA*2-3)*CONST
C
ICOUNT = ICOUNT + 8*NDOF + NNODE + 32
C
C FIRST COMPUTE LOCAL STRAINS AT THIS EVALUATION POINT
C
C EPSLN = PHIOUT(KSIG) * DELTA
C EPS = B * U
C 8X1 8XNDOF NDOFX1
C
KSIG = ICOUNT + NNODE + 33
CALL GMMATS (PHIOUT(KSIG),8,NDOF,0, DELTA(1),NDOF,1,0, EPSLN)
C
C TRANSFORM THE STRAINS AT THIS EVALUATION POINT TO THE
C MATERIAL COORDINATE SYSTEM
C
DO 1120 IR = 1,9
1120 TMI(IR) = PHIOUT(ICOUNT+19+IR)
C
C TOTAL STRAIN AT EVALUATION POINT = MEMBRANE + BENDING
C
DO 1130 IR = 1,3
1130 EPSTOT(IR) = EPSLN(IR) + EPSLN(IR+3)
C
C GENERATE TRANS-MATRIX TO TRANSFORM STRAINS FROM I TO M SYSTEM
C
TRANS(1) = TMI(1)*TMI(1)
TRANS(2) = TMI(2)*TMI(2)
TRANS(3) = TMI(1)*TMI(2)
TRANS(4) = TMI(4)*TMI(4)
TRANS(5) = TMI(5)*TMI(5)
TRANS(6) = TMI(4)*TMI(5)
TRANS(7) = 2.0*TMI(1)*TMI(4)
TRANS(8) = 2.0*TMI(2)*TMI(5)
TRANS(9) = TMI(1)*TMI(5) + TMI(2)*TMI(4)
C
C TRANSFORM TOTAL STRAINS
C
CALL GMMATS (TRANS(1),3,3,0, EPSTOT(1),3,1,0, EPSE(1))
C
IF (INPLAN .EQ. 5) GO TO 1160
C
C AVERAGE THE STRAIN VECTORS OF THE FOUR INTGS POINTS AT EACH
C LEVEL TO CALCULATE THE ELEMENT CENTRE STRAIN VECTOR FOR THE
C UPPER AND BOTTOM LEVELS.
C
DO 1150 IR = 1,3
IF (IZTA .EQ. 2) GO TO 1140
STRNB(IR) = STRNB(IR) + 0.25*EPSE(IR)
GO TO 1150
1140 STRNT(IR) = STRNT(IR) + 0.25*EPSE(IR)
1150 CONTINUE
GO TO 1190
C
C TOTAL STRAIN VECTORS AT ELEMENT CENTRE
C
1160 DO 1180 IR = 1,3
IF (IZTA .EQ. 2) GO TO 1170
STRNBC(IR) = EPSE(IR)
GO TO 1180
1170 STRNTC(IR) = EPSE(IR)
1180 CONTINUE
C
1190 CONTINUE
1200 CONTINUE
C
C EXTRAPOLATE STRAINS ACROSS ZETA
C
DO 1210 IR = 1,3
EPST(IR) = (STRNT(IR)-STRNB(IR))*(+1.0+CONST)/(2.0*CONST)
1 + STRNB(IR)
EPSB(IR) = (STRNT(IR)-STRNB(IR))*(-1.0+CONST)/(2.0*CONST)
1 + STRNB(IR)
1210 CONTINUE
C
C CALCULATE LAYER STRESSES AND FAILURE INDICES (IF REQUESTED)
C AND WRITE TO THE OUTPUT FILE OES1L
C 1. 10*ELEMENT ID + DEVICE CODE (SDEST)
C 2. NLAYER - NUMBER OF LAYERS FOR LAMINATE
C 3. TYPE OF FAILURE THEORY SELECTED
C
C 4. PLY ID
C 5,6,7. LAYER STRESSES
C 8. PLY FAILURE INDEX (FP)
C 9. IFLAG (= 1 IF FP.GE.0.999, DEFAULT = 0)
C 10,11. INTERLAMINAR SHEAR STRESSES
C 12. SHEAR BONDING INDEX (SB)
C 13. IFLAG (= 1 IF SB.GE.0.999, DEFAULT = 0)
C : 4 - 13 REPEATED FOR THE NUMBER OF LAYERS WITH
C : LAYER STRESS REQUEST
C LAST-1. MAXIMUM FAILURE INDEX OF LAMINATE (FIMAX)
C LAST. IFLAG (= 1 IF FIMAX.GE.0.999, DEFAULT = 0)
C
C 1-LAST. REPEAT FOR NUMBER OF ELEMENTS
C
C (NOTE - ONLY THE ELEMENT CENTRE VALUES ARE CALCULATED)
C
C == 1.
