File: strsl2.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (292 lines) | stat: -rw-r--r-- 8,595 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
      SUBROUTINE STRSL2 (TI)
C
C     PHASE II OF STRESS DATA RECOVERY
C
      LOGICAL         FLAG
      INTEGER         TLOADS
      REAL            TI(6),SDELTA(3)
      DIMENSION       REALI(4),NSIL(6),STR(18),NPH1OU(990),SI(36),
     1                STOUT(68)
      COMMON /ZZZZZZ/ Z(1)
      COMMON /SDR2X4/ DUMMY(35),IVEC,IVECN,LDTEMP,DEFORM,DUM8(8),
     1                TLOADS,MAXSIZ
      COMMON /SDR2X7/ PH1OUT(1200),FORVEC(24)
      COMMON /SDR2X8/ TEMP,DELTA,NPOINT,IJ1,IJ2,NPT1,VEC(5),TEM,
     1                Z1 OVR I,Z2 OVR I,STRESS(18)
      EQUIVALENCE     (NSIL(1),PH1OUT(2)),(NPH1OU(1),PH1OUT(1)),
     1                (SI(1),PH1OUT(22)),(LDTEMP,FTEMP),(F1,N1)
C
C     PHASE I OUTPUT FROM THE PLATE IS THE FOLLOWING
C
C     PH1OUT(1)                        ELEMENT ID
C     PH1OUT(2 THRU 7)                 6 SILS
C     PH1OUT(8 THRU 10)                TMEM1,TMEM3,TMEM5
C     PH1OUT(11 THRU 13) (14)-(21)     Z1 AND Z2  TBEND1,TBEND3,TBEND5
C     PH1OUT (22 THRU 741)             4 S SUB I MATRICES,EACH 6X5X6 ARR
C     PH1OUT (742-753)                 4 - 3X3 S SUB T MATRICES
C
C     PHASE 1 OUTPUT FROM THE MEMBRANE IS THE FOLLOWING
C
C     PH1OUT(754)             ELEMENT ID
C     PH1OUT(755-760)         6 SILS
C     PH1OUT(761)             T SUB 0
C     PH1OUT(762-1193)        4 SETS OF 6 NOS. 3 X 6 S SUB I
C     PH1OUT(1194-1196)       S SUB T MATRIX
C
C     THE ABOVE ELEMENTS ARE COMPOSED OF PLATES AND MEMBRANES...
C     SOME MAY ONLY CONTAIN PLATES WHILE OTHERS MAY ONLY CONTAIN
C     MEMBRANES.
C     A CHECK FOR A ZERO FIRST SIL IN THE PHASE I OUTPUT, WHICH
C     INDICATES WHETHER ONE OR THE OTHER HAS BEEN OMITTED, IS MADE BELOW
C
C     FIRST GET FORCE VECTOR FOR THE PLATE CONSIDERATION
C
C     M ,  M ,  M ,  V ,  V    FOR ALL SIX GRID POINTS
C      X   Y   XY   X   Y
C                                NPTS
C     THE 5X1 FORCE VECTOR = SUMMATION  (S )(U )   FOR EACH POINT
C                                I=1       I   I
C
C     ZERO FORVEC STORAGE
C
      NPTS = 6
      DO 15 I = 1,24
   15 FORVEC( I) = 0.0
      FORVEC( 1) = PH1OUT(1)
      FORVEC( 7) = PH1OUT(1)
      FORVEC(13) = PH1OUT(1)
      FORVEC(19) = PH1OUT(1)
      II = 0
   17 II = II+1
      IF (II .GT. 4) GO TO 155
C
C     ZERO OUT LOCAL STRESSES
C
      SIG X  1 = 0.0
      SIG Y  1 = 0.0
      SIG XY 1 = 0.0
      SIG X  2 = 0.0
      SIG Y  2 = 0.0
      SIG XY 2 = 0.0
C
      IF (NSIL(1) .EQ. 0) GO TO 30
C
C     FORM SUMMATION
C
      DO 20 I = 1,6
C
C     POINTER TO DISPLACEMENT VECTOR IN VARIABLE CORE
C
      NPOINT = IVEC + NSIL(I) - 1
C
      II1 = (II-1)*180 + 30*I - 29
      CALL GMMATS (SI(II1),5,6,0, Z(NPOINT),6,1,0, VEC(1))
C
      DO 10 J = 2,6
      IJ = (II-1)*6 + J
   10 FORVEC(IJ) = FORVEC(IJ) + VEC(J-1)
   20 CONTINUE
C
      IF (TLOADS .EQ. 0) GO TO 23
      JST  = 741 + (II-1)*3
      I1   = (II-1)*6
      FLAG = .FALSE.
