1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
SUBROUTINE STRSL2 (TI)
C
C PHASE II OF STRESS DATA RECOVERY
C
LOGICAL FLAG
INTEGER TLOADS
REAL TI(6),SDELTA(3)
DIMENSION REALI(4),NSIL(6),STR(18),NPH1OU(990),SI(36),
1 STOUT(68)
COMMON /ZZZZZZ/ Z(1)
COMMON /SDR2X4/ DUMMY(35),IVEC,IVECN,LDTEMP,DEFORM,DUM8(8),
1 TLOADS,MAXSIZ
COMMON /SDR2X7/ PH1OUT(1200),FORVEC(24)
COMMON /SDR2X8/ TEMP,DELTA,NPOINT,IJ1,IJ2,NPT1,VEC(5),TEM,
1 Z1 OVR I,Z2 OVR I,STRESS(18)
EQUIVALENCE (NSIL(1),PH1OUT(2)),(NPH1OU(1),PH1OUT(1)),
1 (SI(1),PH1OUT(22)),(LDTEMP,FTEMP),(F1,N1)
C
C PHASE I OUTPUT FROM THE PLATE IS THE FOLLOWING
C
C PH1OUT(1) ELEMENT ID
C PH1OUT(2 THRU 7) 6 SILS
C PH1OUT(8 THRU 10) TMEM1,TMEM3,TMEM5
C PH1OUT(11 THRU 13) (14)-(21) Z1 AND Z2 TBEND1,TBEND3,TBEND5
C PH1OUT (22 THRU 741) 4 S SUB I MATRICES,EACH 6X5X6 ARR
C PH1OUT (742-753) 4 - 3X3 S SUB T MATRICES
C
C PHASE 1 OUTPUT FROM THE MEMBRANE IS THE FOLLOWING
C
C PH1OUT(754) ELEMENT ID
C PH1OUT(755-760) 6 SILS
C PH1OUT(761) T SUB 0
C PH1OUT(762-1193) 4 SETS OF 6 NOS. 3 X 6 S SUB I
C PH1OUT(1194-1196) S SUB T MATRIX
C
C THE ABOVE ELEMENTS ARE COMPOSED OF PLATES AND MEMBRANES...
C SOME MAY ONLY CONTAIN PLATES WHILE OTHERS MAY ONLY CONTAIN
C MEMBRANES.
C A CHECK FOR A ZERO FIRST SIL IN THE PHASE I OUTPUT, WHICH
C INDICATES WHETHER ONE OR THE OTHER HAS BEEN OMITTED, IS MADE BELOW
C
C FIRST GET FORCE VECTOR FOR THE PLATE CONSIDERATION
C
C M , M , M , V , V FOR ALL SIX GRID POINTS
C X Y XY X Y
C NPTS
C THE 5X1 FORCE VECTOR = SUMMATION (S )(U ) FOR EACH POINT
C I=1 I I
C
C ZERO FORVEC STORAGE
C
NPTS = 6
DO 15 I = 1,24
15 FORVEC( I) = 0.0
FORVEC( 1) = PH1OUT(1)
FORVEC( 7) = PH1OUT(1)
FORVEC(13) = PH1OUT(1)
FORVEC(19) = PH1OUT(1)
II = 0
17 II = II+1
IF (II .GT. 4) GO TO 155
C
C ZERO OUT LOCAL STRESSES
C
SIG X 1 = 0.0
SIG Y 1 = 0.0
SIG XY 1 = 0.0
SIG X 2 = 0.0
SIG Y 2 = 0.0
SIG XY 2 = 0.0
C
IF (NSIL(1) .EQ. 0) GO TO 30
C
C FORM SUMMATION
C
DO 20 I = 1,6
C
C POINTER TO DISPLACEMENT VECTOR IN VARIABLE CORE
C
NPOINT = IVEC + NSIL(I) - 1
C
II1 = (II-1)*180 + 30*I - 29
CALL GMMATS (SI(II1),5,6,0, Z(NPOINT),6,1,0, VEC(1))
C
DO 10 J = 2,6
IJ = (II-1)*6 + J
10 FORVEC(IJ) = FORVEC(IJ) + VEC(J-1)
20 CONTINUE
C
IF (TLOADS .EQ. 0) GO TO 23
JST = 741 + (II-1)*3
I1 = (II-1)*6
FLAG = .FALSE.
