1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
SUBROUTINE STRAP1
C
C THIS ROUTINE IS PHASE I OF STRESS DATA RECOVERY FOR THE
C TRAPEZOIDAL CROSS SECTION RING
C
C ECPT FOR THE TRAPEZOIDAL RING
C TYPE
C ECPT( 1) ELEMENT IDENTIFICATION I
C ECPT( 2) SCALAR INDEX NO. FOR GRID POINT A I
C ECPT( 3) SCALAR INDEX NO. FOR GRID POINT B I
C ECPT( 4) SCALAR INDEX NO. FOR GRID POINT C I
C ECPT( 5) SCALAR INDEX NO. FOR GRID POINT D I
C ECPT( 6) MATERIAL ORIENTATION ANGLE(DEGREES) R
C ECPT( 7) MATERIAL IDENTIFICATION I
C ECPT( 8) COOR. SYS. ID. FOR GRID POINT A I
C ECPT( 9) X-COOR. OF GRID POINT A (IN BASIC COOR.) R
C ECPT(10) Y-COOR. OF GRID POINT A (IN BASIC COOR.) R
C ECPT(11) Z-COOR. OF GRID POINT A (IN BASIC COOR.) R
C ECPT(12) COOR. SYS. ID. FOR GRID POINT B I
C ECPT(13) X-COOR. OF GRID POINT B (IN BASIC COOR.) R
C ECPT(14) Y-COOR. OF GRID POINT B (IN BASIC COOR.) R
C ECPT(15) Z-COOR. OF GRID POINT B (IN BASIC COOR.) R
C ECPT(16) COOR. SYS. ID. FOR GRID POINT C I
C ECPT(17) X-COOR. OF GRID POINT C (IN BASIC COOR.) R
C ECPT(18) Y-COOR. OF GRID POINT C (IN BASIC COOR.) R
C ECPT(19) Z-COOR. OF GRID POINT C (IN BASIC COOR.) R
C ECPT(20) COOR. SYS. ID. FOR GRID POINT D I
C ECPT(21) X-COOR. OF GRID POINT D (IN BASIC COOR.) R
C ECPT(22) Y-COOR. OF GRID POINT D (IN BASIC COOR.) R
C ECPT(23) Z-COOR. OF GRID POINT D (IN BASIC COOR.) R
C ECPT(24) EL. TEMPERATURE FOR MATERIAL PROPERTIES R
C
DIMENSION IECPT(24),ICS(4),GAMBQ(64),DZERO(32),SP(24),
1 ALFB(4),TEO(16),EE(16),DELINT(12),GAMQS(96),JRZ(2)
CHARACTER UFM*23
COMMON /XMSSG / UFM
COMMON /CONDAS/ CONSTS(5)
COMMON /SDR2X5/ ECPT(24),DUM5(76),IDEL,IGP(4),TZ,SEL(240),TS(4),
1 AK(144)
COMMON /MATIN / MATIDC,MATFLG,ELTEMP,STRESS,SINTH,COSTH
COMMON /MATOUT/ E(3),ANU(3),RHO,G(3),ALF(3),TZERO
COMMON /SDR2X6/ D(144),GAMBL(144),R(5),Z(5)
COMMON /SYSTEM/ IBUF,IOUT
EQUIVALENCE (CONSTS(2),TWOPI),(CONSTS(4),DEGRA),
1 (IECPT(1),ECPT(1)),(R(1),R1),(R(2),R2),(R(3),R3),
2 (R(4),R4),(Z(1),Z1),(Z(2),Z2),(Z(3),Z3),(Z(4),Z4),
3 (GAMBL(1),SP(1)),(GAMBL(1),TEO(1)),
4 (GAMBL(17),DELINT(1))
C
C STORE ECPT PARAMETERS IN LOCAL VARIABLES
C
IDEL = IECPT(1)
IGP(1) = IECPT(2)
IGP(2) = IECPT(3)
IGP(3) = IECPT(4)
IGP(4) = IECPT(5)
MATID = IECPT(7)
ICS(1) = IECPT(8)
