1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
SUBROUTINE T3SETD (IERR,SIL,JGPDT,ELTH,GPTH,DGPTH,EGPDT,GPNORM,
1 EPNORM,IORDER,TEB,TUB,CENT,AVGTHK,LX,LY,EDGLEN,ELID)
C
C DOUBLE PRECISION ROUTINE TO DO THE SET-UP FOR TRIA3 ELEMENTS
C
C
C INPUT :
C SIL - ARRAY OF SIL NUMBERS
C JGPDT - BGPDT DATA (INTEGER ARRAY)
C ELTH - ELEMENT THICKNESS FROM EPT
C GPTH - GRID POINT THICKNESS DATA
C ELID - ELEMENT ID
C OUTPUT:
C IERR - ERROR FLAG
C SIL - ARRAY OF SIL NUMBERS (REARRANGED)
C JGPDT - BGPDT DATA (INTEGER ARRAY) (REARRANGED)
C GPTH - GRID POINT THICKNESS DATA (REARRANGED)
C DGPTH - GRID POINT THICKNESS DATA (HIGH PREC)
C EGPDT - BGPDT DATA IN ELEMENT COORD. SYSTEM
C GPNORM - GRID POINT NORMALS
C EPNORM - GRID POINT NORMALS IN ELEMENT COORD .SYSTEM
C IORDER - ARRAY OF ORDER INDICATORS FOR REARRANGED DATA
C TEB - TRANSFORMATION FROM ELEMENT TO BASIC COORD. SYSTEM
C TUB - TRANSFORMATION FROM USER TO BASIC COORD. SYSTEM
C CENT - LOCATION OF THE CENTER OF THE ELEMENT
C AVGTHK - AVERAGE THICKNESS OF THE ELEMENT
C LX - DIMENSION OF ELEMENT ALONG X-AXIS
C LY - DIMENSION OF ELEMENT ALONG Y-AXIS
C EDGLEN - EDGE LENGTHS
C
C
INTEGER IGPDT(4,3),JGPDT(4,3),IGRID(4,3),SIL(3),
1 IORDER(3),KSIL(3),ELID
REAL BGPDT(4,3),GPTH(3),TMPTHK(3)
DOUBLE PRECISION CENT(3),EGPDT(4,3),GGU(9),TEB(9),TUB(9),CC,
1 DGPTH(3),GPNORM(4,3),EPNORM(4,3),AVGTHK,LX,LY,
2 AREA2,LENGTH,SMALL,X(3),Y(3),Z(3),EDG12(3),
3 EDG23(3),EDG13(3),EDGLEN(3),AXIS(3,3)
EQUIVALENCE (IGPDT(1,1),BGPDT(1,1))
C
C
C INITIALIZE
C
IERR = 0
NNODE = 3
C
DO 100 I = 1,NNODE
DO 100 J = 1,4
IGPDT(J,I) = JGPDT(J,I)
100 CONTINUE
C
C SET UP THE USER COORDINATE SYSTEM
C
DO 120 I = 1,3
II = (I-1)*3
DO 120 J = 1,3
GGU(II+J) = DBLE(BGPDT(J+1,I))
120 CONTINUE
CALL BETRND (TUB,GGU,0,ELID)
C
C SET UP THE ELEMENT COORDINATE SYSTEM
C
C 1. SET UP THE EDGE VECTORS AND THEIR LENGTHS
C
DO 140 I = 1,NNODE
X(I) = BGPDT(2,I)
Y(I) = BGPDT(3,I)
Z(I) = BGPDT(4,I)
140 CONTINUE
C
CENT(1) = (X(1)+X(2)+X(3))/3.0D0
CENT(2) = (Y(1)+Y(2)+Y(3))/3.0D0
CENT(3) = (Z(1)+Z(2)+Z(3))/3.0D0
C
EDG12(1) = X(2) - X(1)
EDG12(2) = Y(2) - Y(1)
EDG12(3) = Z(2) - Z(1)
EDGLEN(1)= EDG12(1)**2 + EDG12(2)**2 + EDG12(3)**2
IF (EDGLEN(1) .EQ. 0.0D0) GO TO 380
EDGLEN(1) = DSQRT(EDGLEN(1))
C
EDG23(1) = X(3) - X(2)
EDG23(2) = Y(3) - Y(2)
EDG23(3) = Z(3) - Z(2)
EDGLEN(2)= EDG23(1)**2 + EDG23(2)**2 + EDG23(3)**2
IF (EDGLEN(2) .EQ. 0.0D0) GO TO 380
EDGLEN(2) = DSQRT(EDGLEN(2))
C
EDG13(1) = X(3) - X(1)
EDG13(2) = Y(3) - Y(1)
EDG13(3) = Z(3) - Z(1)
EDGLEN(3)= EDG13(1)**2 + EDG13(2)**2 + EDG13(3)**2
IF (EDGLEN(3) .EQ. 0.0D0) GO TO 380
EDGLEN(3) = DSQRT(EDGLEN(3))
C
C 2. FIND THE SMALLEST EDGE LENGTH
C
SMALL = EDGLEN(1)
NODEI = 3
NODEJ = 1
NODEK = 2
C