C
IF (KSTRS .EQ. 1) CALL WRITE (OES1L,ELEMID,1,0)
C
C DETERMINE INTRINSIC LAMINATE PROPERTIES
C
C LAMINATE THICKNESS
C
TLAM = PHIOUT(21)
C
C REFERENCE SURFACE
C
ZREF = -TLAM/2.0
C
C NUMBER OF LAYERS
C
NLAY = INTZ(PIDLOC+1)
C
C FOR PCOMP BULK DATA DETERMINE HOW MANY LAYERS HAVE THE STRESS
C OUTPUT REQUEST (SOUTI)
C NOTE - FOR PCOMP1 OR PCOMP2 BULK DATA ENTRIES LAYER
C STRESSES ARE OUTPUT FOR ALL LAYERS.
C
NLAYER = NLAY
C
IF (ITYPE .NE. PCOMP) GO TO 1230
C
NSTRQT = 0
DO 1220 K = 1,NLAY
IF (INTZ(PIDLOC+8+4*K) .EQ. 1) NSTRQT = NSTRQT + 1
1220 CONTINUE
NLAYER = NSTRQT
C
C WRITE TOTAL NUMBER OF LAYERS WITH STRESS REQ TO OES1L
C
1230 IF (LAMOPT.EQ.SYM .OR. LAMOPT.EQ.SYMMEM) NLAYER = 2*NLAYER
C
C == 2.
C
IF (KSTRS .EQ. 1) CALL WRITE (OES1L,NLAYER,1,0)
C
C SET POINTER
C
IF (ITYPE .EQ. PCOMP ) IPOINT = PIDLOC + 8 + 4*NLAY
IF (ITYPE .EQ. PCOMP1) IPOINT = PIDLOC + 8 + NLAY
IF (ITYPE .EQ. PCOMP2) IPOINT = PIDLOC + 8 + 2*NLAY
C
C FAILURE THEORY TO BE USED IN COMPUTING FAILURE INDICES
C
FTHR = INTZ(PIDLOC+5)
C
C WRITE TO OUTPUT FILE TYPE OF FAILURE THEORY SELECTED
C
C == 3.
C
IF (KSTRS .EQ. 1) CALL WRITE (OES1L,FTHR,1,0)
C
C SHEAR BONDING STRENGTH
C
SB = Z(PIDLOC+4)
FINDEX = 0.0
FBOND = 0.0
FPMAX = 0.0
FBMAX = 0.0
FIMAX = 0.0
C
C SET TRNFLX IF INTERLAMINAR SHEAR STRESS CALCULATIONS
C IS REQUIRED
C
TRNFLX = .FALSE.