      F1   = TI(6)
      IF (N1 .EQ. 1) GO TO 22
      FORVEC(I1+2) = FORVEC(I1+2) - TI(2)
      FORVEC(I1+3) = FORVEC(I1+3) - TI(3)
      FORVEC(I1+4) = FORVEC(I1+4) - TI(4)
      IF (TI(5).EQ.0.0 .AND. TI(6).EQ.0.0) FLAG = .TRUE.
      GO TO 23
   22 FORVEC(I1+2) = FORVEC(I1+2) + TI(2)*PH1OUT(JST+1)
      FORVEC(I1+3) = FORVEC(I1+3) + TI(2)*PH1OUT(JST+2)
      FORVEC(I1+4) = FORVEC(I1+4) + TI(2)*PH1OUT(JST+3)
      IF (TI(3).EQ.0.0 .AND. TI(4).EQ.0.0) FLAG = .TRUE.
   23 CONTINUE
C
C     FORCE VECTOR IS NOW COMPLETE
C
      IF (II .EQ. 4) GO TO 24
      I1 = 13 + 2*II - 1
      I2 = I1 + 1
      Z1 OVR I = -12.0*PH1OUT(I1)/PH1OUT(10+II)**3
      Z2 OVR I = -12.0*PH1OUT(I2)/PH1OUT(10+II)**3
      GO TO 25
   24 Z1 OVR I = -1.5/PH1OUT(20)**2
      Z2 OVR I = -Z1 OVR I
   25 CONTINUE
      II1 = (II-1)*6
C
      K1  = 0
      ASSIGN 26 TO IRETRN
      GO TO 170
C
   26 SIG X  1 = FORVEC(II1+2)*Z1 OVR I-SDELTA(1)
      SIG Y  1 = FORVEC(II1+3)*Z1 OVR I-SDELTA(2)
      SIG XY 1 = FORVEC(II1+4)*Z1 OVR I-SDELTA(3)
C
      K1 = 1
      ASSIGN 27 TO IRETRN
      GO TO 170
C
   27 SIG X  2 = FORVEC(II1+2)*Z2 OVR I-SDELTA(1)
      SIG Y  2 = FORVEC(II1+3)*Z2 OVR I-SDELTA(2)
      SIG XY 2 = FORVEC(II1+4)*Z2 OVR I-SDELTA(3)
C
      GO TO 40
   30 Z1 = 0.0
      Z2 = 0.0
C
   40 IF (NPH1OU(754) .EQ. 0) GO TO 90
C
C     ZERO STRESS VECTOR STORAGE
C
      DO 42 I = 1,3
   42 STRESS(I) = 0.0
C
C                            I=NPTS
C        STRESS VECTOR = (  SUMMATION(S )(U )  ) - (S )(LDTEMP - T )
C                            I=1       I   I         T            0
C
      DO 60 I = 1,6
C
C     POINTER TO I-TH SIL IN PH1OUT
C     POINTER TO DISPLACEMENT VECTOR IN VARIABLE CORE
C     POINTER TO S SUB I 3X3
C
      NPOINT = 754 + I
      NPOINT = IVEC + NPH1OU(NPOINT) - 1
      NPT1=762+(I-1)*18+(II-1)*108
      CALL GMMATS (PH1OUT(NPT1),3,6,0, Z(NPOINT),6,1,0, VEC(1))
C
      DO 50 J = 1,3
   50 STRESS(J) = STRESS(J) + VEC(J)
C
   60 CONTINUE
C
      IF (LDTEMP .EQ. -1) GO TO 80
C
C     POINTER TO T SUB 0 = 761
C
      TEM = FTEMP - PH1OUT(761)
      DO 70 I = 1,3
      NPOINT = 1193 + I
   70 STRESS(I) = STRESS(I) - PH1OUT(NPOINT)*TEM
C
C     ADD MEMBRANE STRESSES TO PLATE STRESSES
C
   80 SIG X  1 = SIG X  1 + STRESS(1)
      SIG Y  1 = SIG Y  1 + STRESS(2)
      SIG XY 1 = SIG XY 1 + STRESS(3)
      SIG X  2 = SIG X  2 + STRESS(1)
      SIG Y  2 = SIG Y  2 + STRESS(2)
      SIG XY 2 = SIG XY 2 + STRESS(3)
C
C     STRESS OUTPUT VECTOR IS THE FOLLOWING
C
C      1) ELEMENT ID
C      2) Z1 = FIBER DISTANCE 1
C      3) SIG X  1
C      4) SIG Y  1
C      5) SIG XY 1
C      6) ANGLE OF ZERO SHEAR AT Z1
C      7) SIG P1 AT Z1
C      8) SIG P2 AT Z1
C      9) TAU MAX = MAXIMUM SHEAR STRESS AT Z1