ICS(2) = IECPT(12)
ICS(3) = IECPT(16)
ICS(4) = IECPT(20)
R(1) = ECPT(9)
D(1) = ECPT(10)
Z(1) = ECPT(11)
R(2) = ECPT(13)
D(2) = ECPT(14)
Z(2) = ECPT(15)
R(3) = ECPT(17)
D(3) = ECPT(18)
Z(3) = ECPT(19)
R(4) = ECPT(21)
D(4) = ECPT(22)
Z(4) = ECPT(23)
TEMPE = ECPT(24)
DGAMA = ECPT(6)
C
C TEST THE VALIDITY OF THE GRID POINT COORDINATES
C
DO 200 I = 1,4
IF (R(I) .LT. 0.0) CALL MESAGE (-30,37,IDEL)
IF (D(I) .NE. 0.0) CALL MESAGE (-30,37,IDEL)
200 CONTINUE
C
C COMPUTE THE ELEMENT COORDINATES
C
ZMIN = AMIN1(Z1,Z2,Z3,Z4)
Z1 = Z1 - ZMIN
Z2 = Z2 - ZMIN
Z3 = Z3 - ZMIN
Z4 = Z4 - ZMIN
RMIN = AMIN1(R1,R2,R3,R4)
RMAX = AMAX1(R1,R2,R3,R4)
IF (RMIN .EQ. 0.) GO TO 206
IF (RMAX/RMIN .LE. 10.) GO TO 206
C
C RATIO OF RADII IS TOO LARGE FOR GAUSS QUADRATURE FOR IP=-1
C
WRITE (IOUT,205) UFM,IDEL
205 FORMAT (A23,', TRAPRG ELEMENT',I9,' HAS A MAXIMUM TO MINIMUM ',
1 'RADIUS RATIO EXCEEDING 10.', /5X,
2 'ACCURACY OF NUMERICAL INTEGRATION WOULD BE IN DOUBT.')
CALL MESAGE (-30,37,IDEL)
206 CONTINUE
ICORE = 0
J = 1
DO 210 I = 1,4
IF (R(I) .NE. 0.) GO TO 210
ICORE = ICORE + 1
JRZ(J) = I
J = 2
210 CONTINUE
IF (ICORE.NE.0 .AND. ICORE.NE.2) CALL MESAGE (-30,37,IDEL)
C
C FORM THE TRANSFORMATION MATRIX (8X8) FROM FIELD COORDINATES TO
C GRID POINT DEGREES OF FREEDOM
C
DO 300 I = 1,64
GAMBQ(I) = 0.0
300 CONTINUE
GAMBQ( 1) = 1.0
GAMBQ( 2) = R1
GAMBQ( 3) = Z1
GAMBQ( 4) = R1*Z1
GAMBQ(13) = 1.0
GAMBQ(14) = R1
GAMBQ(15) = Z1
GAMBQ(16) = GAMBQ(4)
GAMBQ(17) = 1.0
GAMBQ(18) = R2
GAMBQ(19) = Z2
GAMBQ(20) = R2*Z2
GAMBQ(29) = 1.0
GAMBQ(30) = R2
GAMBQ(31) = Z2
GAMBQ(32) = GAMBQ(20)
GAMBQ(33) = 1.0
GAMBQ(34) = R3
GAMBQ(35) = Z3
GAMBQ(36) = R3*Z3
GAMBQ(45) = 1.0
GAMBQ(46) = R3
GAMBQ(47) = Z3
GAMBQ(48) = GAMBQ(36)
GAMBQ(49) = 1.0
GAMBQ(50) = R4
GAMBQ(51) = Z4
GAMBQ(52) = R4*Z4
GAMBQ(61) = 1.0
GAMBQ(62) = R4
GAMBQ(63) = Z4
GAMBQ(64) = GAMBQ(52)
C
C NO NEED TO COMPUTE DETERMINANT SINCE IT IS NOT USED SUBSEQUENTLY.
C
ISING = -1
CALL INVERS (8,GAMBQ(1),8,D(10),0,D(11),ISING,SP)
C
IF (ISING .EQ. 2) CALL MESAGE (-30,26,IDEL)
C
C MODIFY THE TRANSFORMATION MATRIX IF ELEMENT IS A CORE ELEMENT
C
IF (ICORE .EQ. 0) GO TO 305
JJ1 = 2*JRZ(1) - 1
JJ2 = 2*JRZ(2) - 1
C
DO 303 I = 1,8
J = 8*(I-1)
GAMBQ(I ) = 0.0
GAMBQ(I+ 16) = 0.0
GAMBQ(J+JJ1) = 0.
