File: squd42.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (1911 lines) | stat: -rw-r--r-- 52,777 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
      SUBROUTINE SQUD42
C
C     PHASE 2 STRESS RECOVERY FOR 4-NODE ISOPARAMETRIC QUADRILATERAL
C     SHELL ELEMENT (QUAD4)
C
C     NOTE - FOR LAMINATED COMPOSITE ELEMENTS THE FOLLOWING ARE
C            NOT SUPPORTED
C
C         1. VARIABLE GRID POINT THICKNESS
C         3. TEMPERATURE AT 'FIBRE' DISTANCE
C
C         ALSO STRESSES ARE ONLY EVALUATED AT THE ELEMENT CENTRE
C         AND SIMILARILY FOR STRESS RESULTANTS
C
C
C     ALGORITHM -
C
C     1- STRAIN RECOVERY DATA IS SENT BY PHASE 1 THRU 'PHIOUT',
C        WHICH INCLUDES ALL THE NECESSARY TRANSFORMATIONS AND
C        STRAIN RECOVERY MATRICES. THE DATA IS REPEATED FOR EACH
C        STRESS EVALUATION POINT.
C     2- GLOBAL DISPLACEMENT VECTOR ENTERS THE ROUTINE IN CORE.
C     3- BASED ON THE DATA IN /SDR2X4/, LOCATION OF THE GLOBAL
C        DISPLACEMENT VECTOR FOR THE CURRENT SUBCASE IS DETERMINED.
C     4- WORD 132 OF /SDR2DE/ CONTAINS THE STRESS OUTPUT REQUEST
C        OPTION FOR THE CURRENT SUBCASE.
C     5- ELEMENT/GRID POINT TEMPERATURE DATA ENTERS THE ROUTINE
C        THRU /SDR2DE/ (POSITIONS 97-103, 104-129 NOT USED.)
C     6- ELEMENT STRAINS ARE CALCULATED, CORRECTED FOR THERMAL
C        STRAINS, AND PREMULTIPLIED BY G-MATRIX.
C
      EXTERNAL        ANDF
      LOGICAL         EXTRM,LAYER,COMPOS,GRIDS,INTGS,MAXSH,VONMS,BENDNG,
     1                TRNFLX,TEMPP1,TEMPP2,SNRVRX,SNRVRY,FOUR,PCMP,
     2                PCMP1,PCMP2,DEBUG
CWKBNB NCL93012 3/94      
      LOGICAL         OSTRAI
      REAL            EPSAVG(6)
CWKBNE NCL93012 3/94
      INTEGER         INTZ(1),IGRID(5),NPHI(2395),NSTRES(86),ELID,
     1                KSIL(8),IORDER(8),CENTER,NFORS(46),EXTRNL,
CWKBR 3/95 SPR94017 2  INDXG2(3,3),INDX(6,3),OPRQST,FLAG,IPN(5),COMPS,  
     2                INDXG2(3,3),INDX(6,3),FLAG,IPN(5),COMPS,  
     3                OES1L,OEF1L,PCOMP,PCOMP1,PCOMP2,PIDLOC,SYM,SYMMEM,
     4                SOUTI,FTHR,STRAIN,ELEMID,PLYID,ANDF,SDEST,FDEST
C    5,               GPSTRS,INDEXU(3,3),INDEXV(2,3)
      REAL            MOMINR,KHIT,MINTR,TDELTA(6),DELTA(48),TSTB(5,5),
     1                TSTT(5,5),TSTN(50),DELTAT(8),U(36),G(36),G2(9),
     2                ALFAM(3),ALFAB(3),Z1(5),Z2(5),GPTH(4),STRES(86),
     3                G3(4),TMI(9),TRANS(9),STRNT(3),STRNB(3),STRNTC(3),
     4                STRNBC(3),EPST(3),EPSB(3),EPSE(3),EPSTOT(3),FB(2),
     5                EPSLNE(3),STRESL(3),STRESE(3),EZEROT(6),ALPHA(3),
     6                V(2),EI(2),ZBAR(2),TRNAR(2),TRNSHR(2),ULTSTN(6),
     7                ABBD(6,6),STIFF(36),MTHER(6),DUMC(6),STEMP(8)
      CHARACTER       UFM*23,UWM*25
      COMMON /XMSSG / UFM,UWM
      COMMON /ZZZZZZ/ Z(1)
      COMMON /SYSTEM/ KSYSTM(60)
      COMMON /SDR2C1/ IPCMP,NPCMP,IPCMP1,NPCMP1,IPCMP2,NPCMP2,
     1                NSTROP
      COMMON /SDR2X2/ DUMM(30),OES1L,OEF1L
      COMMON /SDR2X4/ DUMMY(35),IVEC,IVECN,LDTEMP
      COMMON /SDR2X7/ PHIOUT(2395)
      COMMON /SDR2X8/ SIGMA(3),ICOUNT,NSTOT,THIKNS(5),ISTRES,KPOINT,
     1                EXTRNL(8),TSTR(50),XPOINT(2),SHPFNC(4),EPSLN(8),
     2                KHIT(3),G2ALFB(30),TST(20),TES(9),TESU(9),TESV(4),
     3                REALI(5),GT(36),EPSLNT(6),TSIGMA(8),SIGNX(4),
     4                SIGNY(4),VXCNTR,VYCNTR,FXCNTR,FYCNTR,FXYCNT,
     5                STRX(2),STRY(2),STRS(2),FORSUL(46)
      COMMON /SDR2DE/ KSDRDE(141)
CWKBR NCL93012 3/94      COMMON /BLANK / APP(2),SORT2,IDUM(2),COMPS   
      COMMON /BLANK / APP(2),SORT2,IDUM(2),COMPS,SKP(4),OSTRAI
      COMMON /CONDAS/ PI,TWOPI,RADDEG,DEGRAD
      EQUIVALENCE     (Z(1)   ,INTZ(1)   ), (NFORS(1) ,FORSUL(1) ),
     1                (NPHI(1),PHIOUT(1) ), (NSTRES(1),STRES(1)  ),
     2                (ELID   ,NPHI(1)   ), (KSIL(1)  ,NPHI(2)   ),
     3                (TSUB0  ,PHIOUT(18)), (IORDER(1),NPHI(10)  ),
     4                (AVGTHK ,PHIOUT(21)), (MOMINR   ,PHIOUT(22)),
     5                (G(1)   ,PHIOUT(23)), (ALFAM(1) ,PHIOUT(59)),
     6                (GPTH(1),PHIOUT(65)), (ALFAB(1) ,PHIOUT(62)),
     7                (IPID   ,NPHI(79)  ), (KSTRS    ,KSDRDE(42)),
     8                (KFORCE ,KSDRDE(41)), (STEMP(1) ,KSDRDE(97)),
     9                (SDEST  ,KSDRDE(26)), (FDEST    ,KSDRDE(33)),
     O                (NOUT   ,KSYSTM(2) ), (STEMP(7) ,FLAG      )
C    1,               (INDEXU(1,1),INDEXV(1,1))
      DATA    DEBUG / .FALSE.  /
      DATA    CENTER/ 4HCNTR   /
      DATA    CONST / 0.57735026918962/
      DATA    EPSS  / 1.0E-11  /
      DATA    EPSA  / 1.0E-7   /
      DATA    IPN   / 1,4,2,3,5/
      DATA    PCOMP / 0 /
      DATA    PCOMP1/ 1 /
      DATA    PCOMP2/ 2 /
      DATA    SYM   / 1 /
      DATA    MEM   / 2 /
      DATA    SYMMEM/ 3 /
      DATA    STRAIN/ 5 /
C
C     DEFINE PHIOUT(2395), THE TRANSMITTED DATA BLOCK
C
C     ADDRESS     DESCRIPTIONS
C
C        1        ELID
C      2 - 9      SIL NUMBERS
C     10 - 17     IORDER
C       18        TREF
C     19 - 20     FIBRE DISTANCES Z1, Z2 AS SPECIFIED ON PSHELL CARD
C       21        AVGTHK- AVERAGE THICKNESS OF THE ELEMENT
C       22        MOMINR- MOMENT OF INERTIA FACTOR
C     23 - 58     GBAR-MATRIX, 6X6 MATRIX OF MATERIAL PROPERTY (W/O G3)
C     59 - 61     THERMAL EXPANSION COEFFICIENTS FOR MEMBRANE
C     62 - 64     THERMAL EXPANSION COEFFICIENTS FOR BENDING
C     65 - 68     CORNER NODE THICKNESSES
C     69 - 77     TUM-MATRIX, 3X3 TRANSFORMATION FROM MATERIAL TO USER
C                 DEFINED COORDINATE SYSTEM
C       78        OFFSET OF ELEMENT FROM GP PLANE
C       79        ORIGINAL PROPERTY ID FOR COMPOSITES
C     80 - 79+9*NNODE
C                 TEG-MATRIX, A 3X3 MATRIX FOR THE TRANSFORMATION
C                 MATRIX FROM GLOBAL COORD TO ELMT COORD FOR
C                 EACH NODE.
C                 TEG-MATRIX, 3X3 DATA ARE REPEATED FOR NNODES
C     --------
C     START FROM PHIOUT(79+9*NNODE+1) AS A REFERENCE ADDRESS
C                       79+9*4    +1= 116
C
C     ADDRESS     DESCRIPTIONS
C
C        1        T, MEMBRANE THICKNESS AT THIS EVALUATION POINT
C      2 - 10     TES-MATRIX, A 3X3 TRANSFORMATION MATRIX FROM ELEM.
C                        C.S. TO USER DEFINED STRESS C.S. AT THIS
C                        EVALUATION POINT
C     11 - 19     CORRECTION TO GBAR-MATRIX FOR MEMBRANE-BENDING
C                        COUPLING AT THIS EVALUATION POINT
C     20 - 28     TMI-MATRIX, 3X3 TRANSFORMATION FROM TANGENT TO MATERIA
C     29 - 32     G3-MATRIX
C     33 - 32+NNODE
C                 ELEMENT SHAPE FUNCTION VALUES AT THIS EVAL. POINT
C     32+NNODE+1 -
C     32+NNODE+8*NDOF
C                 B-MATRIX, 8 X NDOF
C
C     --------    ABOVE DATA BATCH REPEATED 10 TIMES
C
C     TOTAL PHIOUT WORDS = (116-1) + (32+4+8*(6*4))*10
C                        =    115  + (32+4+192)*10 = 115 + 2280 = 2395
C
C
C     DEFINE STRES (TOTAL OF 86 WORDS), THE STRESS OUTPUT DATA BLOCK
C
C     ADDRESS     DESCRIPTIONS
C
C        1        ELID
C     -------------------------------------------------------
C        2        INTEGRATION POINT NUMBER
C     3  - 10     STRESSES FOR LOWER POINTS
C     11 - 18     STRESSES FOR UPPER POINTS
C     ---------   ABOVE DATA REPEATED 4 TIMES
C     70 - 86     STRESSES FOR CENTER POINT
C
C     DEFINE FORSUL (TOTAL OF 46 WORDS), THE FORCE RESULTANT OUTPUT
C     DATA BLOCK.