C
C TRANSVERSE SHEAR STRESS RESULTANTS QX AND QY
C
V(1) = FORSUL(45)
V(2) = FORSUL(46)
TRNFLX = V(1).NE.0.0 .AND. V(2).NE.0.0
IF (.NOT.TRNFLX) GO TO 1240
IF (ITYPE .EQ. PCOMP) ICONTR = IPOINT + 27*NLAY
IF (ITYPE.EQ.PCOMP1 .OR. ITYPE.EQ.PCOMP2)
1 ICONTR = IPOINT + 25 + 2*NLAY
C
C LAMINATE BENDING INERTIA
C
EI(1) = Z(ICONTR+1)
EI(2) = Z(ICONTR+2)
C
C LOCATION OF NEUTRAL SURFACE
C
ZBAR(1) = Z(ICONTR+3)
ZBAR(2) = Z(ICONTR+4)
C
C INTILIZISE
C
1240 DO 1250 LL = 1,2
TRNAR(LL) = 0.0
TRNSHR(LL) = 0.0
1250 CONTINUE
C
C ALLOW FOR THE ORIENTATION OF THE MATERIAL AXIS FROM
C THE USER DEFINED COORDINATE SYSTEM
C
THETAE = ACOS(PHIOUT(69))
THETAE = THETAE*DEGRAD
C
C SWITCH FOR THEMAL EFFECTS
C
IF (LDTEMP .EQ. -1) GO TO 1290
C
C LAMINATE REFERENCE (OR LAMINATION) TEMPERATURE
C
TSUBO = Z(IPOINT+24)
C
C MEAN ELEMENT TEMPERATURE
C
TBAR = TMEAN
IF (TEMPP1 .OR. TEMPP2) TBAR = STEMP(1)
IF (LAMOPT.EQ.MEM .OR. LAMOPT.EQ.SYMMEM) GO TO 1290
IF (.NOT.(TEMPP1 .OR. TEMPP2)) GO TO 1290
IF (.NOT.TEMPP1) GO TO 1260
C
C TEMPERATURE GRADIENT TPRIME
C
TPRIME = STEMP(2)
C
1260 IF (.NOT.TEMPP2) GO TO 1290
C
C COMPUTE REFERENCE SURFACE STRAINS AND CURVATURES
C DUE TO THERMAL MOMENTS
C
C MOMENT OF INERTIA OF LAMINATE
C
MINTR = (TLAM**3)/12.0
C
C DETERMINE ABBD-MATRIX FROM PHIOUT(23-58)
C
ICOUNT = 89 + 9*NNODE
DO 1270 LL = 1,3
DO 1270 MM = 1,3
NN = MM + 6*(LL-1)
II = MM + 3*(LL-1)
ABBD(LL ,MM ) = PHIOUT(NN+22)*TLAM
ABBD(LL ,MM+3) = PHIOUT(ICOUNT+II)*(TLAM*TLAM)/(-6.0*CONST)
ABBD(LL+3,MM ) = PHIOUT(ICOUNT+II)*(TLAM*TLAM)/(-6.0*CONST)
ABBD(LL+3,MM+3) = PHIOUT(NN+43)*MINTR
1270 CONTINUE
C
C COMPUTE THERMAL REF STRAINS AND CURVATURES
C -1
C EZEROT-VECTOR = ABBD-MATRIX X MTHR-VECTOR
C
MTHER( 1) = 0.0
MTHER( 2) = 0.0
MTHER( 3) = 0.0
MTHER( 4) = STEMP(2)
MTHER( 5) = STEMP(3)
MTHER( 6) = STEMP(4)
C
CALL INVERS (6,ABBD,6,DUMC,0,DETRM,ISING,INDX)
C
DO 1280 LL = 1,6
DO 1280 MM = 1,6
NN = MM + 6*(LL-1)
STIFF(NN) = ABBD(LL,MM)
1280 CONTINUE
C
CALL GMMATS (STIFF(1),6,6,0, MTHER(1),6,1,0, EZEROT(1))
C
1290 CONTINUE
C
DO 1300 LL = 1,6
1300 FORSUL(LL) = 0.0
C
C LOOP OVER NLAY
C
DO 1600 K = 1,NLAY
C
C ZSUBI -DISTANCE FROM REFERENCE SURFACE TO MID OF LAYER K
C
ZK1 = ZK
IF (K .EQ. 1) ZK1 = ZREF
IF (ITYPE .EQ. PCOMP ) ZK = ZK1 + Z(PIDLOC+6+4*K)
IF (ITYPE .EQ. PCOMP1) ZK = ZK1 + Z(PIDLOC+7 )
IF (ITYPE .EQ. PCOMP2) ZK = ZK1 + Z(PIDLOC+7+2*K)
C
ZSUBI = (ZK+ZK1)/2.0
C
C LAYER THICKNESS
C
TI = ZK - ZK1
C
C CALCULATE STRAIN VECTOR AT STN ZSUBI
C
DO 1400 IR = 1,3
EPSLNE(IR) = (.5-ZSUBI/TLAM)*EPSB(IR) + (.5+ZSUBI/TLAM)*EPST(IR)
1400 CONTINUE
C
C LAYER ORIENTATION
C
IF (ITYPE .EQ. PCOMP ) THETA = Z(PIDLOC+7+4*K)
IF (ITYPE .EQ. PCOMP1) THETA = Z(PIDLOC+8+ K)
IF (ITYPE .EQ. PCOMP2) THETA = Z(PIDLOC+8+2*K)
C
C BUILD TRANS-MATRIX TO TRANSFORM LAYER STRAINS FROM MATERIAL
C TO FIBRE DIRECTION.
