1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
SUBROUTINE WILVEC (D,O,VAL,VLOC,V,F,P,Q,R,VEC,NX,SVEC)
C
C WILKINSON EIGENVECTOR SOLUTION FOR LARGE SYM MATRICES
C
INTEGER VLOC(1),ENTRY,V2,XENTRY,PV,VECTOR,VV,V1,MCB(7),
1 SYSBUF,MCB1(7),PHIA,SVEC(1),PATH
DOUBLE PRECISION D(1),O(1),VAL(1),V(1),P(1),F(1),Q(1),R(1),
1 VEC(NX,1),VALUE,W,X,Y,Z,DLMDAS,
2 RMULT,RRMULT,SFT,SFTINV,DEPS,VMULT,ZERO,ONE
CHARACTER UFM*23,UWM*25,UIM*29
COMMON /XMSSG / UFM,UWM,UIM
COMMON /GIVN / TITLE(1),MO,T3,MR,MT1,T6,MV1,T8(3),ENTRY,T12(5),
1 RSTRT,V2,T19,XENTRY,T21(80),VCOM(30),T131(20)
COMMON /PACKX / IT1,IT2,II,JJ,INCR
COMMON /UNPAKX/ IT3,III,JJJ,INCR1
COMMON /SYSTEM/ SYSBUF,IOTPE,KSYS(52),IPREC
COMMON /REIGKR/ IOPTN
COMMON /MGIVXX/ DLMDAS
EQUIVALENCE (N ,VCOM( 1)), (PV ,VCOM( 5)),
1 (NV ,VCOM( 7)), (NRIGID,VCOM(10)),
2 (PHIA ,VCOM(12)), (NVER ,VCOM(13)),
3 (MAXITR,VCOM(15)), (ITERM ,VCOM(16))
DATA MUL3 , MCB1,MCB / 0, 0,0,0,2,2,0,0, 7*0 /
DATA ZERO , ONE / 0.0D+0, 1.0D+0 /
DATA MGIV / 4HMGIV /
C
C D = DIAGONAL TERMS OF THE TRIDIAGONAL MATRIX (N)
C O = OFF-DIAGONAL TERMS OF THE TRIDIAGONAL MATRIX (N)
C VAL = EIGENVALUES (NV)
C VLOC = ORIGINAL ORDERING OF THE EIGENVALUES (NV)
C V,F,P,Q,R= N DIMENSIONAL ARRAYS
C VEC = THE REST OF OPEN CORE
C
C MT = TRANSFORMATION TAPE
C N = ORDER OF PROBLEM
C NV = NUMBER OF EIGENVECTORS
C RSTRT
C V2 = NUMBER OF EIGENVECTORS ALREADY CLLCULATED
C VV = POINTER TO CURRENT VECTOR IN CORE VEC(1,VV)
C NM2X = MIDPOINT OF PROBLEM (SWITCH SINE SAVE TAPES)
C
C
C INITALIZE VARIABLES
C
DEPS = 1.0D-35
SFT = 1.0D+20
SFTINV= 1.0D+0/SFT
VMULT = 1.0D-02
NZ = KORSZ(SVEC)
IBUF1 = NZ - SYSBUF + 1
IBUF2 = IBUF1 - SYSBUF
IM = 1
CALL MAKMCB (MCB1,PHIA,N,2,IPREC)
IM1 = 2
NZ = IBUF2 - 1
PATH = 0
NV1 = (NZ-1)/(N+N)
IM2 = 2
NM1 = N - 1
NM2 = N - 2
NVER = 0
V2 = NRIGID
C
C REARRANGE EIGENVALUES AND EXTRACTION ORDER FOR MULTIPLE ROOTS
C TO GUARANTEE THAT THEY ARE IN SUBMATRIX ORDER FOR PURPOSES
C OF TRIAL VECTOR AND ORTHOGONOLIZATION COMPUTATIONS
C
RMULT = VMULT
RRMULT= VMULT/100.0D0
ICLOS = 0
I = NRIGID + 1
10 IF (DABS(VAL(I))+DABS(VAL(I+1)) .LT. RMULT) GO TO 20
IF (VAL(I) .EQ. ZERO) GO TO 90
IF (DABS(ONE-VAL(I)/VAL(I+1)) .GT. RRMULT) GO TO 80
20 IF (ICLOS .NE. 0) GO TO 90
ICLOS = I
GO TO 90
30 CONTINUE
DO 50 I1 = ICLOS,I
MIN = VLOC(I1)
VALUE = VAL(I1)
K = I1
DO 40 J = I1,I
IF (VLOC(J) .GE. MIN) GO TO 40
K = J
MIN = VLOC(J)
VALUE= VAL(J)
40 CONTINUE
VLOC(K) = VLOC(I1)
VAL(K) = VAL(I1)
VLOC(I1)= MIN
VAL(I1) = VALUE
50 CONTINUE
ICLOS = 0
80 IF (ICLOS .NE. 0) GO TO 30
90 I = I + 1
IF (I .LT. NV) GO TO 10
IF (ICLOS .NE. 0) GO TO 30
C
C START LOOP FOR CORE LOADS OF VECTORS
C
100 CALL KLOCK (IST)
V1 = V2 + 1
V2 = V2 + NV1
MUL2 = MUL3
MULP2= 0
MUL3 = 0
IF (NV-V2) 101,110,102
101 V2 = NV
GO TO 110
C
C SEARCH FOR MULTIPLICITIES OF EIGENVALUES V2 AND V2+1.