F1 = TI(6)
IF (N1 .EQ. 1) GO TO 22
FORVEC(I1+2) = FORVEC(I1+2) - TI(2)
FORVEC(I1+3) = FORVEC(I1+3) - TI(3)
FORVEC(I1+4) = FORVEC(I1+4) - TI(4)
IF (TI(5).EQ.0.0 .AND. TI(6).EQ.0.0) FLAG = .TRUE.
GO TO 23
22 FORVEC(I1+2) = FORVEC(I1+2) + TI(2)*PH1OUT(JST+1)
FORVEC(I1+3) = FORVEC(I1+3) + TI(2)*PH1OUT(JST+2)
FORVEC(I1+4) = FORVEC(I1+4) + TI(2)*PH1OUT(JST+3)
IF (TI(3).EQ.0.0 .AND. TI(4).EQ.0.0) FLAG = .TRUE.
23 CONTINUE
C
C FORCE VECTOR IS NOW COMPLETE
C
IF (II .EQ. 4) GO TO 24
I1 = 13 + 2*II - 1
I2 = I1 + 1
Z1 OVR I = -12.0*PH1OUT(I1)/PH1OUT(10+II)**3
Z2 OVR I = -12.0*PH1OUT(I2)/PH1OUT(10+II)**3
GO TO 25
24 Z1 OVR I = -1.5/PH1OUT(20)**2
Z2 OVR I = -Z1 OVR I
25 CONTINUE
II1 = (II-1)*6
C
K1 = 0
ASSIGN 26 TO IRETRN
GO TO 170
C
26 SIG X 1 = FORVEC(II1+2)*Z1 OVR I-SDELTA(1)
SIG Y 1 = FORVEC(II1+3)*Z1 OVR I-SDELTA(2)
SIG XY 1 = FORVEC(II1+4)*Z1 OVR I-SDELTA(3)
C
K1 = 1
ASSIGN 27 TO IRETRN
GO TO 170
C
27 SIG X 2 = FORVEC(II1+2)*Z2 OVR I-SDELTA(1)
SIG Y 2 = FORVEC(II1+3)*Z2 OVR I-SDELTA(2)
SIG XY 2 = FORVEC(II1+4)*Z2 OVR I-SDELTA(3)
C
GO TO 40
30 Z1 = 0.0
Z2 = 0.0
C
40 IF (NPH1OU(754) .EQ. 0) GO TO 90
C
C ZERO STRESS VECTOR STORAGE
C
DO 42 I = 1,3
42 STRESS(I) = 0.0
C
C I=NPTS
C STRESS VECTOR = ( SUMMATION(S )(U ) ) - (S )(LDTEMP - T )
C I=1 I I T 0
C
DO 60 I = 1,6
C
C POINTER TO I-TH SIL IN PH1OUT
C POINTER TO DISPLACEMENT VECTOR IN VARIABLE CORE
C POINTER TO S SUB I 3X3
C
NPOINT = 754 + I
NPOINT = IVEC + NPH1OU(NPOINT) - 1
NPT1=762+(I-1)*18+(II-1)*108
CALL GMMATS (PH1OUT(NPT1),3,6,0, Z(NPOINT),6,1,0, VEC(1))
C
DO 50 J = 1,3
50 STRESS(J) = STRESS(J) + VEC(J)
C
60 CONTINUE
C
IF (LDTEMP .EQ. -1) GO TO 80
C
C POINTER TO T SUB 0 = 761
C
TEM = FTEMP - PH1OUT(761)
DO 70 I = 1,3
NPOINT = 1193 + I
70 STRESS(I) = STRESS(I) - PH1OUT(NPOINT)*TEM
C
C ADD MEMBRANE STRESSES TO PLATE STRESSES
C
80 SIG X 1 = SIG X 1 + STRESS(1)
SIG Y 1 = SIG Y 1 + STRESS(2)
SIG XY 1 = SIG XY 1 + STRESS(3)
SIG X 2 = SIG X 2 + STRESS(1)
SIG Y 2 = SIG Y 2 + STRESS(2)
SIG XY 2 = SIG XY 2 + STRESS(3)
C
C STRESS OUTPUT VECTOR IS THE FOLLOWING
C
C 1) ELEMENT ID
C 2) Z1 = FIBER DISTANCE 1
C 3) SIG X 1
C 4) SIG Y 1
C 5) SIG XY 1
C 6) ANGLE OF ZERO SHEAR AT Z1
C 7) SIG P1 AT Z1
C 8) SIG P2 AT Z1
C 9) TAU MAX = MAXIMUM SHEAR STRESS AT Z1
C 10) ELEMENT ID