C
C     ADDRESS    DESCRIPTIONS
C
C        1       ELID
C     ------------------------------------------------
C        2       GRID POINT NUMBER
C      3 - 10    FORCES
C     --------   ABOVE DATA REPEATED 4 TIMES
C     38 - 46    FORCES FOR CENTER POINT
C
C     NSTOT  = NUMBER OF DATA OUTPUT THRU 'STRES'
C     NFORCE = NUMBER OF DATA OUTPUT THRU 'FORSUL'
C     NNODE  = TOTAL NUMBER OF NODES
C     NDOF   = TOTAL NUMBER OF DEGREES OF FREEDOM
C     LDTEMP = SWITCH TO DETERMINE IF THERMAL EFFECTS ARE PRESENT
C     ICOUNT = POINTER FOR PHIOUT DATA
C
C     STAGE 1 -  INITIALIZATION
C     =========================
C
CWKBNB 3/95 SPR94017
      DO 5 I = 1,6
      EPSAVG( I ) = 0.
5     CONTINUE
CWKBNE 3/95 SPR94017
      NSTOT = 1 + 5 + 5*2*8
      NFORCE= 1 + 5*9
      NNODE = 0
      DO 10 ICHK = 1,8
      IF (KSIL(ICHK) .GT. 0) NNODE = NNODE + 1
   10 EXTRNL(ICHK) = 0
      NDOF = 6*NNODE
      FOUR = NNODE .EQ. 4
C
C     COMMENTS FROM G.C. 2/1990
C     EXTRNL ARE SET TO ZEROS ABOVE AND NEVER SET TO ANY VALUE LATER.
C     IT IS THEN USED TO SET IGRID. WHAT'S EXTRNL FOR?
C     THE ANSWER IS THAT EXTRNL AND IGRID ARE USED ONLY WHEN GRIDS FLAG
C     IS TRUE. GRIDS IS FALSE IN COSMIC VERSION.
C
C     ALSO, A MISSING ROUTINE, FNDGID, SUPPOSELY RETURNS EXTERNAL GRID
C     NUMBER FROM SIL INDEX. FNDGID IS LOCATED A FEW LINES BELOW 80
C
C     CHECK THE OUTPUT AND STRESS REQUEST
C
      GRIDS = .FALSE.
      INTGS = .TRUE.
      MAXSH = ANDF(NSTROP,1) .EQ. 0
      VONMS = ANDF(NSTROP,1) .NE. 0
      EXTRM = ANDF(NSTROP,2) .EQ. 0
      LAYER = ANDF(NSTROP,2) .NE. 0
      BENDNG= MOMINR .GT. 0.0
C
C     NOTE - MAXSH AND EXTRM ARE NO LONGER USED
C
C     IF LAYERED STRESS/STARIN OUTPUT IS REQUESTED, AND THERE ARE NO
C     LAYERED COMPOSITE DATA, SET LAYER FLAG TO FALSE
C
      IF (LAYER .AND. NPCMP+NPCMP1+NPCMP2.LE.0) LAYER = .FALSE.
C
C     IF LAYERED OUTPUT IS REQUESTED BUT THE CURRENT ELEMENT IS NOT A
C     LAYERED COMPOSITE, SET LAYER FLAG TO FALSE
C
      IF (LAYER .AND. IPID.LT.0) LAYER = .FALSE.
C
CWKBDB 3/95 SPR94017
C      OPRQST = -2
C      IF (KSTRS  .EQ. 1) OPRQST = OPRQST + 1
C      IF (KFORCE .EQ. 1) OPRQST = OPRQST + 2
CWKBI NCL93012 3/94
C      IF ( OSTRAI ) OPRQST = OPRQST + 1
C      IF (OPRQST .EQ.-2) RETURN
CWKBDE 3/95 SPR94017
CWKBI  3/95 SPR94017
      IF ( ( KSTRS  .NE. 1 ) .AND. 
     &     ( KFORCE .NE. 1 ) .AND. 
     &     (.NOT.OSTRAI)          )RETURN
C
C     CHECK FOR FIBRE DISTANCES Z1 AND Z2 BEING BLANK
C
      LOGZ12 = -4
      IF (NPHI(19) .EQ. 0) LOGZ12 = LOGZ12 + 2
      IF (NPHI(20) .EQ. 0) LOGZ12 = LOGZ12 + 4
C
C     CHECK FOR THE TYPE OF TEMPERATURE DATA
C     NOTES  1- TYPE TEMPP1 ALSO INCLUDES TYPE TEMPP3
C            2- IF NIETHER TYPE IS TRUE, GRID POINT TEMPERATURES
C               ARE PRESENT.
C
      TEMPP1 = FLAG .EQ. 13
      TEMPP2 = FLAG .EQ.  2
C
C     CHECK FOR OFFSET AND COMPOSITES
C
      OFFSET = PHIOUT(78)
      COMPOS = COMPS.EQ.-1 .AND. IPID.GT.0
C
C     ZERO OUT STRESS AND FORCE RESULTANT ARRAYS
C
      DO 20 K = 1,NSTOT
   20 STRES(K) = 0.0
      DO 30 I = 1,NFORCE
   30 FORSUL(I)= 0.0
      NSTRES(1)= ELID
      NFORS(1) = ELID
C
C     ZERO OUT THE COPY OF GBAR-MATRIX TO BE USED BY THIS ROUTINE
C
      DO 40 K = 1,36
   40 GT(K) = 0.0
C
C     STAGE 2 - ARRANGEMENT OF INCOMING DATA
C     ======================================
C
C     SORT THE GRID TEMPERATURE CHANGES INTO SIL ORDER (IF PRESENT)
C
      IF (LDTEMP .EQ.     -1) GO TO 60
      IF (TEMPP1 .OR. TEMPP2) GO TO 60
C
C     DO 50 K = 1,NNODE
C     KPOINT = IORDER(K)
C  50 DELTAT(K) = STEMP(KPOINT)
C
C     COMMENTS FORM G.CHAN/UNISYS  2/93
C     THE ABOVE DO 50 LOOP DOES NOT WORK SINCE STEMP(2 THRU NNODE) = 0.0
C
      DO 50 K = 1,NNODE
   50 DELTAT(K) = STEMP(1)
C
C     PICK UP THE GLOBAL DISPLACEMENT VECTOR AND TRANSFORM IT
C     INTO THE ELEMENT C.S.
C
   60 DO 80 IDELT = 1,NNODE
      JDELT = IVEC + KSIL(IDELT) - 2
      KDELT = 6*(IDELT-1)
      DO 70 LDELT = 1,6
      TDELTA(LDELT) = Z(JDELT+LDELT)
   70 CONTINUE
C
C     FETCH TEG-MATRIX 3X3 FOR EACH NODE AND LOAD IT IN A 6X6 MATRIX
C     INCLUDE THE EFFECTS OF OFFSET
C
      CALL TLDRS  (OFFSET,IDELT,PHIOUT(80),U)
      CALL GMMATS (U,6,6,0, TDELTA,6,1,0, DELTA(KDELT+1))
   80 CONTINUE
C
C     GET THE EXTERNAL GRID POINT ID NUMBERS FOR CORRESPONDING SIL
C     NUMBERS.
C
C     CALL FNDGID (ELID,8,KSIL,EXTRNL)
C
C     STAGE 3 - CALCULATION OF STRAINS
C     ================================
C
C     INTEGRATION DATA IN PHIOUT IS ARRANGED IN ETA, XI INCREASING
C     SEQUENCE.
C
      ISIG  = 1
      ICOUNT= -(8*NDOF+NNODE+32) + 79 + 9*NNODE
C
      DO 350 INPLAN = 1,5
      INPLN1 = IPN(INPLAN)
C
C     MATCH GRID ID NUMBER WHICH IS IN SIL ORDER
C
      IF (INPLAN .EQ. 5) GO TO 100
      DO 90 I = 1,NNODE
      IF (IORDER(I) .NE. INPLN1) GO TO 90
      IGRID(INPLAN) = EXTRNL(I)
      GO TO 110
   90 CONTINUE
      GO TO 110
C
  100 IGRID(INPLAN) = CENTER
  110 CONTINUE
C
      DO 340 IZTA = 1,2
      ZETA = (IZTA*2-3)*CONST
C
      ICOUNT = ICOUNT + 8*NDOF + NNODE + 32
      IF (IZTA .EQ. 2) GO TO 160
C
C     THICKNESS AND MOMENT OF INERTIA AT THIS POINT
C
      THIKNS(INPLAN) = PHIOUT(ICOUNT+1)
      IF (GRIDS .AND. INPLAN.NE.5) THIKNS(INPLAN) = GPTH(INPLN1)
      REALI(INPLAN) = MOMINR*THIKNS(INPLAN)**3/12.0
C
C     DETERMINE FIBER DISTANCE VALUES
C
      IF (LOGZ12 .EQ. -4) GO TO 150
      IF (LOGZ12) 120,130,140
C
  120 Z1(INPLAN) = -0.5*THIKNS(INPLAN)
      Z2(INPLAN) = PHIOUT(20)
      GO TO 160
C
  130 Z1(INPLAN) = PHIOUT(19)
      Z2(INPLAN) = 0.5*THIKNS(INPLAN)
      GO TO 160
C
  140 Z1(INPLAN) = -0.5*THIKNS(INPLAN)
      Z2(INPLAN) = -Z1(INPLAN)
      GO TO 160
C
  150 Z1(INPLAN) = PHIOUT(19)
      Z2(INPLAN) = PHIOUT(20)
  160 CONTINUE
C
C     FIRST COMPUTE LOCAL STRAINS UNCORRECTED FOR THERMAL STRAINS
C     AT THIS EVALUATION POINT.