C
THETA = THETA*DEGRAD
C
C = COS(THETA)
C2 = C*C
S = SIN(THETA)
S2 = S*S
C
TRANS(1) = C2
TRANS(2) = S2
TRANS(3) = C*S
TRANS(4) = S2
TRANS(5) = C2
TRANS(6) =-C*S
TRANS(7) =-2.0*C*S
TRANS(8) = 2.0*C*S
TRANS(9) = C2-S2
C
C TRANSFORM STRAINS FROM ELEMENT TO FIBRE COORD SYSTEM
C
CALL GMMATS (TRANS(1),3,3,0, EPSLNE(1),3,1,0, EPSLN(1))
C
C SWITCH FOR TEMPERATURE EFFECTS
C
IF (LDTEMP .EQ. -1) GO TO 1470
C
C CORRECT LAYER STRAIN VECTOR FOR THERMAL EFFECTS
C
C LAYER THERMAL COEFFICIENTS OF EXPANSION ALPHA-VECTOR
C
DO 1410 LL = 1,3
ALPHA(LL) = Z(IPOINT+13+LL)
1410 CONTINUE
C
C ELEMENT TEMPERATURE
C
DELT = TBAR - TSUBO
C
IF (LAMOPT.EQ.MEM .OR. LAMOPT.EQ.SYMMEM) GO TO 1420
IF (.NOT.TEMPP1) GO TO 1420
C
C TEMPERATURE GRADIENT TPRIME
C
DELT = DELT + ZSUBI*TPRIME
C
1420 DO 1430 LL = 1,3
EPSLNT(LL) = -ALPHA(LL)*DELT
1430 CONTINUE
C
IF (LAMOPT.EQ.MEM .OR. LAMOPT.EQ.SYMMEM) GO TO 1450
IF (.NOT.TEMPP2) GO TO 1450
C
C COMPUTE STRAIN DUE TO THERMAL MOMENTS
C
DO 1440 LL = 1,3
EPSLNT(LL) = EPSLNT(LL) + (EZEROT(LL) + ZSUBI*EZEROT(LL+3))
1440 CONTINUE
C
C COMBINE MECHANICAL AND THERMAL STRAINS
C
1450 DO 1460 LL = 1,3
EPSLN(LL) = EPSLN(LL) + EPSLNT(LL)
1460 CONTINUE
C
1470 CONTINUE
C
C CALCULATE STRESS VECTOR STRESL IN FIBRE COORD SYS
C
C STRESL-VECTOR = G-MATRIX X EPSLN-VECTOR
C
CALL GMMATS (Z(IPOINT+1),3,3,0, EPSLN,3,1,0, STRESL(1))
C
C USE FORCE RESTULANTS CALCULATED PREVIOUSLY
C I.E. AT EXTREME FIBER STATIONS EXCEPT FOR THERMAL LOADING CASES
C
IF (LDTEMP .EQ. -1) GO TO 1490
IF (KFORCE .EQ. 0) GO TO 1490
C
C TRANSFORM LAYER STRESSES TO ELEMENT AXIS
C
IF (THETAE .GT. 0.0) THETA = THETA + THETAE
C
C BUILD STRESS TRANSFORMATION MATRIX
C
C = COS(THETA)
C2 = C*C
S = SIN(THETA)
S2 = S*S
C
TRANS(1) = C2
TRANS(2) = S2
TRANS(3) =-2.0*C*S
TRANS(4) = S2
TRANS(5) = C2
TRANS(6) = 2.0*C*S
TRANS(7) = C*S
TRANS(8) =-C*S
TRANS(9) = C2-S2
C
CALL GMMATS (TRANS(1),3,3,0, STRESL(1),3,1,0, STRESE(1))
C
DO 1480 IR = 1,3
FORSUL(IR) = FORSUL(IR) + STRESE(IR)*TI
IF (LAMOPT.EQ.MEM .OR. LAMOPT.EQ.SYMMEM) GO TO 1480