C
102 VV = V2
103 IF (DABS(VAL(V2))+DABS(VAL(V2+1)) .LT. RMULT) GO TO 1041
IF (DABS(ONE-VAL(V2)/VAL(V2+1)) .GT. RMULT) GO TO 110
1041 CONTINUE
L1 = VLOC(V2 )
L2 = VLOC(V2+1)
N1 = MIN0(L1,L2)
N2 = MAX0(L1,L2) - 1
DO 104 K = N1,N2
IF (O(K) .EQ. ZERO) GO TO 110
104 CONTINUE
V2 = V2 - 1
IF (V2+6.GT.N1 .AND. V2.GT.V1) GO TO 103
V2 = VV
MUL3 = 1
C
C FIND EIGENVECTORS V1 - V2.
C
110 N1 = 0
N2 = 0
NV2= V2 - V1 + 1
DO 175 VV = 1,NV2
VECTOR = V1 + VV - 1
VALUE = VAL (VECTOR)
C
C FOR MGIV METHOD, USE ORIGINAL LAMBDA COMPUTED BY QRITER
C IN EIGENVECTOR COMPUTATIONS
C
IF (IOPTN .EQ. MGIV) VALUE = 1.0D0/(VALUE + DLMDAS)
LOC = VLOC(VECTOR)
IF (LOC.GE.N1 .AND. LOC.LE.N2) GO TO 120
C
C SEARCH FOR A DECOUPLED SUBMATRIX.
C
MUL1 = 0
IF (LOC .EQ. 1) GO TO 112
DO 111 K = 2,LOC
N1 = LOC - K + 2
IF (O(N1-1) .EQ. ZERO) GO TO 113
111 CONTINUE
112 N1 = 1
113 IF (LOC .EQ. N) GO TO 115
DO 114 K = LOC,NM1
IF (O(K) .EQ. ZERO) GO TO 116
114 CONTINUE
115 N2 = N
GO TO 120
116 N2 = K
120 IF (MUL1.NE.0 .OR. MUL2.NE.0) GO TO 122
DO 121 I = 1,N
V(I) = ZERO
121 CONTINUE
IF (N1 .NE. N2) GO TO 122
V(LOC) = ONE
GO TO 152
122 N2M1 = N2 - 1
N2M2 = N2 - 2
C
C SET UP SIMULTANEOUS EQUATIONS
C
X = D(N1) - VALUE
Y = O(N1)
DO 131 K = N1,N2M1
IF (X .EQ. ZERO) GO TO 125
F(K) = -O(K)/X
GO TO 126
125 F(K) = -SFT*O(K)
126 IF (DABS(X)-DABS(O(K))) 127,128,129
C
C PIVOT.
C
127 P(K) = O(K)
Q(K) = D(K+1) - VALUE
R(K) = O(K+1)
Z =-X/P(K)
X = Z*Q(K) + Y
Y = Z*R(K)
GO TO 130
C
C DO NOT PIVOT.
C
128 IF (X .EQ. ZERO) X = SFTINV
129 P(K) = X
Q(K) = Y
R(K) = ZERO
X = D(K+1) - (VALUE+O(K)*(Y/X))
Y = O(K+1)
130 CONTINUE
131 CONTINUE
IF (MUL1.NE.0 .OR. MUL2.NE.0) GO TO 135
DO 134 K = N1,N2M1
134 V(K) = ONE
W = ONE/DSQRT(DBLE(FLOAT(N2-N1+1)))
V(N2)= ONE
C
C SOLVE FOR AN EIGENVECTOR OF THE TRIDIAGONAL MATRIX.