C
C        EPSLN  = PHIOUT(KSIG) * DELTA
C          EPS  =       B      *   U
C          8X1        8XNDOF    NDOFX1
C
      KSIG = ICOUNT+NNODE+33
      CALL GMMATS (PHIOUT(KSIG),8,NDOF,0, DELTA(1),NDOF,1,0, EPSLN)
C
C     CALCULATE THERMAL STRAINS IF TEMPERATURES ARE PRESENT
C
      IF (LDTEMP .EQ. -1) GO TO 260
      DO 170 IET = 1,6
  170 EPSLNT(IET) = 0.0
C
C     A) MEMBRANE STRAINS
C
      IF (TEMPP1 .OR. TEMPP2) GO TO 190
C
C     GRID TEMPERATURES
C
      KSHP = ICOUNT + 32
      TBAR = 0.0
      DO 180 ISH = 1,NNODE
      KSH  = KSHP + ISH
  180 TBAR = TBAR + PHIOUT(KSH)*DELTAT(ISH)
      TMEAN= TBAR
      GO TO 200
C
C     ELEMENT TEMPERATURES
C
  190 TBAR = STEMP(1)
  200 TBAR = TBAR - TSUB0
      DO 210 IEPS = 1,3
  210 EPSLNT(IEPS) = -TBAR*ALFAM(IEPS)
C
C     B) BENDING STRAINS (ELEMENT TEMPERATURES ONLY)
C
      IF (.NOT.BENDNG) GO TO 260
      IF (.NOT.(TEMPP1 .OR. TEMPP2)) GO TO 260
C
C     EXTRACT G2-MATRIX FROM GBAR-MATRIX AND CORRECT IT FOR COUPLING
C
      IG21 = 0
      DO 220 IG2 = 1,3
      IG22 = (IG2-1)*6 + 21
      DO 220 JG2 = 1,3
      IG21 = IG21 + 1
      JG22 = JG2  + IG22
  220 G2(IG21) = G(JG22) + PHIOUT(ICOUNT+10+IG21)
C
      IG2AB = (ISIG*3)/5 + 1
      CALL GMMATS (G2,3,3,0, ALFAB,3,1,0, G2ALFB(IG2AB))
C
      IF (TEMPP1) GO TO 240
      CALL INVERS (3,G2,3,GDUM,0,DETG2,ISNGG2,INDXG2)
      CALL GMMATS (G2,3,3,0, STEMP(2),3,1,0, KHIT)
      DO 230 IEPS = 4,6
  230 EPSLNT(IEPS) = KHIT(IEPS-3)*ZETA*THIKNS(INPLAN)/(2.*REALI(INPLAN))
      GO TO 260
C
  240 TPRIME = STEMP(2)
      DO 250 IEPS = 4,6
  250 EPSLNT(IEPS) = -TPRIME*ALFAB(IEPS-3)*ZETA*THIKNS(INPLAN)/2.
C
C     MODIFY GBAR-MATRIX
C
  260 I1 = -6
      I2 = 12
      I3 = 11 + ICOUNT
      DO 270 I = 1,3
      I1 = I1 + 6
      I2 = I2 + 6
      DO 270 J = 1,3
      J1 = J  + I1
      J3 = J1 + 3
      J4 = J  + I2
      J2 = J4 + 3
      GT(J1) = G(J1)
      GT(J2) = G(J2)
      GT(J3) = G(J3) + PHIOUT(I3)
      GT(J4) = G(J4) + PHIOUT(I3)
  270 I3 = I3 + 1
C
C     DETERMINE G MATRIX FOR THIS EVALUATION POINT
C
      DO 280 I = 1,4
  280 G3(I) = PHIOUT(ICOUNT+28+I)
C
      IF (LDTEMP .EQ. -1) GO TO 300
C
C     CORRECT STRAINS FOR THERMAL EFFECTS
C
      DO 290 I = 1,6
  290 EPSLN(I) = EPSLN(I) + EPSLNT(I)
C
C     CALCULATE STRESS VECTOR
C
  300 CALL GMMATS (GT(1),6,6,0, EPSLN(1),6,1,0, TSIGMA(1))
      CALL GMMATS (G3(1),2,2,0, EPSLN(7),2,1,0, TSIGMA(7))
CWKBNB NCL93012 3/94
      IF ( IZTA .NE. 1 ) GO TO 303
      DO 301 IAV = 1, 3
      EPSAVG(IAV) = EPSAVG(IAV) + EPSLN(IAV)
301   CONTINUE
      DO 302 IAV = 4, 6
      EPSAVG(IAV) = EPSAVG(IAV) + EPSLN(IAV) / CONST
302   CONTINUE
303   CONTINUE
CWKBNE NCL93012 3/94
      IF (.NOT.BENDNG) GO TO 320
C
C     COMBINE STRESSES ONLY IF 'BENDING'
C
      DO 310 I = 1,3
  310 TSIGMA(I) = TSIGMA(I+3)
C
  320 CONTINUE
C
C     TRANSFORM STRESSES FROM ELEMENT TO STRESS C.S.
C
      DO 330 I = 1,9
  330 TES(I) = PHIOUT(ICOUNT+1+I)
C
      TESU(1) = TES(1)*TES(1)
      TESU(2) = TES(4)*TES(4)
      TESU(3) = TES(1)*TES(4)
      TESU(4) = TES(2)*TES(2)
      TESU(5) = TES(5)*TES(5)
      TESU(6) = TES(2)*TES(5)
      TESU(7) = TES(1)*TES(2)*2.0
      TESU(8) = TES(4)*TES(5)*2.0
      TESU(9) = TES(1)*TES(5) + TES(2)*TES(4)
C
      CALL GMMATS (TESU(1),3,3,1, TSIGMA(1),3,1,0, TSTR(ISIG))
C
      TESV(1) = TES(5)*TES(9) + TES(6)*TES(8)
      TESV(2) = TES(2)*TES(9) + TES(8)*TES(3)
      TESV(3) = TES(4)*TES(9) + TES(7)*TES(6)
      TESV(4) = TES(1)*TES(9) + TES(3)*TES(7)
C
      ISIG = ISIG + 3
      CALL GMMATS (TESV(1),2,2,1, TSIGMA(7),2,1,0, TSTR(ISIG))
C
  340 ISIG = ISIG + 2
  350 CONTINUE
C
C     IF REQUIRED, EXTRAPOLATE STRESSES FROM INTEGRATION POINTS
C     TO CORNER POINTS.
C
C     FIRST EXTRAPOLATE ACROSS ZETA, REGARDLESS OF INPLANE REQUEST
C
      DO 370 IKK = 1,5
      ITB = (IKK-1)*10
      DO 360 IJJ = 1,5
      TSTB(IKK,IJJ) = TSTR(ITB+  IJJ)
      TSTT(IKK,IJJ) = TSTR(ITB+5+IJJ)
  360 CONTINUE
  370 CONTINUE
C
      X1 = -CONST
      X2 = -X1
C
      DO 380 K = 1,2
      IK = 0
      XX = -1.0
      IF (K .EQ. 2) XX =-XX
      IF (K .EQ. 2) IK = 5
C
      XN22 = (XX-X1)/(X2-X1)
      XN11 = 1.0 - XN22
C
      DO 380 I = 1,5
      IKKN = (I-1)*10 + IK
      DO 380 J = 1,5
  380 TSTN(IKKN+J) = TSTB(I,J)*XN11 + TSTT(I,J)*XN22
C
      DO 390 II = 1,50
  390 TSTR(II) = TSTN(II)
C
      IF (INTGS .OR. COMPOS) GO TO 540
C
      IXTR = 5
      JXTR = IXTR*4
C
      IZ1 = 0
      DO 530 IZ = 1,2
C
      DO 400 I = 1,JXTR
  400 TST(I) = 0.0
C
C     FOR THE SAKE OF COMPATIBILITY BETWEEN THE CONVENTION FOR
C     SHEAR FORCES, AND THE CONVENTION FOR EXTRAPOLATION, WE MAY
C     HAVE TO CHANGE THE SIGNS AROUND FOR SPECIFIC POINTS. THEY
C     WILL BE RETURNED TO THE ORIGINAL SIGNS AFTER EXTRAPOLATION IS
C     COMPLETE.
C
CWKBR 3/95 SPR94017      IF (OPRQST .LT. 0) GO TO 460
      IF ( KFORCE .NE. 1 ) GO TO 460
      DO 440 I = 1,4
      J = (I-1)*2*IXTR + IZ1 + 4
      IF (TSTR(J) .EQ. 0.0) GO TO 410
      SIGNY(I) = TSTR(J)/ABS(TSTR(J))
      GO TO 420
  410 SIGNY(I) = 0.0
  420 IF (TSTR(J+1) .EQ. 0.0) GO TO 430
      SIGNX(I) = TSTR(J+1)/ABS(TSTR(J+1))
      GO TO 440
  430 SIGNX(I) = 0.0
  440 CONTINUE
C
      SNRVRY = .FALSE.
      IF (SIGNY(1)*SIGNY(2).LE.0.0 .OR. SIGNY(3)*SIGNY(4).LE.0.0 .OR.
     1    SIGNY(3)*SIGNY(1).LE.0.0) SNRVRY = .TRUE.
      SNRVRX = .FALSE.
      IF (SIGNX(1)*SIGNX(2).LE.0.0 .OR. SIGNX(3)*SIGNX(4).LE.0.0 .OR.
     1    SIGNX(3)*SIGNX(1).LE.0.0) SNRVRX = .TRUE.
C
      IF (.NOT.SNRVRY) GO TO 450
      TSTR(IZ1+4) = -TSTR(IZ1+4)
      TSTR(IZ1+4+4*IXTR) = -TSTR(IZ1+4+4*IXTR)
  450 IF (.NOT.SNRVRX) GO TO 460
      TSTR(IZ1+5) = -TSTR(IZ1+5)
      TSTR(IZ1+5+2*IXTR) = -TSTR(IZ1+5+2*IXTR)
  460 CONTINUE
C
      XPOINT(1) = -1.0
      XPOINT(2) = +1.0
      IR = 0
C
      DO 490 IX = 1,2
      XI = XPOINT(IX)
C
      DO 490 IE = 1,2
      ETA = XPOINT(IE)
C
      SHPFNC(1) = 0.75*(CONST-XI)*(CONST-ETA)
      SHPFNC(2) = 0.75*(CONST-XI)*(CONST+ETA)
      SHPFNC(3) = 0.75*(CONST+XI)*(CONST-ETA)
      SHPFNC(4) = 0.75*(CONST+XI)*(CONST+ETA)
C
      LI = IR*IXTR
      IR = IR + 1
C
      DO 480 IS = 1,4
      LK = (IS-1)*2*IXTR + IZ1
C
      DO 470 IT = 1,IXTR
      TST(LI+IT) = TST(LI+IT) + SHPFNC(IS)*TSTR(LK+IT)
  470 CONTINUE
  480 CONTINUE
  490 CONTINUE
C
      J1 = 0
      DO 500 IS = 1,4
      J2 = (IS-1)*2*IXTR + IZ1
      DO 500 JS = 1,IXTR
      J1 = J1 + 1
      J2 = J2 + 1
  500 TSTR(J2) = TST(J1)
C
C     CHANGE THE SIGNS BACK, IF NECESSARY
C
CWKBR 3/95 SPR94017     IF (OPRQST .LT. 0) GO TO 520
      IF ( KFORCE .NE. 1 ) GO TO 520
      IF (.NOT.SNRVRY) GO TO 510
      TSTR(IZ1+4) = -TSTR(IZ1+4)
      TSTR(IZ1+4+4*IXTR) = -TSTR(IZ1+4+4*IXTR)
  510 IF (.NOT.SNRVRX) GO TO 520
      TSTR(IZ1+5) = -TSTR(IZ1+5)
      TSTR(IZ1+5+2*IXTR) = -TSTR(IZ1+5+2*IXTR)
  520 CONTINUE
  530 IZ1 = IZ1 + IXTR
  540 CONTINUE
C
C     STAGE 4 - CALCULATION OF OUTPUT STRESSES
C     ========================================
C
CWKBR 3/95 SPR94017     IF (OPRQST .EQ. 0) GO TO 740  
      IF ( (KSTRS .NE. 1) .AND. (.NOT. OSTRAI) ) GO TO 740  
C
CWKBNB NCL93012 3/94
      DO 731 IAV = 1, 3
      EPSAVG(IAV) = EPSAVG(IAV) / 5.