FORSUL(IR+3) = FORSUL(IR+3) - STRESE(IR)*TI*ZSUBI
1480 CONTINUE
C
1490 IF (FTHR .LE. 0) GO TO 1530
C
C WRITE ULTIMATE STRENGTH VALUES TO ULTSTN
C
DO 1500 IR = 1,6
1500 ULTSTN(IR) = Z(IPOINT+16+IR)
C
C CALL FTHR TO COMPUTE FAILURE INDEX FOR PLY
C
IF (FTHR .EQ. STRAIN) GO TO 1510
CALL FAILUR (FTHR,ULTSTN,STRESL,FINDEX)
GO TO 1520
C
1510 CALL FAILUR (FTHR,ULTSTN,EPSLN,FINDEX)
C
C DETERMINE THE MAX FAILURE INDEX
C
1520 IF (ABS(FINDEX) .GE. ABS(FPMAX)) FPMAX = FINDEX
C
1530 CONTINUE
C
C SET POINTERS
C
IF (ITYPE .EQ. PCOMP) ICONTR = IPOINT + 25
IF (ITYPE.EQ.PCOMP1 .OR. ITYPE.EQ.PCOMP2)
1 ICONTR = IPOINT + 23 + 2*K
C
IF (LAMOPT.EQ.MEM .OR. LAMOPT.EQ.SYMMEM) GO TO 1570
IF (.NOT.TRNFLX) GO TO 1570
C
C CALCULATE INTERLAMINAR SHEAR STRESSES
C
DO 1540 IR = 1,2
TRNAR(IR) = TRNAR(IR) + (Z(ICONTR+IR))*TI*(ZBAR(IR)-ZSUBI)
1540 CONTINUE
C
C THE INTERLAMINAR SHEAR STRESSES AT STN ZSUBI
C
DO 1550 IR = 1,2
TRNSHR(IR) = V(IR)*TRNAR(IR)/EI(IR)
1550 CONTINUE
C
C CALCULATE SHEAR BONDING FAILURE INDEX FB
C NOTE- SB IS ALWAYS POSITIVE
C
IF (SB .EQ. 0.0) GO TO 1570
C
DO 1560 IR = 1,2
FB(IR) = ABS(TRNSHR(IR))/SB
1560 CONTINUE
C
FBOND = FB(1)
IF (FB(2) .GT. FB(1)) FBOND = FB(2)
C
C CALCULATE MAX SHEAR BONDING INDEX
C
IF (FBOND .GE. FBMAX) FBMAX = FBOND
C
1570 CONTINUE
C
IF (KSTRS .EQ. 0) GO TO 1590
C
C WRITE TO OUTPUT FILE THE FOLLOWING
C 4. PLY (OR LAYER) ID
C 5,6,7. LAYER STRESSES
C 8. LAYER FAILURE INDEX
C 9. IFLAG (= 1 IF FP.GE.0.999, DEFAULT = 0)
C 10,11. INTERLAMINAR SHEAR STRESSES
C 12. SHEAR BONDING FAILURE INDEX
C 13. IFLAG (= 1 IF SB.GE.0.999, DEFAULT = 0)
C
C CHECK LAYER STRESS OUTPUT REQUEST (SOUTI) FOR PCOMP BULK DATA
C (NOT SUPPORTED FOR PCOMP1 OR PCOMP2 BULK DATA)
C
IF (ITYPE .NE. PCOMP) GO TO 1580
SOUTI = INTZ(PIDLOC+8+4*K)
IF (SOUTI .EQ. 0) GO TO 1590
1580 PLYID = K
C
C == 4.
C
CALL WRITE (OES1L,PLYID,1,0)
C
C == 5,6,7.
C
CALL WRITE (OES1L,STRESL(1),3,0)
C
C == 8.
C
CALL WRITE (OES1L,FINDEX,1,0)
C
C SET IFLAG
C
IFLAG = 0
IF (ABS(FINDEX) .GE. 0.999) IFLAG = 1
C
C == 9.