C 11) Z2 = FIBER DISTANCE 2
C 12) SIG X 2
C 13) SIG Y 2
C 14) SIG XY 2
C 15) ANGLE OF ZERO SHEAR AT Z2
C 16) SIG P1 AT Z2
C 17) SIG P2 AT Z2
C S7) SIG P2 AT Z2
C 18) TAU MAX = MAXIMUM SHEAR STRESS AT Z2
C
90 IF (NPH1OU(755).EQ.0 .AND. NPH1OU(2).EQ.0) GO TO 120
C
C COMPUTE PRINCIPAL STRESSES
C
STR( 1) = PH1OUT(1)
STR( 2) = PH1OUT(II*2+12)
STR( 3) = SIG X 1
STR( 4) = SIG Y 1
STR( 5) = SIG XY 1
STR(10) = PH1OUT(1)
STR(11) = PH1OUT(II*2+13)
STR(12) = SIG X 2
STR(13) = SIG Y 2
STR(14) = SIG XY 2
C
DO 110 I = 3,12,9
TEMP = STR(I) - STR(I+1)
STR(I+6) = SQRT((TEMP/2.0)**2+STR(I+2)**2)
DELTA = (STR(I)+STR(I+1))/2.0
STR(I+4) = DELTA + STR(I+6)
STR(I+5) = DELTA - STR(I+6)
DELTA = 2.0*STR(I+2)
IF (ABS(DELTA).LT.1.0E-15 .AND. ABS(TEMP).LT.1.0E-15) GO TO 100
STR(I+3) = ATAN2(DELTA,TEMP)*28.6478898
GO TO 110
100 STR(I+3) = 0.0
110 CONTINUE
GO TO 140
120 DO 130 I = 2,18
130 STR( I) = 0.0
140 STR( 1) = PH1OUT(1)
STR(10) = PH1OUT(1)
C
C ADDITION TO ELIMINATE 2ND ELEMENT ID IN OUTPUT
C
IJK = (II-1)*17
STOUT(IJK+1) = PH1OUT(1)
DO 149 I = 2,9
149 STOUT(IJK+I) = STR(I)
DO 150 I = 10,17
150 STOUT (IJK+I) = STR(I+1)
GO TO 17
155 CONTINUE
C
DO 156 I = 1,17
156 PH1OUT(100+I) = STOUT(I)
DO 159 J = 1,3
DO 159 I = 1,16
J1 = 117 + (J-1)*16 + I
J2 = (J-1)*17 + I + 18
PH1OUT(J1) = STOUT(J2)
159 CONTINUE
DO 157 I = 1,6
157 PH1OUT(200+I) = FORVEC(I)
DO 158 I = 1,5
PH1OUT(206+I) = FORVEC(I+ 7)
158 PH1OUT(211+I) = FORVEC(I+13)
RETURN
C
C INTERNAL SUBROUTINE
C
170 IF (TLOADS.EQ.0 .OR. FLAG) GO TO 200
JST = 741 + (II-1)*3
REALI(1) = PH1OUT(11)**3/12.0
REALI(2) = PH1OUT(12)**3/12.0
REALI(3) = PH1OUT(13)**3/12.0
REALI(4) = PH1OUT(20)**3/1.50
IF (N1 .EQ. 1) GO TO 190
FF = TI(K1+5) - TI(1)
IF (ABS(PH1OUT(K1+12+2*II)) .LE. 1.0E-07) GO TO 200
SDELTA(1) = (PH1OUT(JST+1)*FF +TI(2)*PH1OUT(K1+12+2*II))/REALI(II)
SDELTA(2) = (PH1OUT(JST+2)*FF +TI(3)*PH1OUT(K1+12+2*II))/REALI(II)
SDELTA(3) = (PH1OUT(JST+3)*FF +TI(4)*PH1OUT(K1+2*II+12))/REALI(II)
GO TO 210
190 CONTINUE
IF (ABS(PH1OUT(K1+12+2*II)) .LE. 1.0E-07) GO TO 200
FF = (TI(K1+3) - PH1OUT(K1+12+2*II)*TI(2) - TI(1))/REALI(II)
SDELTA(1) = PH1OUT(JST+1)*FF
SDELTA(2) = PH1OUT(JST+2)*FF
SDELTA(3) = PH1OUT(JST+3)*FF
GO TO 210
200 SDELTA(1) = 0.0
SDELTA(2) = 0.0
SDELTA(3) = 0.0
210 GO TO IRETRN, (26,27)
END
|