731   CONTINUE
      DO 732 IAV = 4, 6
      EPSAVG(IAV) = EPSAVG(IAV) / ( 5. * PHIOUT(21)/2. )
732   CONTINUE
CWKBNE NCL93012 3/94
      ISIG    = 0
      IG2A    = 0
      STRX(1) = 0.0
      STRX(2) = 0.0
      STRY(1) = 0.0
      STRY(2) = 0.0
      STRS(1) = 0.0
      STRS(2) = 0.0
      DO 730 INPLAN = 1,5
      INPLN1 = INPLAN
      IF (INPLAN .EQ. 2) INPLN1 = 4
      IF (INPLAN .EQ. 3) INPLN1 = 2
      IF (INPLAN .EQ. 4) INPLN1 = 3
C
      ISTRES = (INPLN1-1)*17 + 2
C
      IDPONT = IGRID(INPLAN)
      IF (INTGS) IDPONT = INPLN1
      IF (INTGS .AND. INPLAN.EQ.5) IDPONT = CENTER
      NSTRES(ISTRES) = IDPONT
      THICK = THIKNS(INPLAN)
C
      DO 720 IZ = 1,2
      IF (IZ .EQ. 2) ISTRES = ISTRES + 8
      FIBRE = Z1(INPLAN)
      IF (IZ .EQ. 2) FIBRE = Z2(INPLAN)
CWKBNB NCL93012 3/94
      IF ( .NOT. OSTRAI ) GO TO 545
      IF ( IZ .NE. 1 ) GO TO 542
      NSTRES( ISTRES+1 ) = 0
      SIGMA( 1 ) = EPSAVG( 1 )
      SIGMA( 2 ) = EPSAVG( 2 )
      SIGMA( 3 ) = EPSAVG( 3 )
      GO TO 630
542   CONTINUE
      NSTRES( ISTRES+1 ) = -1
      SIGMA( 1 ) = EPSAVG( 4 )
      SIGMA( 2 ) = EPSAVG( 5 )
      SIGMA( 3 ) = EPSAVG( 6 )
      GO TO 630
545   CONTINUE
CWKBNE NCL93012 3/94
      STRES(ISTRES+1) = FIBRE
C
C     EVALUATE STRESSES AT THIS FIBRE DISTANCE
C
      DO 550 I = 1,3
      SIGMA(I) = (0.5-FIBRE/THICK)*TSTR(ISIG+I) + (0.5+FIBRE/THICK)
     1           *TSTR(ISIG+I+5)
  550 CONTINUE
C
C     IF TEMPERATURES ARE PRESENT, CORRECT STRESSES FOR THERMAL
C     STRESSES ASSOCIATED WITH THE DATA RELATED TO FIBRE DISTANCES.
C
      IF (LDTEMP .EQ. -1) GO TO 610
C
C     IF NO BENDING, TREAT IT LIKE GRID POINT TEMPERATURES
C
      IF (.NOT.BENDNG) GO TO 610
      IF (TEMPP1) GO TO 560
      IF (TEMPP2) GO TO 570
      GO TO 610
C
  560 TSUBI = STEMP(2+IZ)
      IF (ABS(TSUBI) .LT. EPSS) GO TO 610
      TSUBI = TSUBI - TPRIME*FIBRE
      GO TO 590
C
  570 TSUBI = STEMP(4+IZ)
      IF (ABS(TSUBI) .LT. EPSS) GO TO 610
      DO 580 IST = 1,3
  580 SIGMA(IST) = SIGMA(IST) - STEMP(IST+1)*FIBRE/REALI(INPLAN)
  590 TSUBI = TSUBI - TBAR
      DO 600 ITS = 1,3
      SIGMA(ITS) = SIGMA(ITS) - TSUBI*G2ALFB(IG2A+ITS)
  600 CONTINUE
C
C     AVERAGE THE VALUES FROM OTHER 4 POINTS FOR THE CENTER POINT
C
  610 IF (INPLAN .EQ. 5) GO TO 620
      STRX(IZ) = STRX(IZ) + 0.25*SIGMA(1)
      STRY(IZ) = STRY(IZ) + 0.25*SIGMA(2)
      STRS(IZ) = STRS(IZ) + 0.25*SIGMA(3)
      GO TO 630
  620 SIGMA(1) = STRX(IZ)
      SIGMA(2) = STRY(IZ)
      SIGMA(3) = STRS(IZ)
  630 DO 640 IS = 1,3
  640 STRES(ISTRES+1+IS) = SIGMA(IS)
C
C     CALCULATE PRINCIPAL STRESSES
C
      SIGAVG = 0.5*(SIGMA(1) + SIGMA(2))
      PROJ   = 0.5*(SIGMA(1) - SIGMA(2))
      TAUMAX = PROJ*PROJ + SIGMA(3)*SIGMA(3)
CWKBNB 7/94 SPR94004
      IF ( .NOT. OSTRAI ) GO TO 645
      TAUMAX = PROJ*PROJ + SIGMA(3)*SIGMA(3)/4.
      GO TO 649
645   CONTINUE
CWKBNE 7/94 SPR94004
      IF (ABS(TAUMAX) .LE. EPSS) GO TO 650
CWKBI  7/94 SPR94004
649   CONTINUE
      TAUMAX = SQRT(TAUMAX)
      GO TO 660
  650 TAUMAX = 0.0
C
C     PRINCIPAL ANGLE
C
  660 TXY2 = SIGMA(3)*2.0
      PROJ = PROJ*2.0
      IF (ABS(TXY2).LE.EPSA .AND. ABS(PROJ).LE.EPSA) GO TO 670
      STRES(ISTRES+5) = 28.647890*ATAN2(TXY2,PROJ)
      GO TO 680
  670 STRES(ISTRES+5) = 0.0
  680 SIGMA1 = SIGAVG + TAUMAX
      SIGMA2 = SIGAVG - TAUMAX
      STRES(ISTRES+6) = SIGMA1
      STRES(ISTRES+7) = SIGMA2
C
C     OUTPUT VON MISES YIELD STRESS IF ASKED FOR BY THE USER
C
      IF (VONMS) GO TO 690
      STRES(ISTRES+8) = TAUMAX
CWKBI NCL93012 3/94
      IF ( OSTRAI ) STRES(ISTRES+8) = 2.*TAUMAX
      GO TO 720
C
  690 SIGYP = SIGMA1*SIGMA1 + SIGMA2*SIGMA2 - SIGMA1*SIGMA2
      IF (ABS(SIGYP) .LE. EPSS) GO TO 700
      SIGYP = SQRT(SIGYP)
      GO TO 710
  700 SIGYP = 0.0
  710 STRES(ISTRES+8) = SIGYP
C
  720 IG2A = IG2A + 3
  730 ISIG = ISIG + 10
CWKBNB NCL93012 3/94
      DO 733 IAV = 1, 6
      EPSAVG( IAV ) = 0.
733   CONTINUE
CWKBNE NCL93012 3/94
C
C     STAGE 5 - ELEMENT FORCE OUTPUT
C     ==============================
C
  740 IF (LAYER) GO TO 750
CWKBR 3/95 SPR94017     IF (OPRQST .LT. 0) GO TO 790
      IF ( KFORCE .NE. 1 ) GO TO 790
C
  750 CONTINUE
      ISIG   = 0
      VXCNTR = 0.0
      VYCNTR = 0.0
      FXCNTR = 0.0
      FYCNTR = 0.0
      FXYCNT = 0.0
      DO 780 INPLAN = 1,5
      INPLN1 = INPLAN
      IF (INPLAN .EQ. 2) INPLN1 = 4
      IF (INPLAN .EQ. 3) INPLN1 = 2
      IF (INPLAN .EQ. 4) INPLN1 = 3
      THICK = THIKNS(INPLAN)
C
      IFORCE = (INPLN1-1)*9 + 2
C
      IDPONT = IGRID(INPLAN)
      IF (INTGS) IDPONT = INPLN1
      IF (INTGS .AND. INPLAN.EQ.5) IDPONT = CENTER
      NFORS(IFORCE) = IDPONT
C
C     CALCULATE FORCES AT MID-SURFACE LEVEL
C
      DO 760 IFOR = 1,3
      FORSUL(IFORCE+IFOR  )=(TSTR(ISIG+IFOR)+TSTR(ISIG+IFOR+5))*THICK/2.
      FORSUL(IFORCE+IFOR+3)=(TSTR(ISIG+IFOR)-TSTR(ISIG+IFOR+5))*
     1                       REALI(INPLAN)/THICK
  760 CONTINUE
C
C     INTERCHANGE 7 AND 8 POSITIONS TO BE COMPATIBLE WITH THE
C     OUTPUT FORMAT OF VX AND VY (WE HAVE CALCULATED VY AND VX)
C
      IF (INPLAN .EQ. 5) GO TO 770
      FORSUL(IFORCE+7) = (TSTR(ISIG+5) + TSTR(ISIG+10))*THICK*0.5
      FORSUL(IFORCE+8) = (TSTR(ISIG+4) + TSTR(ISIG+ 9))*THICK*0.5
C
C     SUBSTITUTE THE AVERAGE OF CORNER (OR INTEGRATION) POINT
C     MEMBRANE AND SHEAR FORCES FOR THE CENTER POINT
C
      FXCNTR = FXCNTR + FORSUL(IFORCE+1)*0.25
      FYCNTR = FYCNTR + FORSUL(IFORCE+2)*0.25
      FXYCNT = FXYCNT + FORSUL(IFORCE+3)*0.25
      VXCNTR = VXCNTR + FORSUL(IFORCE+7)*0.25
      VYCNTR = VYCNTR + FORSUL(IFORCE+8)*0.25
      GO TO 780
  770 CONTINUE
      FORSUL(IFORCE+1) = FXCNTR
      FORSUL(IFORCE+2) = FYCNTR
      FORSUL(IFORCE+3) = FXYCNT
      FORSUL(IFORCE+7) = VXCNTR
      FORSUL(IFORCE+8) = VYCNTR
C
  780 ISIG = ISIG + 10
C
C     DO NOT WRITE TO PHIOUT IF LAYER STRESSES ARE REQUESTED
C     BECAUSE PHIOUT NEEDS TO BE INTACT
      IF (LAYER) GO TO 900
C
C     STAGE 7 - SHIPPING OF NORMAL STRESSES
C     =====================================
C
C     STORE THE STRESSES WHERE THE HIGHER LEVEL ROUTINES EXPECT
C     TO FIND THEM.