C
CALL WRITE (OES1L,IFLAG,1,0)
C
C == 10,11.
C
CALL WRITE (OES1L,TRNSHR(1),2,0)
C
C == 12.
C
CALL WRITE (OES1L,FBOND,1,0)
C
C SET IFLAG
C
IFLAG = 0
IF (ABS(FBOND) .GE. 0.999) IFLAG = 1
C
C == 13.
C
CALL WRITE (OES1L,IFLAG,1,0)
C
C
C UPDATE IPOINT FOR PCOMP BULK DATA ENTRY
C
1590 IF (ITYPE.EQ.PCOMP .AND. K.NE.NLAY) IPOINT = IPOINT + 27
C
1600 CONTINUE
C
C FALL HERE IF SYMMETRIC OPTION HAS BEEN EXERCISED
C
IF (LAMOPT.NE.SYM .AND. LAMOPT.NE.SYMMEM) GO TO 2000
C
C LOOP OVER SYMMETRIC LAYERS
C
DO 1900 KK = 1,NLAY
K = NLAY + 1 - KK
C
C ZSUBI -DISTANCE FROM REFERENCE SURFACE TO MID OF LAYER K
C
ZK1 = ZK
IF (ITYPE .EQ. PCOMP ) ZK = ZK1 + Z(PIDLOC+6+4*K)
IF (ITYPE .EQ. PCOMP1) ZK = ZK1 + Z(PIDLOC+7 )
IF (ITYPE .EQ. PCOMP2) ZK = ZK1 + Z(PIDLOC+7+2*K)
C
ZSUBI = (ZK+ZK1)/2.0
C
C LAYER THICKNESS
C
TI = ZK - ZK1
C
C CALCULATE STRAIN VECTOR AT STN ZSUBI
C
DO 1700 IR = 1,3
EPSLNE(IR) = (.5-ZSUBI/TLAM)*EPSB(IR) + (.5+ZSUBI/TLAM)*EPST(IR)
1700 CONTINUE
C
C LAYER ORIENTATION
C
IF (ITYPE .EQ. PCOMP ) THETA = Z(PIDLOC+7+4*K)
IF (ITYPE .EQ. PCOMP1) THETA = Z(PIDLOC+8+ K)
IF (ITYPE .EQ. PCOMP2) THETA = Z(PIDLOC+8+2*K)
C
C BUILD TRANS-MATRIX TO TRANSFORM LAYER STRAINS FROM MATERIAL
C TO FIBRE DIRECTION.
C
THETA = THETA*DEGRAD
C = COS(THETA)
C2 = C*C
S = SIN(THETA)
S2 = S*S
C
TRANS(1) = C2
TRANS(2) = S2
TRANS(3) = C*S
TRANS(4) = S2
TRANS(5) = C2
TRANS(6) =-C*S
TRANS(7) =-2.0*C*S
TRANS(8) = 2.0*C*S
TRANS(9) = C2 - S2
C
C TRANSFORM STRAINS FROM MATERIAL TO FIBRE COORD SYSTEM
C
CALL GMMATS (TRANS(1),3,3,0, EPSLNE(1),3,1,0, EPSLN(1))
C
C SWITCH FOR TEMPERATURE EFFECTS
C
IF (LDTEMP .EQ. -1) GO TO 1770
C
C CORRECT LAYER STRAIN VECTOR FOR THERMAL EFFECTS
C
C LAYER THERMAL COEFFICIENTS OF EXPANSION ALPHA-VECTOR
C
DO 1710 LL = 1,3
ALPHA(LL) = Z(IPOINT+13+LL)
1710 CONTINUE
C
C ELEMENT TEMPERATURE
C
DELT = TBAR - TSUBO
IF (LAMOPT .EQ. SYMMEM) GO TO 1720
IF (.NOT.TEMPP1) GO TO 1720
C
C TEMPERATURE GRADIENT TPRIME
C
DELT = DELT + ZSUBI*TPRIME
C
1720 DO 1730 LL = 1,3
EPSLNT(LL) = -ALPHA(LL)*DELT
1730 CONTINUE
C
IF (LAMOPT .EQ. SYMMEM) GO TO 1750
IF (.NOT.TEMPP2) GO TO 1750
C