IF (EDGLEN(2) .GE. SMALL) GO TO 160
SMALL = EDGLEN(2)
NODEI = 1
NODEJ = 2
NODEK = 3
160 IF (EDGLEN(3) .GE. SMALL) GO TO 180
SMALL = EDGLEN(3)
NODEI = 2
NODEJ = 1
NODEK = 3
C
C 3. ESTABLISH AXIS 3 AND NORMALIZE IT
C
180 CALL DAXB (EDG12,EDG13,AXIS(1,3))
C
LENGTH = DSQRT(AXIS(1,3)**2 + AXIS(2,3)**2 + AXIS(3,3)**2)
AXIS(1,3) = AXIS(1,3)/LENGTH
AXIS(2,3) = AXIS(2,3)/LENGTH
AXIS(3,3) = AXIS(3,3)/LENGTH
AREA2 = LENGTH
C
C 4. ESTABLISH AXES 1 AND 2 AND NORMALIZE THEM
C
AXIS(1,1) = (X(NODEJ)+X(NODEK))/2.0D0 - X(NODEI)
AXIS(2,1) = (Y(NODEJ)+Y(NODEK))/2.0D0 - Y(NODEI)
AXIS(3,1) = (Z(NODEJ)+Z(NODEK))/2.0D0 - Z(NODEI)
C
LENGTH = DSQRT(AXIS(1,1)**2 + AXIS(2,1)**2 + AXIS(3,1)**2)
AXIS(1,1) = AXIS(1,1)/LENGTH
AXIS(2,1) = AXIS(2,1)/LENGTH
AXIS(3,1) = AXIS(3,1)/LENGTH
C
CALL DAXB (AXIS(1,3),AXIS(1,1),AXIS(1,2))
C
DO 200 I = 1,3
TEB(I ) = AXIS(I,1)
TEB(I+3) = AXIS(I,2)
TEB(I+6) = AXIS(I,3)
200 CONTINUE
C
LX = LENGTH
LY = AREA2/LX
C
C
C THE ELEMENT COORDINATE SYSTEM IS NOW READY
C
C THE ARRAY IORDER STORES THE ELEMENT NODE ID IN INCREASING SIL
C ORDER.
C
C IORDER(1) = NODE WITH LOWEST SIL NUMBER
C IORDER(3) = NODE WITH HIGHEST SIL NUMBER
C
C ELEMENT NODE NUMBER IS THE INTEGER FROM THE NODE LIST G1,G2,....
C THAT IS, THE 'I' PART OF THE 'GI' AS THEY ARE LISTED ON THE
C CONNECTION BULK DATA CARD DESCRIPTION.
C
DO 220 I = 1,NNODE
KSIL(I) = SIL(I)
220 CONTINUE
C
DO 260 I = 1,NNODE
ITEMP = 1
ISIL = KSIL(1)
DO 240 J = 2,NNODE
IF (ISIL .LE. KSIL(J)) GO TO 240
ITEMP = J
ISIL = KSIL(J)
240 CONTINUE
IORDER(I) = ITEMP
KSIL(ITEMP) = 99999999
260 CONTINUE
C
C USE THE POINTERS IN IORDER TO COMPLETELY REORDER THE GEOMETRY DATA
C INTO INCREASING SIL ORDER.
C
DO 280 I = 1,NNODE
KSIL(I) = SIL(I)
TMPTHK(I) = GPTH(I)
DO 280 J = 1,4
IGRID(J,I) = IGPDT(J,I)
280 CONTINUE
DO 300 I = 1,NNODE
IPOINT = IORDER(I)
SIL(I) = KSIL(IPOINT)
GPTH(I)= TMPTHK(IPOINT)
DO 300 J = 1,4
IGPDT(J,I) = IGRID(J,IPOINT)
JGPDT(J,I) = IGPDT(J,I)
300 CONTINUE
C
C THE COORDINATES OF THE ELEMENT GRID POINTS MUST BE TRANSFORMED
C FROM THE BASIC COORD. SYSTEM TO THE ELEMENT COORD. SYSTEM
C
DO 320 I = 1,3
IP = (I-1)*3
DO 320 J = 1,NNODE
EGPDT(I+1,J) = 0.0D0
DO 320 K = 1,3
CC = DBLE(BGPDT((K+1),J)) - CENT(K)
EGPDT(I+1,J) = EGPDT(I+1,J) + TEB(IP+K)*CC
320 CONTINUE
C
C SET NODAL NORMALS
C
DO 340 I = 1,NNODE
EPNORM(1,I) = 0.0D0
EPNORM(2,I) = 0.0D0
EPNORM(3,I) = 0.0D0
EPNORM(4,I) = 1.0D0
GPNORM(1,I) = 0.0D0
GPNORM(2,I) = TEB(7)
GPNORM(3,I) = TEB(8)
GPNORM(4,I) = TEB(9)
340 CONTINUE
C
C SET NODAL THICKNESSES
C
AVGTHK = 0.0D0
DO 370 I = 1,NNODE
IF (GPTH(I)) 380,350,360
350 IF (ELTH .LE. 0) GO TO 380
GPTH(I) = ELTH
360 DGPTH(I) = DBLE(GPTH(I))
AVGTHK = AVGTHK + DGPTH(I)/NNODE
370 CONTINUE
GO TO 400
C
380 IERR = 1
400 RETURN
END
|