C     BUT FIRST, MOVE THE CENTER POINT STRESSES TO THE TOP.
C
CWKBR 3/95 SPR94017     IF (OPRQST .EQ. 0) GO TO 840     
      IF ( (KSTRS .NE. 1) .AND. (.NOT.OSTRAI) ) GO TO 840     
  790 NPHI(101) = NSTRES(1)
      DO 800 I = 3,18
      I99 = I + 99
  800 NPHI(I99) = NSTRES(I+68)
C
C     DEBUG PRINTOUT
C
      IF (DEBUG) WRITE (NOUT,810) (STRES(I),I=71,86)
  810 FORMAT (' SQUD42 - STRESSES', (/1X,8E13.5))
C
      DO 830 I = 19,86
      I99 = I + 99
  830 NPHI(I99) = NSTRES(I-17)
C
C     STORE FORCES IN THEIR APPROPRIATE LOCATION
C
CWKBR 3/95 SPR94017     IF (OPRQST .LT. 0) RETURN
      IF ( KFORCE .NE. 1 ) RETURN
  840 NPHI(201) = NFORS(1)
      DO 850 I = 3,10
      I199 = I + 199
  850 NPHI(I199) = NFORS(I+36)
C
C     DEBUG PRINTOUT
C
      IF (DEBUG) WRITE (NOUT,860) (FORSUL(I),I=39,46)
  860 FORMAT (' SQUD42 - FORCES', (/1X,8E13.5))
C
      DO 870 I = 11,46
      I199 = I + 199
  870 NPHI(I199) = NFORS(I-9)
C
C     PROCESSING FOR NORMAL STRESS REQUEST COMPLETED
C
      GO TO 2100
C
C     ELEMENT LAYER STRESS CALCULATION
C
C     CHECK STRESS AND FORCE OUTPUT REQUEST
C
  900 IF ((KFORCE.NE.0 .OR. KSTRS.NE.0) .AND. .NOT.COMPOS) GO TO 2220
C
C     WRITE FORCE RESULTANTS TO OEF1L IF REQUESTED
C         1.    10*ELEMENT ID + DEVICE CODE (FDEST)
C        2-9.   FORCE RESULTANTS
C               FX, FY, FXY, MX, MY, MXY, VX, VY
C
      IF (KFORCE .EQ.  0) GO TO 910
      ELEMID = 10*ELID + FDEST
      IF (LDTEMP .NE. -1) GO TO 910
      CALL WRITE (OEF1L,ELEMID,1,0)
      CALL WRITE (OEF1L,FORSUL(39),8,0)
C
  910 IF (KSTRS.EQ.0 .AND. LDTEMP.EQ.-1) RETURN
      ELEMID = 10*ELID + SDEST
C
C     LOCATE PID BY CARRYING OUT A SEQUENTIAL SEARCH
C     OF THE PCOMPS DATA BLOCK, AND ALSO DETERMINE
C     THE TYPE OF 'PCOMP' BULK DATA ENTRY.
C
C     SET POINTER LPCOMP
C
      LPCOMP = IPCMP + NPCMP + NPCMP1 + NPCMP2
C
C
C     POINTER DESCRIPITION
C     --------------------
C     IPCMP  - LOCATION OF START OF PCOMP DATA IN CORE
C     NPCMP  - NUMBER OF WORDS OF PCOMP DATA
C     IPCMP1 - LOCATION OF START OF PCOMP1 DATA IN CORE
C     NPCMP1 - NUMBER OF WORDS OF PCOMP1 DATA
C     IPCMP2 - LOCATION OF START OF PCOMP2 DATA IN CORE
C     NPCMP2 - NUMBER OF WORDS OF PCOMP2 DATA
C
C     ITYPE  - TYPE OF PCOMP BULK DATA ENTRY
C
C     LAMOPT - LAMINATION GENERATION OPTION
C            = SYM  (SYMMETRIC)
C            = MEM  (MEMBRANE )
C            = SYMMEM  (SYMMETRIC-MEMBRANE)
C
C     FTHR   - FAILURE THEORY
C            = 1    HILL
C            = 2    HOFFMAN
C            = 3    TSAI-WU
C            = 4    MAX-STRESS
C            = 5    MAX-STRAIN
C
C     ULTSTN - ULTIMATE STRENGTH VALUES
C
C     SET POINTERS
C
      ITYPE = -1
C
      PCMP  = .FALSE.
      PCMP1 = .FALSE.
      PCMP2 = .FALSE.
C
      PCMP  = NPCMP  .GT. 0
      PCMP1 = NPCMP1 .GT. 0
      PCMP2 = NPCMP2 .GT. 0
C
C     CHECK IF NO 'PCOMP' DATA HAS BEEN READ INTO CORE
C
      IF (.NOT.PCMP .AND. .NOT.PCMP1 .AND. .NOT.PCMP2) GO TO 2200
C
C     SEARCH FOR PID IN PCOMP DATA
C
      IF (.NOT.PCMP) GO TO 960
C
      IP = IPCMP
      IF (INTZ(IP) .EQ. IPID) GO TO 950
      IPC11 = IPCMP1 - 1
      DO 930 IP = IPCMP,IPC11
      IF (INTZ(IP).EQ.-1 .AND. IP.LT.(IPCMP1-1)) GO TO 920
      GO TO 930
  920 IF (INTZ(IP+1) .EQ. IPID) GO TO 940
  930 CONTINUE
      GO TO 960
C
  940 IP = IP + 1
  950 ITYPE = PCOMP
      GO TO 1070
C
C     SEARCH FOR PID IN PCOMP1 DATA
C
  960 IF (.NOT.PCMP1) GO TO 1010
      IP = IPCMP1
      IF (INTZ(IP) .EQ. IPID) GO TO 1000
      IPC21 = IPCMP2 - 1
      DO 980 IP = IPCMP1,IPC21
      IF (INTZ(IP).EQ.-1 .AND. IP.LT.(IPCMP2-1)) GO TO 970
      GO TO 980
  970 IF (INTZ(IP+1) .EQ. IPID) GO TO 990
  980 CONTINUE
      GO TO 1010
C
  990 IP = IP + 1
 1000 ITYPE = PCOMP1
      GO TO 1070
C
C     SEARCH FOR PID IN PCOMP2 DATA
C
 1010 IF (.NOT.PCMP2) GO TO 1060
C
      IP = IPCMP2
      IF (INTZ(IP) .EQ. IPID) GO TO 1050
      LPC11 = LPCOMP - 1
      DO 1030 IP = IPCMP2,LPC11
      IF (INTZ(IP).EQ.-1 .AND. IP.LT.(LPCOMP-1)) GO TO 1020
      GO TO 1030
 1020 IF (INTZ(IP+1) .EQ. IPID) GO TO 1040
 1030 CONTINUE
      GO TO 1060
C
 1040 IP = IP + 1
 1050 ITYPE = PCOMP2
      GO TO 1070
C
C     CHECK IF PID HAS NOT BEEN LOCATED
C
 1060 IF (ITYPE .EQ. -1) GO TO 2200
C
C     LOCATION OF PID
C
 1070 PIDLOC = IP
      LAMOPT = INTZ(PIDLOC+8)
C
C     INTILIZE
C
      DO 1080 IR = 1,3
      STRNT(IR) = 0.0
      STRNB(IR) = 0.0
 1080 CONTINUE
C
C     CALCULATION OF STRAINS
C
C     INTEGRATION DATA IN PHIOUT IS ARRANGED IN ETA,XI INCREASING
C     SEQUENCE.
C
      ISIG   = 1
      ICOUNT = -(8*NDOF+NNODE+32) + 79 + 9*NNODE
C
      DO 1200 INPLAN = 1,5
      INPLN1 = IPN(INPLAN)
C
C     MATCH GRID ID NUMBER WHICH IS IN SIL ORDER
C
      IF (INPLAN .EQ. 5) GO TO 1100
      DO 1090 I = 1,NNODE
      IF (IORDER(I) .NE. INPLN1) GO TO 1090
      IGRID(INPLAN) = EXTRNL(I)
      GO TO 1110
 1090 CONTINUE
      GO TO 1110
C
 1100 IGRID(INPLAN) = CENTER
 1110 CONTINUE
C
      DO 1190 IZTA = 1,2
      ZETA = (IZTA*2-3)*CONST
C
      ICOUNT = ICOUNT + 8*NDOF + NNODE + 32
C
C     FIRST COMPUTE LOCAL STRAINS AT THIS EVALUATION POINT
C
C        EPSLN = PHIOUT(KSIG) * DELTA
C          EPS =        B     *   U
C          8X1        8XNDOF    NDOFX1
C
      KSIG = ICOUNT + NNODE + 33
      CALL GMMATS (PHIOUT(KSIG),8,NDOF,0, DELTA(1),NDOF,1,0, EPSLN)
C
C     TRANSFORM THE STRAINS AT THIS EVALUATION POINT TO THE
C     MATERIAL COORDINATE SYSTEM
C
      DO 1120 IR = 1,9
 1120 TMI(IR) = PHIOUT(ICOUNT+19+IR)
C
C     TOTAL STRAIN AT EVALUATION POINT = MEMBRANE + BENDING
C
      DO 1130 IR = 1,3
 1130 EPSTOT(IR) = EPSLN(IR) + EPSLN(IR+3)
C
C     GENERATE TRANS-MATRIX TO TRANSFORM STRAINS FROM I TO M SYSTEM
C
      TRANS(1)  = TMI(1)*TMI(1)
      TRANS(2)  = TMI(2)*TMI(2)
      TRANS(3)  = TMI(1)*TMI(2)
      TRANS(4)  = TMI(4)*TMI(4)
      TRANS(5)  = TMI(5)*TMI(5)
      TRANS(6)  = TMI(4)*TMI(5)
      TRANS(7)  = 2.0*TMI(1)*TMI(4)
      TRANS(8)  = 2.0*TMI(2)*TMI(5)
      TRANS(9)  = TMI(1)*TMI(5) + TMI(2)*TMI(4)
C
C     TRANSFORM TOTAL STRAINS
C
      CALL GMMATS (TRANS(1),3,3,0, EPSTOT(1),3,1,0, EPSE(1))
C
      IF (INPLAN .EQ. 5) GO TO 1160
C
C     AVERAGE THE STRAIN VECTORS OF THE FOUR INTGS POINTS AT EACH
C     LEVEL TO CALCULATE THE ELEMENT CENTRE STRAIN VECTOR FOR THE
C     UPPER AND BOTTOM LEVELS.