C COMPUTE STRAIN DUE TO THERMAL MOMENTS
C
DO 1740 LL = 1,3
EPSLNT(LL) = EPSLNT(LL) + (EZEROT(LL) + ZSUBI*EZEROT(LL+3))
1740 CONTINUE
C
C COMBINE MECHANICAL AND THERMAL STRAINS
C
1750 DO 1760 LL = 1,3
EPSLN(LL) = EPSLN(LL) + EPSLNT(LL)
1760 CONTINUE
C
1770 CONTINUE
C
C CALCULATE STRESS VECTOR STRESL IN FIBRE COORD SYS
C
C STRESL-VECTOR = G-MATRIX X EPSLN-VECTOR
C
CALL GMMATS (Z(IPOINT+1),3,3,0, EPSLN,3,1,0, STRESL(1))
C
C COMPUTE FORCE RESULTANTS IF REQUESTED
C
IF (LDTEMP .EQ. -1) GO TO 1790
IF (KFORCE .EQ. 0) GO TO 1790
C
C TRANSFORM LAYER STRESSES TO ELEMENT AXIS
C
IF (THETAE .GT. 0.0) THETA = THETA + THETAE
C
C BUILD STRESS TRANSFORMATION MATRIX
C
C = COS(THETA)
C2 = C*C
S = SIN(THETA)
S2 = S*S
C
TRANS(1) = C2
TRANS(2) = S2
TRANS(3) =-2.0*C*S
TRANS(4) = S2
TRANS(5) = C2
TRANS(6) = 2.0*C*S
TRANS(7) = C*S
TRANS(8) =-C*S
TRANS(9) = C2 - S2
C
CALL GMMATS (TRANS(1),3,3,0, STRESL(1),3,1,0, STRESE(1))
C
DO 1780 IR = 1,3
FORSUL(IR) = FORSUL(IR) + STRESE(IR)*TI
IF (LAMOPT .EQ. SYMMEM) GO TO 1780
FORSUL(IR+3) = FORSUL(IR+3) - STRESE(IR)*TI*ZSUBI
1780 CONTINUE
C
1790 IF (FTHR .LE. 0) GO TO 1830
C
C WRITE ULTIMATE STRENGTH VALUES TO ULTSTN
C
DO 1800 IR = 1,6
1800 ULTSTN(IR) = Z(IPOINT+16+IR)
C
C CALL FTHR TO COMPUTE FAILURE INDEX FOR PLY
C
IF (FTHR .EQ. STRAIN) GO TO 1810
CALL FAILUR (FTHR,ULTSTN,STRESL,FINDEX)
GO TO 1820
C
1810 CALL FAILUR (FTHR,ULTSTN,EPSLN,FINDEX)
C
C DETERMINE THE MAX FAILURE INDEX
C
1820 IF (ABS(FINDEX) .GE. ABS(FPMAX)) FPMAX = FINDEX
C
1830 CONTINUE
C
C SET POINTERS
C
IF (ITYPE .EQ. PCOMP) ICONTR = IPOINT + 25
IF (ITYPE.EQ.PCOMP1 .OR. ITYPE.EQ.PCOMP2)
1 ICONTR = IPOINT + 23 + 2*K
C
IF (LAMOPT .EQ. SYMMEM) GO TO 1870
IF (.NOT.TRNFLX) GO TO 1870
C
C CALCULATE INTERLAMINAR SHEAR STRESSES
C
DO 1840 IR = 1,2
TRNAR(IR) = TRNAR(IR) + (Z(ICONTR+IR))*TI*(ZBAR(IR)-ZSUBI)
1840 CONTINUE
C
C THE INTERLAMINAR SHEAR STRESSES AT STN ZSUBI
C
DO 1850 IR = 1,2
TRNSHR(IR) = V(IR)*TRNAR(IR)/EI(IR)
1850 CONTINUE
C
C CALCULATE SHEAR BONDING FAILURE INDEX FB
C NOTE- SB IS ALWAYS POSITIVE
C
IF (SB .EQ. 0.0) GO TO 1870
C
DO 1860 IR = 1,2
FB(IR) = ABS(TRNSHR(IR))/SB
1860 CONTINUE