GAMBQ(J+JJ2) = 0.
303 CONTINUE
305 CONTINUE
C
C CALCULATE THE INTEGRAL VALUES IN ARRAY DELINT WHERE THE ORDER IS
C INDICATED BY THE FOLLOWING TABLE
C
C DELINT( 1) - (-1,0)
C DELINT( 2) - (-1,1)
C DELINT( 3) - (-1,2)
C DELINT( 4) - ( 0,0)
C DELINT( 5) - ( 0,1)
C DELINT( 6) - ( 0,2)
C DELINT( 7) - ( 1,0)
C DELINT( 8) - ( 1,1)
C DELINT( 9) - ( 1,2)
C DELINT(10) - ( 2,0)
C DELINT(11) - ( 2,1)
C DELINT(12) - ( 3,0)
C
I1 = 0
DO 400 I = 1,4
IP = I - 2
DO 350 J = 1,3
IQ = J - 1
I1 = I1 + 1
IF (I1 .NE. 12) GO TO 340
IP = 3
IQ = 0
340 CONTINUE
IF (ICORE .EQ. 0) GO TO 345
IF (I1 .GT. 3) GO TO 345
DELINT(I1) = 0.0
GO TO 350
345 CONTINUE
DELINT(I1) = RZINTS(IP,IQ,R,Z,4)
350 CONTINUE
400 CONTINUE
C
C LOCATE THE MATERIAL PROPERTIES IN THE MAT1 OR MAT3 TABLE
C
MATIDC = MATID
MATFLG = 7
ELTEMP = TEMPE
CALL MAT (IDEL)
C
C SET MATERIAL PROPERTIES IN LOCAL VARIABLES
C
ER = E(1)
ET = E(2)
EZ = E(3)
VRT = ANU(1)
VTZ = ANU(2)
VZR = ANU(3)
GRZ = G(3)
TZ = TZERO
VTR = VRT*ET/ER
VZT = VTZ*EZ/ET
VRZ = VZR*ER/EZ
DEL = 1.0 - VRT*VTR - VTZ*VZT - VZR*VRZ - VRT*VTZ*VZR
1 - VRZ*VTR*VZT
C
C GENERATE ELASTIC CONSTANTS MATRIX (4X4)
C
EE( 1) = ER*(1.0 - VTZ*VZT)/DEL
EE( 2) = ER*(VTR + VZR*VTZ)/DEL
EE( 3) = ER*(VZR + VTR*VZT)/DEL
EE( 4) = 0.0
EE( 5) = EE(2)
EE( 6) = ET*(1.0 - VRZ*VZR)/DEL
EE( 7) = ET*(VZT + VRT*VZR)/DEL
EE( 8) = 0.0
EE( 9) = EE(3)
EE(10) = EE(7)
EE(11) = EZ*(1.0 - VRT*VTR)/DEL
EE(12) = 0.0
EE(13) = 0.0
EE(14) = 0.0
EE(15) = 0.0
EE(16) = GRZ
C
C FORM TRANSFORMATION MATRIX (4X4) FROM MATERIAL AXIS TO ELEMENT
C GEOMETRIC AXIS
C
DGAMR = DGAMA*DEGRA
COSG = COS(DGAMR)
SING = SIN(DGAMR)
TEO( 1) = COSG**2
TEO( 2) = 0.0
TEO( 3) = SING**2
TEO( 4) = SING*COSG
TEO( 5) = 0.0
TEO( 6) = 1.0
TEO( 7) = 0.0
TEO( 8) = 0.0
TEO( 9) = TEO(3)
TEO(10) = 0.0
TEO(11) = TEO(1)
TEO(12) =-TEO(4)
TEO(13) =-2.0*TEO(4)
TEO(14) = 0.0
TEO(15) =-TEO(13)
TEO(16) = TEO(1) - TEO(3)
C
C TRANSFORM THE ELASTIC CONSTANTS MATRIX FROM MATERIAL
C TO ELEMENT GEOMETRIC AXIS
C
CALL GMMATS (TEO,4,4,1, EE ,4,4,0, D )
CALL GMMATS (D ,4,4,0, TEO,4,4,0, EE)
C
C FORM THE ELEMENT STIFFNESS MATRIX IN FIELD COORDINATES
C
EE48 = EE(4) + EE(8)
D ( 1) = EE(1) + 2.0 * EE(2) + EE(6)
AK( 1) = EE(6) * DELINT(1)
AK( 2) = (EE(2) + EE(6)) * DELINT(4)
