File: strap1.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (472 lines) | stat: -rw-r--r-- 14,172 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
      SUBROUTINE STRAP1
C
C     THIS ROUTINE IS PHASE I OF STRESS DATA RECOVERY FOR THE
C     TRAPEZOIDAL CROSS SECTION RING
C
C     ECPT FOR THE TRAPEZOIDAL RING
C                                                          TYPE
C     ECPT( 1) ELEMENT IDENTIFICATION                        I
C     ECPT( 2) SCALAR INDEX NO. FOR GRID POINT A             I
C     ECPT( 3) SCALAR INDEX NO. FOR GRID POINT B             I
C     ECPT( 4) SCALAR INDEX NO. FOR GRID POINT C             I
C     ECPT( 5) SCALAR INDEX NO. FOR GRID POINT D             I
C     ECPT( 6) MATERIAL ORIENTATION ANGLE(DEGREES)           R
C     ECPT( 7) MATERIAL IDENTIFICATION                       I
C     ECPT( 8) COOR. SYS. ID. FOR GRID POINT A               I
C     ECPT( 9) X-COOR. OF GRID POINT A (IN BASIC COOR.)      R
C     ECPT(10) Y-COOR. OF GRID POINT A (IN BASIC COOR.)      R
C     ECPT(11) Z-COOR. OF GRID POINT A (IN BASIC COOR.)      R
C     ECPT(12) COOR. SYS. ID. FOR GRID POINT B               I
C     ECPT(13) X-COOR. OF GRID POINT B (IN BASIC COOR.)      R
C     ECPT(14) Y-COOR. OF GRID POINT B (IN BASIC COOR.)      R
C     ECPT(15) Z-COOR. OF GRID POINT B (IN BASIC COOR.)      R
C     ECPT(16) COOR. SYS. ID. FOR GRID POINT C               I
C     ECPT(17) X-COOR. OF GRID POINT C (IN BASIC COOR.)      R
C     ECPT(18) Y-COOR. OF GRID POINT C (IN BASIC COOR.)      R
C     ECPT(19) Z-COOR. OF GRID POINT C (IN BASIC COOR.)      R
C     ECPT(20) COOR. SYS. ID. FOR GRID POINT D               I
C     ECPT(21) X-COOR. OF GRID POINT D (IN BASIC COOR.)      R
C     ECPT(22) Y-COOR. OF GRID POINT D (IN BASIC COOR.)      R
C     ECPT(23) Z-COOR. OF GRID POINT D (IN BASIC COOR.)      R
C     ECPT(24) EL. TEMPERATURE FOR MATERIAL PROPERTIES       R
C
      DIMENSION       IECPT(24),ICS(4),GAMBQ(64),DZERO(32),SP(24),
     1                ALFB(4),TEO(16),EE(16),DELINT(12),GAMQS(96),JRZ(2)
      CHARACTER       UFM*23
      COMMON /XMSSG / UFM
      COMMON /CONDAS/ CONSTS(5)
      COMMON /SDR2X5/ ECPT(24),DUM5(76),IDEL,IGP(4),TZ,SEL(240),TS(4),
     1                AK(144)
      COMMON /MATIN / MATIDC,MATFLG,ELTEMP,STRESS,SINTH,COSTH
      COMMON /MATOUT/ E(3),ANU(3),RHO,G(3),ALF(3),TZERO
      COMMON /SDR2X6/ D(144),GAMBL(144),R(5),Z(5)
      COMMON /SYSTEM/ IBUF,IOUT
      EQUIVALENCE     (CONSTS(2),TWOPI),(CONSTS(4),DEGRA),
     1                (IECPT(1),ECPT(1)),(R(1),R1),(R(2),R2),(R(3),R3),
     2                (R(4),R4),(Z(1),Z1),(Z(2),Z2),(Z(3),Z3),(Z(4),Z4),
     3                (GAMBL(1),SP(1)),(GAMBL(1),TEO(1)),
     4                (GAMBL(17),DELINT(1))
C
C     STORE ECPT PARAMETERS IN LOCAL VARIABLES
C
      IDEL   = IECPT(1)
      IGP(1) = IECPT(2)
      IGP(2) = IECPT(3)
      IGP(3) = IECPT(4)