C
FBOND = FB(1)
IF (FB(2) .GT. FB(1)) FBOND = FB(2)
C
C CALCULATE MAX SHEAR BONDING INDEX
C
IF (FBOND .GE. FBMAX) FBMAX = FBOND
C
1870 CONTINUE
C
IF (KSTRS .EQ. 0) GO TO 1890
C
C WRITE TO OUTPUT FILE THE FOLLOWING
C 4. PLY (OR LAYER) ID
C 5,6,7. LAYER STRESSES
C 8. LAYER FAILURE INDEX
C 9. IFLAG (= 1 IF FP.GE.0.999, DEFAULT = 0)
C 10,11. INTERLAMINAR SHEAR STRESSES
C 12. SHEAR BONDING FAILURE INDEX
C 13. IFLAG (= 1 IF SB.GE.0.999, DEFAULT = 0)
C
C CHECK LAYER STRESS OUTPUT REQUEST (SOUTI) FOR PCOMP BULK DATA
C (NOT SUPPORTED FOR PCOMP1 OR PCOMP2 BULK DATA)
C
IF (ITYPE .NE. PCOMP) GO TO 1880
SOUTI = INTZ(PIDLOC+8+4*K)
IF (SOUTI .EQ. 0) GO TO 1890
1880 PLYID = NLAY + KK
C
C == 4.
C
CALL WRITE (OES1L,PLYID,1,0)
C
C == 5,6,7
C
CALL WRITE (OES1L,STRESL(1),3,0)
C
C == 8.
C
CALL WRITE (OES1L,FINDEX,1,0)
C
C SET IFLAG
C
IFLAG = 0
IF (ABS(FINDEX) .GE. 0.999) IFLAG = 1
C
C == 9.
C
CALL WRITE (OES1L,IFLAG,1,0)
C
C == 10,11.
C
CALL WRITE (OES1L,TRNSHR(1),2,0)
C
C == 12.
C
CALL WRITE (OES1L,FBOND,1,0)
C
C SET IFLAG
C
IFLAG = 0
IF (ABS(FBOND) .GE. 0.999) IFLAG = 1
C
C == 13.
C
CALL WRITE (OES1L,IFLAG,1,0)
C
C UPDATE IPOINT FOR PCOMP BULK DATA ENTRY
C
1890 IF (ITYPE .EQ. PCOMP) IPOINT = IPOINT - 27
1900 CONTINUE
C
2000 IF (FTHR .LE. 0) GO TO 2010
C
C DETERMINE 'FIMAX' THE MAX FAILURE INDEX FOR THE LAMINATE
C
FIMAX = FPMAX
IF (FBMAX .GT. ABS(FPMAX)) FIMAX = FBMAX
C
C == LAST-1.
C
2010 IF (KSTRS .EQ. 1) CALL WRITE (OES1L,FIMAX,1,0)
C
IFLAG = 0
IF (ABS(FIMAX) .GE. 0.999) IFLAG = 1
C
C == LAST.
C
IF (KSTRS .EQ. 1) CALL WRITE (OES1L,IFLAG,1,0)
C
IF (KFORCE .EQ. 0) GO TO 2100
IF (LDTEMP .EQ. -1) GO TO 2100
CALL WRITE (OEF1L,ELEMID,1,0)
CALL WRITE (OEF1L,FORSUL(1),6,0)
CALL WRITE (OEF1L,FORSUL(45),2,0)
C
2100 RETURN
C
C ERROR MESSAGES
C
2200 WRITE (NOUT,2210) UWM
2210 FORMAT (A25,' - NO PCOMP, PCOMP1 OR PCOMP2 DATA AVAILABLE FOR ',
1 'LAYER STRESS RECOVERY BY SUBROUTINE SQUD42.')
GO TO 2100
2220 WRITE (NOUT,2230) UFM
2230 FORMAT (A23,', LAYER STRESS OR FORCE RECOVERY WAS REQUESTED WHILE'
1, ' PROBLEM WAS NOT SET UP FOR', /5X,'LAYER COMPUTATION')
CALL MESAGE (-61,0,0)
END
|