AK( 3) = EE(6) * DELINT(2) + EE(8) * DELINT(4)
AK( 4) = (EE(2) + EE(6)) * DELINT(5) + EE(8) * DELINT(7)
AK( 5) = 0.0
AK( 6) = EE(8) * DELINT(4)
AK( 7) = EE(7) * DELINT(4)
AK( 8) = EE(7) * DELINT(7) + EE(8) * DELINT(5)
AK( 9) = AK(2)
AK(10) = D(1) * DELINT(7)
AK(11) = (EE(2) + EE(6)) * DELINT(5) + EE48 * DELINT(7)
AK(12) = D(1) * DELINT(8) + EE48 * DELINT(10)
AK(13) = 0.0
AK(14) = EE48 * DELINT(7)
AK(15) = (EE(3) + EE(7)) * DELINT(7)
AK(16) = (EE(3) + EE(7)) * DELINT(10) + EE48 * DELINT(8)
AK(17) = AK( 3)
AK(18) = AK(11)
AK(19) = EE(6) * DELINT(3) + EE(16)* DELINT(7)
1 + (EE(8) + EE(14)) * DELINT(5)
AK(20) = (EE(2) + EE(6)) * DELINT(6) + EE(16) * DELINT(10)
1 + (EE(8) + EE(13) + EE(14)) * DELINT(8)
AK(21) = 0.0
AK(22) = EE(16) * DELINT(7) + EE(8) * DELINT(5)
AK(23) = EE(7) * DELINT(5) + EE(15) * DELINT(7)
AK(24) = (EE(7) + EE(16)) * DELINT(8)
1 + EE(8) *DELINT(6) + EE(15) * DELINT(10)
AK(25) = AK(4)
AK(26) = AK(12)
AK(27) = AK(20)
AK(28) = D(1) * DELINT(9) + EE(16) * DELINT(12)
1 + (EE48 + EE(13) + EE(14)) * DELINT(11)
AK(29) = 0.0
AK(30) = EE(16) * DELINT(10) + EE48 * DELINT(8)
AK(31) = (EE(3) + EE(7)) * DELINT(8) + EE(15) * DELINT(10)
AK(32) = (EE(3) + EE(7) + EE(16)) * DELINT(11)
1 + EE(15) * DELINT(12) + EE48 * DELINT(9)
AK(33) = 0.0
AK(34) = 0.0
AK(35) = 0.0
AK(36) = 0.0
AK(37) = 0.0
AK(38) = 0.0
AK(39) = 0.0
AK(40) = 0.0
AK(41) = AK( 6)
AK(42) = AK(14)
AK(43) = AK(22)
AK(44) = AK(30)
AK(45) = 0.0
AK(46) = EE(16)*DELINT(7)
AK(47) = EE(15)*DELINT(7)
AK(48) = EE(16)*DELINT(8) + EE(15) * DELINT(10)
AK(49) = AK( 7)
AK(50) = AK(15)
AK(51) = AK(23)
AK(52) = AK(31)
AK(53) = 0.0
AK(54) = AK(47)
AK(55) = EE(11)*DELINT( 7)
AK(56) = EE(11)*DELINT(10) + EE(12) * DELINT(8)
AK(57) = AK( 8)
AK(58) = AK(16)
AK(59) = AK(24)
AK(60) = AK(32)
AK(61) = 0.0
AK(62) = AK(48)
AK(63) = AK(56)
AK(64) = EE(11) * DELINT(12) + EE(16) * DELINT(9)
1 + (EE(12) + EE(13)) * DELINT(11)
C
DO 600 I = 1,64
AK(I) = TWOPI*AK(I)
600 CONTINUE
C
C TRANSFORM THE ELEMENT STIFFNESS MATRIX FROM FIELD COORDINATES
C TO GRID POINT DEGREES OF FREEDOM
C
CALL GMMATS (GAMBQ,8,8,1, AK ,8,8,0, D )
CALL GMMATS (D ,8,8,0, GAMBQ,8,8,0, AK)
C
C GENERATE THE TRANSFORMATION MATRIX FROM TWO TO THREE DEGREES OF