      IGP(4) = IECPT(5)
      MATID  = IECPT(7)
      ICS(1) = IECPT(8)
      ICS(2) = IECPT(12)
      ICS(3) = IECPT(16)
      ICS(4) = IECPT(20)
      R(1)   = ECPT(9)
      D(1)   = ECPT(10)
      Z(1)   = ECPT(11)
      R(2)   = ECPT(13)
      D(2)   = ECPT(14)
      Z(2)   = ECPT(15)
      R(3)   = ECPT(17)
      D(3)   = ECPT(18)
      Z(3)   = ECPT(19)
      R(4)   = ECPT(21)
      D(4)   = ECPT(22)
      Z(4)   = ECPT(23)
      TEMPE  = ECPT(24)
      DGAMA  = ECPT(6)
C
C     TEST THE VALIDITY OF THE GRID POINT COORDINATES
C
      DO 200 I = 1,4
      IF (R(I) .LT. 0.0) CALL MESAGE (-30,37,IDEL)
      IF (D(I) .NE. 0.0) CALL MESAGE (-30,37,IDEL)
  200 CONTINUE
C
C     COMPUTE THE ELEMENT COORDINATES
C
      ZMIN = AMIN1(Z1,Z2,Z3,Z4)
      Z1   = Z1 - ZMIN
      Z2   = Z2 - ZMIN
      Z3   = Z3 - ZMIN
      Z4   = Z4 - ZMIN
      RMIN = AMIN1(R1,R2,R3,R4)
      RMAX = AMAX1(R1,R2,R3,R4)
      IF (RMIN .EQ. 0.) GO TO 206
      IF (RMAX/RMIN .LE. 10.) GO TO 206
C
C     RATIO OF RADII IS TOO LARGE FOR GAUSS QUADRATURE FOR IP=-1
C
      WRITE  (IOUT,205) UFM,IDEL
  205 FORMAT (A23,', TRAPRG ELEMENT',I9,' HAS A MAXIMUM TO MINIMUM ',
     1       'RADIUS RATIO EXCEEDING 10.', /5X,
     2       'ACCURACY OF NUMERICAL INTEGRATION WOULD BE IN DOUBT.')
      CALL MESAGE (-30,37,IDEL)
  206 CONTINUE
      ICORE = 0
      J = 1
      DO 210 I = 1,4
      IF (R(I) .NE. 0.) GO TO 210
      ICORE  = ICORE + 1
      JRZ(J) = I
      J = 2
  210 CONTINUE
      IF (ICORE.NE.0 .AND. ICORE.NE.2) CALL MESAGE (-30,37,IDEL)
C
C     FORM THE TRANSFORMATION MATRIX (8X8) FROM FIELD COORDINATES TO
C     GRID POINT DEGREES OF FREEDOM
C
      DO 300 I = 1,64
      GAMBQ(I) = 0.0
  300 CONTINUE
      GAMBQ( 1) = 1.0
      GAMBQ( 2) = R1
      GAMBQ( 3) = Z1
      GAMBQ( 4) = R1*Z1
      GAMBQ(13) = 1.0
      GAMBQ(14) = R1
      GAMBQ(15) = Z1
      GAMBQ(16) = GAMBQ(4)
      GAMBQ(17) = 1.0
      GAMBQ(18) = R2
      GAMBQ(19) = Z2
      GAMBQ(20) = R2*Z2
      GAMBQ(29) = 1.0
      GAMBQ(30) = R2
      GAMBQ(31) = Z2
      GAMBQ(32) = GAMBQ(20)
      GAMBQ(33) = 1.0
      GAMBQ(34) = R3
      GAMBQ(35) = Z3
      GAMBQ(36) = R3*Z3
      GAMBQ(45) = 1.0
      GAMBQ(46) = R3
      GAMBQ(47) = Z3
      GAMBQ(48) = GAMBQ(36)
      GAMBQ(49) = 1.0
      GAMBQ(50) = R4
      GAMBQ(51) = Z4
      GAMBQ(52) = R4*Z4
      GAMBQ(61) = 1.0
      GAMBQ(62) = R4
      GAMBQ(63) = Z4
      GAMBQ(64) = GAMBQ(52)
C
C     NO NEED TO COMPUTE DETERMINANT SINCE IT IS NOT USED SUBSEQUENTLY.
C
      ISING = -1
      CALL INVERS (8,GAMBQ(1),8,D(10),0,D(11),ISING,SP)
C
      IF (ISING .EQ. 2) CALL MESAGE (-30,26,IDEL)
C
C     MODIFY THE TRANSFORMATION MATRIX IF ELEMENT IS A CORE ELEMENT
C
      IF (ICORE .EQ. 0) GO TO 305
      JJ1 = 2*JRZ(1) - 1
      JJ2 = 2*JRZ(2) - 1
C
      DO 303 I = 1,8
      J = 8*(I-1)
      GAMBQ(I    ) = 0.0
      GAMBQ(I+ 16) = 0.0
      GAMBQ(J+JJ1) = 0.