C
      DO 1150 IR = 1,3
      IF (IZTA .EQ. 2) GO TO 1140
      STRNB(IR) = STRNB(IR) + 0.25*EPSE(IR)
      GO TO 1150
 1140 STRNT(IR) = STRNT(IR) + 0.25*EPSE(IR)
 1150 CONTINUE
      GO TO 1190
C
C     TOTAL STRAIN VECTORS AT ELEMENT CENTRE
C
 1160 DO 1180 IR = 1,3
      IF (IZTA .EQ. 2) GO TO 1170
      STRNBC(IR) = EPSE(IR)
      GO TO 1180
 1170 STRNTC(IR) = EPSE(IR)
 1180 CONTINUE
C
 1190 CONTINUE
 1200 CONTINUE
C
C     EXTRAPOLATE STRAINS ACROSS ZETA
C
      DO 1210 IR = 1,3
      EPST(IR) = (STRNT(IR)-STRNB(IR))*(+1.0+CONST)/(2.0*CONST)
     1         +  STRNB(IR)
      EPSB(IR) = (STRNT(IR)-STRNB(IR))*(-1.0+CONST)/(2.0*CONST)
     1         +  STRNB(IR)
 1210 CONTINUE
C
C     CALCULATE LAYER STRESSES AND FAILURE INDICES (IF REQUESTED)
C     AND WRITE TO THE OUTPUT FILE OES1L
C         1.    10*ELEMENT ID + DEVICE CODE (SDEST)
C         2.    NLAYER - NUMBER OF LAYERS FOR LAMINATE
C         3.    TYPE OF FAILURE THEORY SELECTED
C
C         4.    PLY ID
C       5,6,7.  LAYER STRESSES
C         8.    PLY FAILURE INDEX (FP)
C         9.    IFLAG (= 1 IF FP.GE.0.999, DEFAULT = 0)
C       10,11.  INTERLAMINAR SHEAR STRESSES
C        12.    SHEAR BONDING INDEX (SB)
C        13.    IFLAG (= 1 IF SB.GE.0.999, DEFAULT = 0)
C         :     4 - 13 REPEATED FOR THE NUMBER OF LAYERS WITH
C         :           LAYER STRESS REQUEST
C      LAST-1.  MAXIMUM FAILURE INDEX OF LAMINATE  (FIMAX)
C       LAST.   IFLAG (= 1 IF FIMAX.GE.0.999, DEFAULT = 0)
C
C      1-LAST.  REPEAT FOR NUMBER OF ELEMENTS
C
C       (NOTE - ONLY THE ELEMENT CENTRE VALUES ARE CALCULATED)
C
C     == 1.
C
      IF (KSTRS .EQ. 1) CALL WRITE (OES1L,ELEMID,1,0)
C
C     DETERMINE INTRINSIC LAMINATE PROPERTIES
C
C     LAMINATE THICKNESS
C
      TLAM = PHIOUT(21)
C
C     REFERENCE SURFACE
C
      ZREF = -TLAM/2.0
C
C     NUMBER OF LAYERS
C
      NLAY = INTZ(PIDLOC+1)
C
C     FOR PCOMP BULK DATA DETERMINE HOW MANY LAYERS HAVE THE STRESS
C     OUTPUT REQUEST (SOUTI)
C     NOTE - FOR PCOMP1 OR PCOMP2 BULK DATA ENTRIES LAYER
C            STRESSES ARE OUTPUT FOR ALL LAYERS.
C
      NLAYER = NLAY
C
      IF (ITYPE .NE. PCOMP) GO TO 1230
C
      NSTRQT = 0
      DO 1220 K = 1,NLAY
      IF (INTZ(PIDLOC+8+4*K) .EQ. 1) NSTRQT = NSTRQT + 1
 1220 CONTINUE
      NLAYER = NSTRQT
C
C     WRITE TOTAL NUMBER OF LAYERS WITH STRESS REQ TO OES1L
C
 1230 IF (LAMOPT.EQ.SYM .OR. LAMOPT.EQ.SYMMEM) NLAYER = 2*NLAYER
C
C     == 2.
C
      IF (KSTRS .EQ. 1) CALL WRITE (OES1L,NLAYER,1,0)
C
C     SET POINTER
C
      IF (ITYPE .EQ. PCOMP ) IPOINT = PIDLOC + 8 + 4*NLAY
      IF (ITYPE .EQ. PCOMP1) IPOINT = PIDLOC + 8 +   NLAY
      IF (ITYPE .EQ. PCOMP2) IPOINT = PIDLOC + 8 + 2*NLAY
C
C     FAILURE THEORY TO BE USED IN COMPUTING FAILURE INDICES
C
      FTHR = INTZ(PIDLOC+5)
C
C     WRITE TO OUTPUT FILE TYPE OF FAILURE THEORY SELECTED
C
C     == 3.
C
      IF (KSTRS .EQ. 1) CALL WRITE (OES1L,FTHR,1,0)
C
C     SHEAR BONDING STRENGTH
C
      SB     = Z(PIDLOC+4)
      FINDEX = 0.0
      FBOND  = 0.0
      FPMAX  = 0.0
      FBMAX  = 0.0
      FIMAX  = 0.0
C
C     SET TRNFLX IF INTERLAMINAR SHEAR STRESS CALCULATIONS
C     IS REQUIRED
C
      TRNFLX = .FALSE.
C
C     TRANSVERSE SHEAR STRESS RESULTANTS QX AND QY
C
      V(1) = FORSUL(45)
      V(2) = FORSUL(46)
      TRNFLX = V(1).NE.0.0 .AND. V(2).NE.0.0
      IF (.NOT.TRNFLX) GO TO 1240
      IF (ITYPE .EQ. PCOMP) ICONTR = IPOINT + 27*NLAY
      IF (ITYPE.EQ.PCOMP1 .OR. ITYPE.EQ.PCOMP2)
     1    ICONTR = IPOINT + 25 + 2*NLAY
C
C     LAMINATE BENDING INERTIA
C
      EI(1)   = Z(ICONTR+1)
      EI(2)   = Z(ICONTR+2)
C
C     LOCATION OF NEUTRAL SURFACE
C
      ZBAR(1) = Z(ICONTR+3)
      ZBAR(2) = Z(ICONTR+4)
C
C     INTILIZISE
C
 1240 DO 1250 LL = 1,2
      TRNAR(LL)  = 0.0
      TRNSHR(LL) = 0.0
 1250 CONTINUE
C
C     ALLOW FOR THE ORIENTATION OF THE MATERIAL AXIS FROM
C     THE USER DEFINED COORDINATE SYSTEM
C
      THETAE = ACOS(PHIOUT(69))
      THETAE = THETAE*DEGRAD
C
C     SWITCH FOR THEMAL EFFECTS
C
      IF (LDTEMP .EQ. -1) GO TO 1290
C
C     LAMINATE REFERENCE (OR LAMINATION) TEMPERATURE
C
      TSUBO = Z(IPOINT+24)
C
C     MEAN ELEMENT TEMPERATURE
C
      TBAR = TMEAN
      IF (TEMPP1 .OR. TEMPP2) TBAR = STEMP(1)
      IF (LAMOPT.EQ.MEM .OR. LAMOPT.EQ.SYMMEM) GO TO 1290
      IF (.NOT.(TEMPP1 .OR. TEMPP2)) GO TO 1290
      IF (.NOT.TEMPP1) GO TO 1260
C
C     TEMPERATURE GRADIENT TPRIME
C
      TPRIME = STEMP(2)
C
 1260 IF (.NOT.TEMPP2) GO TO 1290
C
C     COMPUTE REFERENCE SURFACE STRAINS AND CURVATURES
C     DUE TO THERMAL MOMENTS
C
C     MOMENT OF INERTIA OF LAMINATE
C
      MINTR = (TLAM**3)/12.0
C
C     DETERMINE ABBD-MATRIX FROM PHIOUT(23-58)
C
      ICOUNT = 89 + 9*NNODE
      DO 1270 LL = 1,3
      DO 1270 MM = 1,3
      NN = MM + 6*(LL-1)
      II = MM + 3*(LL-1)
      ABBD(LL  ,MM  ) = PHIOUT(NN+22)*TLAM
      ABBD(LL  ,MM+3) = PHIOUT(ICOUNT+II)*(TLAM*TLAM)/(-6.0*CONST)
      ABBD(LL+3,MM  ) = PHIOUT(ICOUNT+II)*(TLAM*TLAM)/(-6.0*CONST)
      ABBD(LL+3,MM+3) = PHIOUT(NN+43)*MINTR
 1270 CONTINUE
C
C     COMPUTE THERMAL REF STRAINS AND CURVATURES
C                                   -1
C        EZEROT-VECTOR =  ABBD-MATRIX   X  MTHR-VECTOR
C
      MTHER( 1) = 0.0
      MTHER( 2) = 0.0
      MTHER( 3) = 0.0
      MTHER( 4) = STEMP(2)
      MTHER( 5) = STEMP(3)
      MTHER( 6) = STEMP(4)
C
      CALL INVERS (6,ABBD,6,DUMC,0,DETRM,ISING,INDX)
C
      DO 1280 LL = 1,6
      DO 1280 MM = 1,6
      NN = MM + 6*(LL-1)
      STIFF(NN) = ABBD(LL,MM)
 1280 CONTINUE
C
      CALL GMMATS (STIFF(1),6,6,0, MTHER(1),6,1,0, EZEROT(1))
C
 1290 CONTINUE
C
      DO 1300 LL = 1,6
 1300 FORSUL(LL) = 0.0
C
C     LOOP OVER NLAY
C
      DO 1600 K = 1,NLAY
C
C     ZSUBI -DISTANCE FROM REFERENCE SURFACE TO MID OF LAYER K
C
      ZK1 = ZK
      IF (K .EQ. 1) ZK1 = ZREF
      IF (ITYPE .EQ. PCOMP ) ZK = ZK1 + Z(PIDLOC+6+4*K)
      IF (ITYPE .EQ. PCOMP1) ZK = ZK1 + Z(PIDLOC+7    )
      IF (ITYPE .EQ. PCOMP2) ZK = ZK1 + Z(PIDLOC+7+2*K)
C
      ZSUBI = (ZK+ZK1)/2.0
C
C     LAYER THICKNESS
C
      TI = ZK - ZK1
C
C     CALCULATE STRAIN VECTOR AT STN ZSUBI
C
      DO 1400 IR = 1,3
      EPSLNE(IR) = (.5-ZSUBI/TLAM)*EPSB(IR) + (.5+ZSUBI/TLAM)*EPST(IR)
 1400 CONTINUE
C
C     LAYER ORIENTATION
C
      IF (ITYPE .EQ. PCOMP ) THETA = Z(PIDLOC+7+4*K)
      IF (ITYPE .EQ. PCOMP1) THETA = Z(PIDLOC+8+  K)
      IF (ITYPE .EQ. PCOMP2) THETA = Z(PIDLOC+8+2*K)
C
C     BUILD TRANS-MATRIX TO TRANSFORM LAYER STRAINS FROM MATERIAL
C     TO FIBRE DIRECTION.