C
135 MUL2 = 0
MAXITR = 3
DO 150 ITER = 1,MAXITR
C
C BACK SUBSTITUTION
C
IF (X .EQ. ZERO) GO TO 136
V(N2) = V(N2)/X
GO TO 137
136 V(N2 ) = V(N2)*SFT
137 V(N2-1) = (V(N2-1) - Q(N2-1)*V(N2))/P(N2-1)
MAX = N2
IF (DABS(V(N2)) .LT. DABS(V(N2-1))) MAX = N2M1
IF (N2M2 .LT. N1) GO TO 140
DO 138 K = N1,N2M2
L = N2M2 - (K-N1)
V(L) = (V(L)-Q(L)*V(L+1) - R(L)*V(L+2))/P(L)
IF (DABS(V(L)) .GT. DABS (V(MAX))) MAX = L
138 CONTINUE
C
C NORMALIZE THE VECTOR.
C
140 Y = DABS(V(MAX))
Z = ZERO
DO 141 I = N1,N2
V(I) = V(I)/Y
IF (DABS(V(I)) .LT. DEPS) GO TO 141
Z = Z + V(I)*V(I)
141 CONTINUE
Z = DSQRT(Z)
DO 142 I = N1,N2
V(I) = V(I)/Z
142 CONTINUE
C
C CHECK CONVERGENCE OF THE LARGEST COMPONENT OF THE VECTOR.
C
Y = DABS(V(MAX))
IF (SNGL(W) .EQ. SNGL(Y)) GO TO 152
IF (ITER .EQ. MAXITR) GO TO 150
W = Y
C
C PIVOT V.
C
DO 145 I = N1,N2M1
IF (P(I) .EQ. O(I)) GO TO 144
V(I+1) = V(I+1) + V(I)*F(I)
GO TO 145
144 Z = V(I+1)
V(I+1) = V(I) + Z/F(I)
V(I ) = Z
145 CONTINUE
150 CONTINUE
C
C TOO MANY ITERATIONS.
C
C THE ACCURACY OF EIGENVECTOR XXXX CORRESPONDING TO THE EIGENVALUE
C XXXXXXX IS IN DOUBT.
C
152 DO 153 I = 1,N
VEC(I,VV) = V(I)
153 CONTINUE
C
C CHECK MULTIPLICITY OF THE NEXT EIGENVALUE IF IT IS IN THE SAME
C SUBMATRIX AS THIS ONE.
C
IF (VECTOR .EQ. V2) GO TO 160
C
C FOR MGIV METHOD, USE ADJUSTED LAMBDA COMING OUT OF QRITER
C IN THE FOLLOWING CHECKS
C
IF (DABS(VAL(VECTOR+1))+DABS(VAL(VECTOR)) .LT. RMULT) GO TO 154
IF (DABS(VAL(VECTOR+1)-VAL(VECTOR)) .GT.RMULT*DABS(VAL(VECTOR+1)))
1 GO TO 160
154 CONTINUE
L1 = VLOC(VECTOR+1)
IF (L1.LT.N1 .OR. L1.GT.N2) GO TO 160
C
C A MULTIPLICITY DOES EXIT...THE INITIAL APPROXIMATION OF THE NEXT
C EIGENVECTOR SHOULD BE ORTHOGONAL TO THE ONE JUST CALCULATED.
C
IF (MUL1 .EQ. 0) MUL1 = VV
MULP2 = MULP2 + 1
MULP3 = MULP2 + MUL1 - 1
DO 4001 KKK = N1,N2
4001 V(KKK) = ONE
DO 4003 JJJ = MUL1,MULP3
Z = ZERO
DO 4004 KK = N1,N2
DO 4005 II = N1,N2
4005 Z = Z + VEC(II,JJJ)*V(II)
4004 V(KK) = V(KK) - Z*VEC(KK,JJJ)
4003 CONTINUE
GO TO 175
C
C DOES THIS EIGENVALUE = PREVIOUS ONE(S) IN THIS SUBMATRIX
C
160 IF (MUL1 .EQ. 0) GO TO 175
C
C A MULTIPLICITY OF EIGENVALUES OCCURRED...IMPROVE THE ORTHOGONALITY
C OF THE CORRESPONDING EIGENVECTORS.