      GAMBQ(J+JJ2) = 0.
  303 CONTINUE
  305 CONTINUE
C
C     CALCULATE THE INTEGRAL VALUES IN ARRAY DELINT WHERE THE ORDER IS
C     INDICATED BY THE FOLLOWING TABLE
C
C       DELINT( 1) - (-1,0)
C       DELINT( 2) - (-1,1)
C       DELINT( 3) - (-1,2)
C       DELINT( 4) - ( 0,0)
C       DELINT( 5) - ( 0,1)
C       DELINT( 6) - ( 0,2)
C       DELINT( 7) - ( 1,0)
C       DELINT( 8) - ( 1,1)
C       DELINT( 9) - ( 1,2)
C       DELINT(10) - ( 2,0)
C       DELINT(11) - ( 2,1)
C       DELINT(12) - ( 3,0)
C
      I1 = 0
      DO 400 I = 1,4
      IP = I - 2
      DO 350 J = 1,3
      IQ = J - 1
      I1 = I1 + 1
      IF (I1 .NE. 12) GO TO 340
      IP = 3
      IQ = 0
  340 CONTINUE
      IF (ICORE .EQ. 0) GO TO 345
      IF (I1    .GT. 3) GO TO 345
      DELINT(I1) = 0.0
      GO TO 350
  345 CONTINUE
      DELINT(I1) = RZINTS(IP,IQ,R,Z,4)
  350 CONTINUE
  400 CONTINUE
C
C     LOCATE THE MATERIAL PROPERTIES IN THE MAT1 OR MAT3 TABLE
C
      MATIDC = MATID
      MATFLG = 7
      ELTEMP = TEMPE
      CALL  MAT (IDEL)
C
C     SET MATERIAL PROPERTIES IN LOCAL VARIABLES
C
      ER  = E(1)
      ET  = E(2)
      EZ  = E(3)
      VRT = ANU(1)
      VTZ = ANU(2)
      VZR = ANU(3)
      GRZ = G(3)
      TZ  = TZERO
      VTR = VRT*ET/ER
      VZT = VTZ*EZ/ET
      VRZ = VZR*ER/EZ
      DEL = 1.0 - VRT*VTR - VTZ*VZT - VZR*VRZ - VRT*VTZ*VZR
     1          - VRZ*VTR*VZT
C
C     GENERATE ELASTIC CONSTANTS MATRIX (4X4)
C
      EE( 1) = ER*(1.0 - VTZ*VZT)/DEL
      EE( 2) = ER*(VTR + VZR*VTZ)/DEL
      EE( 3) = ER*(VZR + VTR*VZT)/DEL
      EE( 4) = 0.0
      EE( 5) = EE(2)
      EE( 6) = ET*(1.0 - VRZ*VZR)/DEL
      EE( 7) = ET*(VZT + VRT*VZR)/DEL
      EE( 8) = 0.0
      EE( 9) = EE(3)
      EE(10) = EE(7)
      EE(11) = EZ*(1.0 - VRT*VTR)/DEL
      EE(12) = 0.0
      EE(13) = 0.0
      EE(14) = 0.0
      EE(15) = 0.0
      EE(16) = GRZ
C
C     FORM TRANSFORMATION MATRIX (4X4) FROM MATERIAL AXIS TO ELEMENT
C     GEOMETRIC AXIS
C
      DGAMR   = DGAMA*DEGRA
      COSG    = COS(DGAMR)
      SING    = SIN(DGAMR)
      TEO( 1) = COSG**2
      TEO( 2) = 0.0
      TEO( 3) = SING**2
      TEO( 4) = SING*COSG
      TEO( 5) = 0.0
      TEO( 6) = 1.0
      TEO( 7) = 0.0
      TEO( 8) = 0.0
      TEO( 9) = TEO(3)
      TEO(10) = 0.0
      TEO(11) = TEO(1)
      TEO(12) =-TEO(4)
      TEO(13) =-2.0*TEO(4)
      TEO(14) = 0.0
      TEO(15) =-TEO(13)
      TEO(16) = TEO(1) - TEO(3)
C
C     TRANSFORM THE ELASTIC CONSTANTS MATRIX FROM MATERIAL
C     TO ELEMENT GEOMETRIC AXIS
C
      CALL GMMATS (TEO,4,4,1, EE ,4,4,0, D )
      CALL GMMATS (D  ,4,4,0, TEO,4,4,0, EE)
C
C     FORM THE ELEMENT STIFFNESS MATRIX IN FIELD COORDINATES
C
      EE48   = EE(4) + EE(8)
      D ( 1) = EE(1) + 2.0 * EE(2) + EE(6)