C
      THETA = THETA*DEGRAD
C
      C   = COS(THETA)
      C2  = C*C
      S   = SIN(THETA)
      S2  = S*S
C
      TRANS(1)  = C2
      TRANS(2)  = S2
      TRANS(3)  = C*S
      TRANS(4)  = S2
      TRANS(5)  = C2
      TRANS(6)  =-C*S
      TRANS(7)  =-2.0*C*S
      TRANS(8)  = 2.0*C*S
      TRANS(9)  = C2-S2
C
C     TRANSFORM STRAINS FROM ELEMENT TO FIBRE COORD SYSTEM
C
      CALL GMMATS (TRANS(1),3,3,0, EPSLNE(1),3,1,0, EPSLN(1))
C
C     SWITCH FOR TEMPERATURE EFFECTS
C
      IF (LDTEMP .EQ. -1) GO TO 1470
C
C     CORRECT LAYER STRAIN VECTOR FOR THERMAL EFFECTS
C
C     LAYER THERMAL COEFFICIENTS OF EXPANSION ALPHA-VECTOR
C
      DO 1410 LL = 1,3
      ALPHA(LL) = Z(IPOINT+13+LL)
 1410 CONTINUE
C
C     ELEMENT TEMPERATURE
C
      DELT = TBAR - TSUBO
C
      IF (LAMOPT.EQ.MEM .OR. LAMOPT.EQ.SYMMEM) GO TO 1420
      IF (.NOT.TEMPP1) GO TO 1420
C
C     TEMPERATURE GRADIENT TPRIME
C
      DELT = DELT + ZSUBI*TPRIME
C
 1420 DO 1430 LL = 1,3
      EPSLNT(LL) = -ALPHA(LL)*DELT
 1430 CONTINUE
C
      IF (LAMOPT.EQ.MEM .OR. LAMOPT.EQ.SYMMEM) GO TO 1450
      IF (.NOT.TEMPP2) GO TO 1450
C
C     COMPUTE STRAIN DUE TO THERMAL MOMENTS
C
      DO 1440 LL = 1,3
      EPSLNT(LL) = EPSLNT(LL) + (EZEROT(LL) + ZSUBI*EZEROT(LL+3))
 1440 CONTINUE
C
C     COMBINE MECHANICAL AND THERMAL STRAINS
C
 1450 DO 1460 LL = 1,3
      EPSLN(LL) = EPSLN(LL) + EPSLNT(LL)
 1460 CONTINUE
C
 1470 CONTINUE
C
C     CALCULATE STRESS VECTOR STRESL IN FIBRE COORD SYS
C
C     STRESL-VECTOR  =  G-MATRIX  X  EPSLN-VECTOR
C
      CALL GMMATS (Z(IPOINT+1),3,3,0, EPSLN,3,1,0, STRESL(1))
C
C     USE FORCE RESTULANTS CALCULATED PREVIOUSLY
C     I.E. AT EXTREME FIBER STATIONS EXCEPT FOR THERMAL LOADING CASES
C
      IF (LDTEMP .EQ. -1) GO TO 1490
      IF (KFORCE .EQ.  0) GO TO 1490
C
C     TRANSFORM LAYER STRESSES TO ELEMENT AXIS
C
      IF (THETAE .GT. 0.0) THETA = THETA + THETAE
C
C     BUILD STRESS TRANSFORMATION MATRIX
C
      C   = COS(THETA)
      C2  = C*C
      S   = SIN(THETA)
      S2  = S*S
C
      TRANS(1)  = C2
      TRANS(2)  = S2
      TRANS(3)  =-2.0*C*S
      TRANS(4)  = S2
      TRANS(5)  = C2
      TRANS(6)  = 2.0*C*S
      TRANS(7)  = C*S
      TRANS(8)  =-C*S
      TRANS(9)  = C2-S2
C
      CALL GMMATS (TRANS(1),3,3,0, STRESL(1),3,1,0, STRESE(1))
C
      DO 1480 IR = 1,3
      FORSUL(IR) = FORSUL(IR) + STRESE(IR)*TI
      IF (LAMOPT.EQ.MEM .OR. LAMOPT.EQ.SYMMEM) GO TO 1480
      FORSUL(IR+3) = FORSUL(IR+3) - STRESE(IR)*TI*ZSUBI
 1480 CONTINUE
C
 1490 IF (FTHR .LE. 0) GO TO 1530
C
C     WRITE ULTIMATE STRENGTH VALUES TO ULTSTN
C
      DO 1500 IR = 1,6
 1500 ULTSTN(IR) = Z(IPOINT+16+IR)
C
C     CALL FTHR TO COMPUTE FAILURE INDEX FOR PLY
C
      IF (FTHR .EQ. STRAIN) GO TO 1510
      CALL FAILUR (FTHR,ULTSTN,STRESL,FINDEX)
      GO TO 1520
C
 1510 CALL FAILUR (FTHR,ULTSTN,EPSLN,FINDEX)
C
C     DETERMINE THE MAX FAILURE INDEX
C
 1520 IF (ABS(FINDEX) .GE. ABS(FPMAX)) FPMAX = FINDEX
C
 1530 CONTINUE
C
C     SET POINTERS
C
      IF (ITYPE .EQ. PCOMP) ICONTR = IPOINT + 25
      IF (ITYPE.EQ.PCOMP1 .OR. ITYPE.EQ.PCOMP2)
     1    ICONTR = IPOINT + 23 + 2*K
C
      IF (LAMOPT.EQ.MEM .OR. LAMOPT.EQ.SYMMEM) GO TO 1570
      IF (.NOT.TRNFLX) GO TO 1570
C
C     CALCULATE INTERLAMINAR SHEAR STRESSES
C
      DO 1540 IR = 1,2
      TRNAR(IR) = TRNAR(IR) + (Z(ICONTR+IR))*TI*(ZBAR(IR)-ZSUBI)
 1540 CONTINUE
C
C     THE INTERLAMINAR SHEAR STRESSES AT STN ZSUBI
C
      DO 1550 IR = 1,2
      TRNSHR(IR) = V(IR)*TRNAR(IR)/EI(IR)
 1550 CONTINUE
C
C     CALCULATE SHEAR BONDING FAILURE INDEX FB
C     NOTE- SB IS ALWAYS POSITIVE
C
      IF (SB .EQ. 0.0) GO TO 1570
C
      DO 1560 IR = 1,2
      FB(IR) = ABS(TRNSHR(IR))/SB
 1560 CONTINUE
C
      FBOND = FB(1)
      IF (FB(2) .GT. FB(1)) FBOND = FB(2)
C
C     CALCULATE MAX SHEAR BONDING INDEX
C
      IF (FBOND .GE. FBMAX) FBMAX = FBOND
C
 1570 CONTINUE
C
      IF (KSTRS .EQ. 0) GO TO 1590
C
C     WRITE TO OUTPUT FILE THE FOLLOWING
C       4.    PLY (OR LAYER) ID
C     5,6,7.  LAYER STRESSES
C       8.    LAYER FAILURE INDEX
C       9.    IFLAG (= 1 IF FP.GE.0.999, DEFAULT = 0)
C     10,11.  INTERLAMINAR SHEAR STRESSES
C      12.    SHEAR BONDING FAILURE INDEX
C      13.    IFLAG (= 1 IF SB.GE.0.999, DEFAULT = 0)
C
C     CHECK LAYER STRESS OUTPUT REQUEST (SOUTI) FOR PCOMP BULK DATA
C     (NOT SUPPORTED FOR PCOMP1 OR PCOMP2 BULK DATA)
C
      IF (ITYPE .NE. PCOMP) GO TO 1580
      SOUTI = INTZ(PIDLOC+8+4*K)
      IF (SOUTI .EQ. 0) GO TO 1590
 1580 PLYID = K
C
C     == 4.
C
      CALL WRITE (OES1L,PLYID,1,0)
C
C     == 5,6,7.
C
      CALL WRITE (OES1L,STRESL(1),3,0)
C
C     == 8.
C
      CALL WRITE (OES1L,FINDEX,1,0)
C
C     SET IFLAG
C
      IFLAG = 0
      IF (ABS(FINDEX) .GE. 0.999) IFLAG = 1
C
C     == 9.
C
      CALL WRITE (OES1L,IFLAG,1,0)
C
C     == 10,11.
C
      CALL WRITE (OES1L,TRNSHR(1),2,0)
C
C     == 12.
C
      CALL WRITE (OES1L,FBOND,1,0)
C
C     SET IFLAG
C
      IFLAG = 0
      IF (ABS(FBOND) .GE. 0.999) IFLAG = 1
C
C     == 13.
C
      CALL WRITE (OES1L,IFLAG,1,0)
C
C
C     UPDATE IPOINT FOR PCOMP BULK DATA ENTRY
C
 1590 IF (ITYPE.EQ.PCOMP .AND. K.NE.NLAY) IPOINT = IPOINT + 27
C
 1600 CONTINUE
C
C     FALL HERE IF SYMMETRIC OPTION HAS BEEN EXERCISED
C
      IF (LAMOPT.NE.SYM .AND. LAMOPT.NE.SYMMEM) GO TO 2000
C
C     LOOP OVER SYMMETRIC LAYERS
C
      DO 1900 KK = 1,NLAY
      K = NLAY + 1 - KK
C
C     ZSUBI -DISTANCE FROM REFERENCE SURFACE TO MID OF LAYER K
C
      ZK1 = ZK
      IF (ITYPE .EQ. PCOMP ) ZK = ZK1 + Z(PIDLOC+6+4*K)
      IF (ITYPE .EQ. PCOMP1) ZK = ZK1 + Z(PIDLOC+7    )
      IF (ITYPE .EQ. PCOMP2) ZK = ZK1 + Z(PIDLOC+7+2*K)
C
      ZSUBI = (ZK+ZK1)/2.0
C
C     LAYER THICKNESS
C
      TI = ZK - ZK1
C
C     CALCULATE STRAIN VECTOR AT STN ZSUBI
C
      DO 1700 IR = 1,3
      EPSLNE(IR) = (.5-ZSUBI/TLAM)*EPSB(IR) + (.5+ZSUBI/TLAM)*EPST(IR)
 1700 CONTINUE
C
C     LAYER ORIENTATION
C
      IF (ITYPE .EQ. PCOMP ) THETA = Z(PIDLOC+7+4*K)
      IF (ITYPE .EQ. PCOMP1) THETA = Z(PIDLOC+8+  K)
      IF (ITYPE .EQ. PCOMP2) THETA = Z(PIDLOC+8+2*K)
C
C     BUILD TRANS-MATRIX TO TRANSFORM LAYER STRAINS FROM MATERIAL
C     TO FIBRE DIRECTION.