C FREEDOM PER POINT
C
DO 700 I = 1,96
GAMQS( I) = 0.0
700 CONTINUE
GAMQS( 1) = 1.0
GAMQS(15) = 1.0
GAMQS(28) = 1.0
GAMQS(42) = 1.0
GAMQS(55) = 1.0
GAMQS(69) = 1.0
GAMQS(82) = 1.0
GAMQS(96) = 1.0
C
C TRANSFORM THE STIFFNESS MATRIX FROM TWO TO THREE DEGREES OF
C FREEDOM PER POINT
C
CALL GMMATS (GAMQS(1),8,12,1, AK(1) ,8, 8,0, D(1) )
CALL GMMATS (D(1) ,12,8,0, GAMQS(1),8,12,0, AK(1))
C
C LOCATE THE TRANSFORMATION MATRICES FOR THE FOUR GRID POINTS
C
DO 750 I = 1,144
GAMBL(I) = 0.0
750 CONTINUE
DO 800 I = 1,4
CALL TRANSS (ICS(I),D(1))
K = 39*(I-1) + 1
DO 800 J = 1,3
KK = K + 12*(J-1)
JJ = 3 *(J-1) + 1
GAMBL(KK ) = D(JJ )
GAMBL(KK+1) = D(JJ+1)
GAMBL(KK+2) = D(JJ+2)
800 CONTINUE
C
C TRANSFORM THE STIFFNESS MATRIX FROM BASIC TO LOCAL COORDINATES
C
CALL GMMATS (GAMBL(1),12,12,1, AK(1) ,12,12,0, D(1) )
CALL GMMATS (D(1) ,12,12,0, GAMBL(1),12,12,0, AK(1))
C
C COMPUTE THE FIFTH GRID POINT TO BE THE AVERAGE OF THE FOUR
C CORNER POINTS
C
R(5) = (R1 + R2 + R3 + R4)/4.0
Z(5) = (Z1 + Z2 + Z3 + Z4)/4.0
C
C INITIALIZE THE CONSTANT PORTION OF THE D SUB 0 MATRIX
C
DO 850 I = 1,32
DZERO(I) = 0.0
850 CONTINUE
DZERO( 2) = 1.0
DZERO(10) = 1.0
DZERO(23) = 1.0
DZERO(27) = 1.0
DZERO(30) = 1.0
C
C START THE LOOP TO COMPUTE THE STRESS MATRIX FOR EACH GRID POINT
C
DO 950 J = 1,5
C
C COMPUTE THE VARIABLE PORTION OF THE D SUB 0 MATRIX
C
DZERO( 4) = Z(J)
IF (ICORE .NE. 0) GO TO 875
DZERO( 9) = 1.00/R(J)
DZERO(11) = Z(J)/R(J)
875 CONTINUE
DZERO(12) = Z(J)
DZERO(24) = R(J)
DZERO(28) = R(J)
DZERO(32) = Z(J)
C
C COMPUTE THE STRESS MATRIX IN FIELD COORDINATES
C
CALL GMMATS (EE(1),4,4,0, DZERO(1),4,8,0, D(1))
C
C TRANSFORM THE STRESS MATRIX TO GRID POINT DEGREES OF FREEDOM
C
CALL GMMATS (D(1),4,8,0, GAMBQ(1),8,8,0, D(37))
C
C TRANSFORM THE STRESS MATRIX FROM TWO TO THREE DEGREES OF FREEDOM
C PER POINT
C
CALL GMMATS (D(37),4,8,0, GAMQS(1),8,12,0, D(73))
C
C TRANSFORM THE STRESS MATRIX FROM BASIC TO LOCAL COORDINATES
C
K = 48*(J-1) + 1
CALL GMMATS (D(73),4,12,0, GAMBL(1),12,12,0, SEL(K))
C
950 CONTINUE
C
C COMPUTE THE THERMAL STRAIN VECTOR
C
DO 900 I = 1,3
ALFB(I) = ALF(I)
900 CONTINUE
ALFB(4) = 0.0
C
C COMPUTE THE THERMAL STRESS VECTOR
C
CALL GMMATS (EE(1),4,4,0, ALFB(1),4,1,0, TS(1))
RETURN
END
|