      AK( 1) = EE(6) * DELINT(1)
      AK( 2) = (EE(2) + EE(6)) * DELINT(4)
      AK( 3) = EE(6) * DELINT(2) + EE(8) * DELINT(4)
      AK( 4) = (EE(2) + EE(6)) * DELINT(5) + EE(8) * DELINT(7)
      AK( 5) = 0.0
      AK( 6) = EE(8) * DELINT(4)
      AK( 7) = EE(7) * DELINT(4)
      AK( 8) = EE(7) * DELINT(7) + EE(8) * DELINT(5)
      AK( 9) = AK(2)
      AK(10) = D(1) * DELINT(7)
      AK(11) = (EE(2) + EE(6)) * DELINT(5) + EE48 * DELINT(7)
      AK(12) = D(1) * DELINT(8) + EE48 * DELINT(10)
      AK(13) = 0.0
      AK(14) = EE48 * DELINT(7)
      AK(15) = (EE(3) + EE(7)) * DELINT(7)
      AK(16) = (EE(3) + EE(7)) * DELINT(10) + EE48 * DELINT(8)
      AK(17) = AK( 3)
      AK(18) = AK(11)
      AK(19) = EE(6) * DELINT(3) + EE(16)* DELINT(7)
     1         + (EE(8) + EE(14)) * DELINT(5)
      AK(20) = (EE(2) + EE(6)) * DELINT(6) + EE(16) * DELINT(10)
     1         + (EE(8) + EE(13) + EE(14)) * DELINT(8)
      AK(21) = 0.0
      AK(22) = EE(16) * DELINT(7) + EE(8) * DELINT(5)
      AK(23) = EE(7) * DELINT(5) + EE(15) * DELINT(7)
      AK(24) = (EE(7) + EE(16)) * DELINT(8)
     1         + EE(8) *DELINT(6) + EE(15) * DELINT(10)
      AK(25) = AK(4)
      AK(26) = AK(12)
      AK(27) = AK(20)
      AK(28) = D(1) * DELINT(9) + EE(16) * DELINT(12)
     1         + (EE48 + EE(13) + EE(14)) * DELINT(11)
      AK(29) = 0.0
      AK(30) = EE(16) * DELINT(10) + EE48 * DELINT(8)
      AK(31) = (EE(3) + EE(7)) * DELINT(8) + EE(15) * DELINT(10)
      AK(32) = (EE(3) + EE(7) + EE(16)) * DELINT(11)
     1         + EE(15) * DELINT(12) + EE48 * DELINT(9)
      AK(33) = 0.0
      AK(34) = 0.0
      AK(35) = 0.0
      AK(36) = 0.0
      AK(37) = 0.0
      AK(38) = 0.0
      AK(39) = 0.0
      AK(40) = 0.0
      AK(41) = AK( 6)
      AK(42) = AK(14)
      AK(43) = AK(22)
      AK(44) = AK(30)
      AK(45) = 0.0
      AK(46) = EE(16)*DELINT(7)
      AK(47) = EE(15)*DELINT(7)
      AK(48) = EE(16)*DELINT(8) + EE(15) * DELINT(10)
      AK(49) = AK( 7)
      AK(50) = AK(15)
      AK(51) = AK(23)
      AK(52) = AK(31)
      AK(53) = 0.0
      AK(54) = AK(47)
      AK(55) = EE(11)*DELINT( 7)
      AK(56) = EE(11)*DELINT(10) + EE(12) * DELINT(8)
      AK(57) = AK( 8)
      AK(58) = AK(16)
      AK(59) = AK(24)
      AK(60) = AK(32)
      AK(61) = 0.0
      AK(62) = AK(48)
      AK(63) = AK(56)
      AK(64) = EE(11) * DELINT(12) + EE(16) * DELINT(9)
     1       + (EE(12) + EE(13)) * DELINT(11)
C
      DO 600 I = 1,64
      AK(I) = TWOPI*AK(I)
  600 CONTINUE
C
C     TRANSFORM THE ELEMENT STIFFNESS MATRIX FROM FIELD COORDINATES
C     TO GRID POINT DEGREES OF FREEDOM
C
      CALL GMMATS (GAMBQ,8,8,1, AK   ,8,8,0, D )
      CALL GMMATS (D    ,8,8,0, GAMBQ,8,8,0, AK)