C
      THETA = THETA*DEGRAD
      C   = COS(THETA)
      C2  = C*C
      S   = SIN(THETA)
      S2  = S*S
C
      TRANS(1)  = C2
      TRANS(2)  = S2
      TRANS(3)  = C*S
      TRANS(4)  = S2
      TRANS(5)  = C2
      TRANS(6)  =-C*S
      TRANS(7)  =-2.0*C*S
      TRANS(8)  = 2.0*C*S
      TRANS(9)  = C2 - S2
C
C     TRANSFORM STRAINS FROM MATERIAL TO FIBRE COORD SYSTEM
C
      CALL GMMATS (TRANS(1),3,3,0, EPSLNE(1),3,1,0, EPSLN(1))
C
C     SWITCH FOR TEMPERATURE EFFECTS
C
      IF (LDTEMP .EQ. -1) GO TO 1770
C
C     CORRECT LAYER STRAIN VECTOR FOR THERMAL EFFECTS
C
C     LAYER THERMAL COEFFICIENTS OF EXPANSION ALPHA-VECTOR
C
      DO 1710 LL = 1,3
      ALPHA(LL) = Z(IPOINT+13+LL)
 1710 CONTINUE
C
C     ELEMENT TEMPERATURE
C
      DELT = TBAR - TSUBO
      IF (LAMOPT .EQ. SYMMEM) GO TO 1720
      IF (.NOT.TEMPP1) GO TO 1720
C
C     TEMPERATURE GRADIENT TPRIME
C
      DELT = DELT + ZSUBI*TPRIME
C
 1720 DO 1730 LL = 1,3
      EPSLNT(LL) = -ALPHA(LL)*DELT
 1730 CONTINUE
C
      IF (LAMOPT .EQ. SYMMEM) GO TO 1750
      IF (.NOT.TEMPP2) GO TO 1750
C
C     COMPUTE STRAIN DUE TO THERMAL MOMENTS
C
      DO 1740 LL = 1,3
      EPSLNT(LL) = EPSLNT(LL) + (EZEROT(LL) + ZSUBI*EZEROT(LL+3))
 1740 CONTINUE
C
C     COMBINE MECHANICAL AND THERMAL STRAINS
C
 1750 DO 1760 LL = 1,3
      EPSLN(LL)  = EPSLN(LL) + EPSLNT(LL)
 1760 CONTINUE
C
 1770 CONTINUE
C
C     CALCULATE STRESS VECTOR STRESL IN FIBRE COORD SYS
C
C     STRESL-VECTOR =  G-MATRIX  X  EPSLN-VECTOR
C
      CALL GMMATS (Z(IPOINT+1),3,3,0, EPSLN,3,1,0, STRESL(1))
C
C     COMPUTE FORCE RESULTANTS IF REQUESTED
C
      IF (LDTEMP .EQ. -1) GO TO 1790
      IF (KFORCE .EQ.  0) GO TO 1790
C
C     TRANSFORM LAYER STRESSES TO ELEMENT AXIS
C
      IF (THETAE .GT. 0.0) THETA = THETA + THETAE
C
C     BUILD STRESS TRANSFORMATION MATRIX
C
      C   = COS(THETA)
      C2  = C*C
      S   = SIN(THETA)
      S2  = S*S
C
      TRANS(1)  = C2
      TRANS(2)  = S2
      TRANS(3)  =-2.0*C*S
      TRANS(4)  = S2
      TRANS(5)  = C2
      TRANS(6)  = 2.0*C*S
      TRANS(7)  = C*S
      TRANS(8)  =-C*S
      TRANS(9)  = C2 - S2
C
      CALL GMMATS (TRANS(1),3,3,0, STRESL(1),3,1,0, STRESE(1))
C
      DO 1780 IR = 1,3
      FORSUL(IR) = FORSUL(IR) + STRESE(IR)*TI
      IF (LAMOPT .EQ. SYMMEM) GO TO 1780
      FORSUL(IR+3) = FORSUL(IR+3) - STRESE(IR)*TI*ZSUBI
 1780 CONTINUE
C
 1790 IF (FTHR .LE. 0) GO TO 1830
C
C     WRITE ULTIMATE STRENGTH VALUES TO ULTSTN
C
      DO 1800 IR = 1,6
 1800 ULTSTN(IR) = Z(IPOINT+16+IR)
C
C     CALL FTHR TO COMPUTE FAILURE INDEX FOR PLY
C
      IF (FTHR .EQ. STRAIN) GO TO 1810
      CALL FAILUR (FTHR,ULTSTN,STRESL,FINDEX)
      GO TO 1820
C
 1810 CALL FAILUR (FTHR,ULTSTN,EPSLN,FINDEX)
C
C     DETERMINE THE MAX FAILURE INDEX
C
 1820 IF (ABS(FINDEX) .GE. ABS(FPMAX)) FPMAX = FINDEX
C
 1830 CONTINUE
C
C     SET POINTERS
C
      IF (ITYPE .EQ. PCOMP) ICONTR = IPOINT + 25
      IF (ITYPE.EQ.PCOMP1 .OR. ITYPE.EQ.PCOMP2)
     1    ICONTR = IPOINT + 23 + 2*K
C
      IF (LAMOPT .EQ. SYMMEM) GO TO 1870
      IF (.NOT.TRNFLX) GO TO 1870
C
C     CALCULATE INTERLAMINAR SHEAR STRESSES
C
      DO 1840 IR = 1,2
      TRNAR(IR) = TRNAR(IR) + (Z(ICONTR+IR))*TI*(ZBAR(IR)-ZSUBI)
 1840 CONTINUE
C
C     THE INTERLAMINAR SHEAR STRESSES AT STN ZSUBI
C
      DO 1850 IR = 1,2
      TRNSHR(IR) = V(IR)*TRNAR(IR)/EI(IR)
 1850 CONTINUE
C
C     CALCULATE SHEAR BONDING FAILURE INDEX FB
C     NOTE- SB IS ALWAYS POSITIVE
C
      IF (SB .EQ. 0.0) GO TO 1870
C
      DO 1860 IR = 1,2
      FB(IR) = ABS(TRNSHR(IR))/SB
 1860 CONTINUE
C
      FBOND = FB(1)
      IF (FB(2) .GT. FB(1)) FBOND = FB(2)
C
C     CALCULATE MAX SHEAR BONDING INDEX
C
      IF (FBOND .GE. FBMAX) FBMAX = FBOND
C
 1870 CONTINUE
C
      IF (KSTRS .EQ. 0) GO TO 1890
C
C     WRITE TO OUTPUT FILE THE FOLLOWING
C       4.     PLY (OR LAYER) ID
C     5,6,7.   LAYER STRESSES
C       8.     LAYER FAILURE INDEX
C       9.     IFLAG (= 1 IF FP.GE.0.999, DEFAULT = 0)
C     10,11.   INTERLAMINAR SHEAR STRESSES
C      12.     SHEAR BONDING FAILURE INDEX
C      13.     IFLAG (= 1 IF SB.GE.0.999, DEFAULT = 0)
C
C     CHECK LAYER STRESS OUTPUT REQUEST (SOUTI) FOR PCOMP BULK DATA
C     (NOT SUPPORTED FOR PCOMP1 OR PCOMP2 BULK DATA)
C
      IF (ITYPE .NE. PCOMP) GO TO 1880
      SOUTI = INTZ(PIDLOC+8+4*K)
      IF (SOUTI .EQ. 0) GO TO 1890
 1880 PLYID = NLAY + KK
C
C     == 4.
C
      CALL WRITE (OES1L,PLYID,1,0)
C
C     == 5,6,7
C
      CALL WRITE (OES1L,STRESL(1),3,0)
C
C     == 8.
C
      CALL WRITE (OES1L,FINDEX,1,0)
C
C     SET IFLAG
C
      IFLAG = 0
      IF (ABS(FINDEX) .GE. 0.999) IFLAG = 1
C
C     == 9.
C
      CALL WRITE (OES1L,IFLAG,1,0)
C
C     == 10,11.
C
      CALL WRITE (OES1L,TRNSHR(1),2,0)
C
C     == 12.
C
      CALL WRITE (OES1L,FBOND,1,0)
C
C     SET IFLAG
C
      IFLAG = 0
      IF (ABS(FBOND) .GE. 0.999) IFLAG = 1
C
C     == 13.
C
      CALL WRITE (OES1L,IFLAG,1,0)
C
C     UPDATE IPOINT FOR PCOMP BULK DATA ENTRY
C
 1890 IF (ITYPE .EQ. PCOMP) IPOINT = IPOINT - 27
 1900 CONTINUE
C
 2000 IF (FTHR .LE. 0) GO TO 2010
C
C     DETERMINE 'FIMAX' THE MAX FAILURE INDEX FOR THE LAMINATE
C
      FIMAX = FPMAX
      IF (FBMAX .GT. ABS(FPMAX)) FIMAX = FBMAX
C
C     == LAST-1.
C
 2010 IF (KSTRS .EQ. 1) CALL WRITE (OES1L,FIMAX,1,0)
C
      IFLAG = 0
      IF (ABS(FIMAX) .GE. 0.999) IFLAG = 1
C
C     == LAST.
C
      IF (KSTRS .EQ. 1) CALL WRITE (OES1L,IFLAG,1,0)
C
      IF (KFORCE .EQ.  0) GO TO 2100
      IF (LDTEMP .EQ. -1) GO TO 2100
      CALL WRITE (OEF1L,ELEMID,1,0)
      CALL WRITE (OEF1L,FORSUL(1),6,0)
      CALL WRITE (OEF1L,FORSUL(45),2,0)
C
 2100 RETURN
C
C     ERROR MESSAGES
C
 2200 WRITE  (NOUT,2210) UWM
 2210 FORMAT (A25,' - NO PCOMP, PCOMP1 OR PCOMP2 DATA AVAILABLE FOR ',
     1       'LAYER STRESS RECOVERY BY SUBROUTINE SQUD42.')
      GO TO 2100
 2220 WRITE  (NOUT,2230) UFM
 2230 FORMAT (A23,', LAYER STRESS OR FORCE RECOVERY WAS REQUESTED WHILE'
     1,      ' PROBLEM WAS NOT SET UP FOR', /5X,'LAYER COMPUTATION')
      CALL MESAGE (-61,0,0)
      END