C     10) ELEMENT ID
C     11) Z2 = FIBER DISTANCE 2
C     12) SIG X  2
C     13) SIG Y  2
C     14) SIG XY 2
C     15) ANGLE OF ZERO SHEAR AT Z2
C     16) SIG P1 AT Z2
C     17) SIG P2 AT Z2
C     S7) SIG P2 AT Z2
C     18) TAU MAX = MAXIMUM SHEAR STRESS AT Z2
C
   90 IF (NPH1OU(755).EQ.0 .AND. NPH1OU(2).EQ.0) GO TO 120
C
C     COMPUTE PRINCIPAL STRESSES
C
      STR( 1) = PH1OUT(1)
      STR( 2) = PH1OUT(II*2+12)
      STR( 3) = SIG X 1
      STR( 4) = SIG Y 1
      STR( 5) = SIG XY 1
      STR(10) = PH1OUT(1)
      STR(11) = PH1OUT(II*2+13)
      STR(12) = SIG X  2
      STR(13) = SIG Y  2
      STR(14) = SIG XY 2
C
      DO 110 I = 3,12,9
      TEMP     = STR(I) - STR(I+1)
      STR(I+6) = SQRT((TEMP/2.0)**2+STR(I+2)**2)
      DELTA    = (STR(I)+STR(I+1))/2.0
      STR(I+4) = DELTA + STR(I+6)
      STR(I+5) = DELTA - STR(I+6)
      DELTA    = 2.0*STR(I+2)
      IF (ABS(DELTA).LT.1.0E-15 .AND. ABS(TEMP).LT.1.0E-15) GO TO 100
      STR(I+3) = ATAN2(DELTA,TEMP)*28.6478898
      GO TO 110
  100 STR(I+3) = 0.0
  110 CONTINUE
      GO TO 140
  120 DO 130 I = 2,18
  130 STR( I) = 0.0
  140 STR( 1) = PH1OUT(1)
      STR(10) = PH1OUT(1)
C
C     ADDITION TO ELIMINATE 2ND ELEMENT ID IN OUTPUT
C
      IJK = (II-1)*17
      STOUT(IJK+1) = PH1OUT(1)
      DO 149 I = 2,9
  149 STOUT(IJK+I) = STR(I)
      DO 150 I = 10,17
  150 STOUT (IJK+I) = STR(I+1)
      GO TO 17
  155 CONTINUE
C
      DO 156 I = 1,17
  156 PH1OUT(100+I) = STOUT(I)
      DO 159 J = 1,3
      DO 159 I = 1,16
      J1 = 117 + (J-1)*16 + I
      J2 = (J-1)*17 + I + 18
      PH1OUT(J1) = STOUT(J2)
  159 CONTINUE
      DO 157 I = 1,6
  157 PH1OUT(200+I) = FORVEC(I)
      DO 158 I = 1,5
      PH1OUT(206+I) = FORVEC(I+ 7)
  158 PH1OUT(211+I) = FORVEC(I+13)
      RETURN
C
C     INTERNAL SUBROUTINE
C
  170 IF (TLOADS.EQ.0 .OR. FLAG) GO TO 200
      JST = 741 + (II-1)*3
      REALI(1) = PH1OUT(11)**3/12.0
      REALI(2) = PH1OUT(12)**3/12.0
      REALI(3) = PH1OUT(13)**3/12.0
      REALI(4) = PH1OUT(20)**3/1.50
      IF (N1 .EQ. 1) GO TO 190
      FF = TI(K1+5) - TI(1)
      IF (ABS(PH1OUT(K1+12+2*II)) .LE. 1.0E-07) GO TO 200
      SDELTA(1) = (PH1OUT(JST+1)*FF +TI(2)*PH1OUT(K1+12+2*II))/REALI(II)
      SDELTA(2) = (PH1OUT(JST+2)*FF +TI(3)*PH1OUT(K1+12+2*II))/REALI(II)
      SDELTA(3) = (PH1OUT(JST+3)*FF +TI(4)*PH1OUT(K1+2*II+12))/REALI(II)
      GO TO 210
  190 CONTINUE
      IF (ABS(PH1OUT(K1+12+2*II)) .LE. 1.0E-07) GO TO 200
      FF = (TI(K1+3) - PH1OUT(K1+12+2*II)*TI(2) - TI(1))/REALI(II)
      SDELTA(1) = PH1OUT(JST+1)*FF
      SDELTA(2) = PH1OUT(JST+2)*FF
      SDELTA(3) = PH1OUT(JST+3)*FF
      GO TO 210
  200 SDELTA(1) = 0.0
      SDELTA(2) = 0.0
      SDELTA(3) = 0.0
  210 GO TO IRETRN, (26,27)
      END