C
C     GENERATE THE TRANSFORMATION MATRIX FROM TWO TO THREE DEGREES OF
C     FREEDOM PER POINT
C
      DO 700 I = 1,96
      GAMQS( I) = 0.0
  700 CONTINUE
      GAMQS( 1) = 1.0
      GAMQS(15) = 1.0
      GAMQS(28) = 1.0
      GAMQS(42) = 1.0
      GAMQS(55) = 1.0
      GAMQS(69) = 1.0
      GAMQS(82) = 1.0
      GAMQS(96) = 1.0
C
C     TRANSFORM THE STIFFNESS MATRIX FROM TWO TO THREE DEGREES OF
C     FREEDOM PER POINT
C
      CALL GMMATS (GAMQS(1),8,12,1, AK(1)   ,8, 8,0, D(1) )
      CALL GMMATS (D(1)    ,12,8,0, GAMQS(1),8,12,0, AK(1))
C
C     LOCATE THE TRANSFORMATION MATRICES FOR THE FOUR  GRID POINTS
C
      DO 750 I = 1,144
      GAMBL(I) = 0.0
  750 CONTINUE
      DO 800 I = 1,4
      CALL TRANSS (ICS(I),D(1))
      K = 39*(I-1) + 1
      DO 800 J = 1,3
      KK = K + 12*(J-1)
      JJ = 3 *(J-1) + 1
      GAMBL(KK  ) = D(JJ  )
      GAMBL(KK+1) = D(JJ+1)
      GAMBL(KK+2) = D(JJ+2)
  800 CONTINUE
C
C     TRANSFORM THE STIFFNESS MATRIX FROM BASIC TO LOCAL COORDINATES
C
      CALL GMMATS (GAMBL(1),12,12,1, AK(1)   ,12,12,0, D(1) )
      CALL GMMATS (D(1)    ,12,12,0, GAMBL(1),12,12,0, AK(1))
C
C     COMPUTE THE FIFTH GRID POINT TO BE THE AVERAGE OF THE FOUR
C     CORNER POINTS
C
      R(5) = (R1 + R2 + R3 + R4)/4.0
      Z(5) = (Z1 + Z2 + Z3 + Z4)/4.0
C
C     INITIALIZE THE CONSTANT PORTION OF THE D SUB 0 MATRIX
C
      DO 850 I = 1,32
      DZERO(I) = 0.0
  850 CONTINUE
      DZERO( 2) = 1.0
      DZERO(10) = 1.0
      DZERO(23) = 1.0
      DZERO(27) = 1.0
      DZERO(30) = 1.0
C
C     START THE LOOP TO COMPUTE THE STRESS MATRIX FOR EACH GRID POINT
C
      DO 950 J = 1,5
C
C     COMPUTE THE VARIABLE PORTION OF THE D SUB 0 MATRIX
C
      DZERO( 4) = Z(J)
      IF (ICORE .NE. 0) GO TO 875
      DZERO( 9) = 1.00/R(J)
      DZERO(11) = Z(J)/R(J)
  875 CONTINUE
      DZERO(12) = Z(J)
      DZERO(24) = R(J)
      DZERO(28) = R(J)
      DZERO(32) = Z(J)
C
C     COMPUTE THE STRESS MATRIX IN FIELD COORDINATES
C
      CALL GMMATS (EE(1),4,4,0, DZERO(1),4,8,0, D(1))
C
C     TRANSFORM THE STRESS MATRIX TO GRID POINT DEGREES OF FREEDOM
C
      CALL GMMATS (D(1),4,8,0, GAMBQ(1),8,8,0, D(37))
C
C     TRANSFORM THE STRESS MATRIX FROM TWO TO THREE DEGREES OF FREEDOM
C     PER POINT
C
      CALL GMMATS (D(37),4,8,0, GAMQS(1),8,12,0, D(73))
C
C     TRANSFORM THE STRESS MATRIX FROM BASIC TO LOCAL COORDINATES
C
      K = 48*(J-1) + 1
      CALL GMMATS (D(73),4,12,0, GAMBL(1),12,12,0, SEL(K))
C
  950 CONTINUE
C
C     COMPUTE THE THERMAL STRAIN VECTOR
C
      DO 900 I = 1,3
      ALFB(I) = ALF(I)
  900 CONTINUE
      ALFB(4) = 0.0
C
C     COMPUTE THE THERMAL STRESS VECTOR
C
      CALL GMMATS (EE(1),4,4,0, ALFB(1),4,1,0, TS(1))
      RETURN
      END