C
MULP1 = MUL1 + 1
DO 170 L = MULP1,VV
DO 161 I = N1,N2
P(I) = VEC(I,L)
Q(I) = ZERO
161 CONTINUE
LM1 = L - 1
DO 164 K = MUL1,LM1
Z = ZERO
DO 162 I = N1,N2
Z = Z + P(I)*VEC(I,K)
162 CONTINUE
DO 163 I = N1,N2
Q(I) = Q(I) + Z*VEC(I,K)
163 CONTINUE
164 CONTINUE
Z = ZERO
DO 165 K = N1,N2
Q(K) = P(K) - Q(K)
IF (DABS(Q(K)) .LT. DEPS) GO TO 165
Z = Z + Q(K)*Q(K)
165 CONTINUE
Z = DSQRT(Z)
DO 166 K = N1,N2
VEC(K,L) = Q(K)/Z
166 CONTINUE
170 CONTINUE
MUL1 = 0
MULP2 = 0
175 CONTINUE
C
C CORE IS NOW FULL OF EIGENVECTORS OF THE TRIDIAGONAL MATRIX.
C CONVERT THEM TO EIGENVECTORS OF THE ORIGINAL MATRIX.
C
IT1 = 2
IT2 = 2
JJ = N
INCR= 1
C
C IS THE ORIGINAL MATRIX A 2X2
C
IF (NM2 .EQ. 0) GO TO 186
MT = MT1
IF (PATH .NE. 0) GO TO 176
MT = MO
176 CALL GOPEN (MT,SVEC(IBUF1),IM2)
IF (PATH.EQ.0 .AND. V2.NE.NV) CALL GOPEN (MT1,SVEC(IBUF2),1)
IT3 = 2
JJJ = N
INCR1= 1
DO 185 M = 1,NM2
L1 = N - M
III = L1+ 1
IF (PATH .EQ. 0) CALL BCKREC (MT)
CALL UNPACK (*167,MT,P)
GO TO 180
167 DO 179 I = 1,M
P(I) = ZERO
179 CONTINUE
180 IF (PATH.NE.0 .OR. V2.EQ.NV) GO TO 177
II = L1+1
CALL PACK (P,MT1,MCB)
177 IF (PATH .EQ. 0) CALL BCKREC (MT)
DO 182 K = 1,M
L2 = N - K + 1
I = M - K + 1
Y = P(I)
IF (Y .EQ. ZERO) GO TO 182
X = ZERO
IF (DABS(Y) .LT. ONE) X = DSQRT(ONE-Y**2)
DO 181 VV = 1,NV2
Z = X*VEC(L1,VV) -Y*VEC(L2,VV)
VEC(L2,VV) = X*VEC(L2,VV) + Y*VEC(L1,VV)
VEC(L1,VV) = Z
181 CONTINUE
182 CONTINUE
185 CONTINUE
CALL CLOSE (MT,1)
IF (PATH .NE. 0) GO TO 186
IF (V2 .NE. NV) WRITE (IOTPE,1001) UIM,N,NV,NV1
1001 FORMAT (A29,' 2016A, WILVEC EIGENVECTOR COMPUTATIONS.', /37X,
1 'PROBLEM SIZE IS',I6,', NUMBER OF EIGENVECTORS TO BE ',
2 'RECOVERED IS',I6 , /37X,'SPILL WILL OCCUR FOR THIS ',
3 'CORE AT RECOVERY OF',I6,' EIGENVECTORS.')
PATH = 1
CALL CLOSE (MT1,1)
IM2 = 0
C
C WRITE THE EIGENVECTORS ONTO PHIA
C
186 CALL GOPEN (PHIA,SVEC(IBUF1),IM)
II = 1
IT2 = IPREC
IF (IM.NE.1 .OR. NRIGID.LE.0) GO TO 205
C
C PUT OUT ZERO VECTORS FOR RIGID BODY MODES
C
JJ = 1
DO 206 VV = 1,NRIGID
CALL PACK (ZERO,PHIA,MCB1)
206 CONTINUE
JJ = N
205 CONTINUE
IM = 3
IF (N .EQ. 1) GO TO 250
DO 192 VV = 1,NV2
CALL PACK (VEC(1,VV),PHIA,MCB1)
192 CONTINUE
250 IF (V2 .EQ. NV) IM1 = 1
CALL CLOSE (PHIA,IM1)
XENTRY = -ENTRY
C
C ANY TIME LEFT TO FIND MORE
C
CALL TMTOGO (ITIME)
CALL KLOCK (IFIN)
IF (2*(IFIN-IST) .GE. ITIME) GO TO 200
IF (V2 .NE. NV) GO TO 100
201 CALL WRTTRL (MCB1)
RETURN
C
C MAX TIME
C
200 ITERM = 3
GO TO 201
END
|