File: wilvec.f

package info (click to toggle)
nastran 0.1.95-2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 122,540 kB
  • sloc: fortran: 284,409; sh: 771; makefile: 324
file content (437 lines) | stat: -rw-r--r-- 11,719 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
      SUBROUTINE WILVEC (D,O,VAL,VLOC,V,F,P,Q,R,VEC,NX,SVEC)
C
C     WILKINSON EIGENVECTOR SOLUTION FOR LARGE SYM MATRICES
C
      INTEGER          VLOC(1),ENTRY,V2,XENTRY,PV,VECTOR,VV,V1,MCB(7),
     1                 SYSBUF,MCB1(7),PHIA,SVEC(1),PATH
      DOUBLE PRECISION D(1),O(1),VAL(1),V(1),P(1),F(1),Q(1),R(1),
     1                 VEC(NX,1),VALUE,W,X,Y,Z,DLMDAS,
     2                 RMULT,RRMULT,SFT,SFTINV,DEPS,VMULT,ZERO,ONE
      CHARACTER        UFM*23,UWM*25,UIM*29
      COMMON /XMSSG /  UFM,UWM,UIM
      COMMON /GIVN  /  TITLE(1),MO,T3,MR,MT1,T6,MV1,T8(3),ENTRY,T12(5),
     1                 RSTRT,V2,T19,XENTRY,T21(80),VCOM(30),T131(20)
      COMMON /PACKX /  IT1,IT2,II,JJ,INCR
      COMMON /UNPAKX/  IT3,III,JJJ,INCR1
      COMMON /SYSTEM/  SYSBUF,IOTPE,KSYS(52),IPREC
      COMMON /REIGKR/  IOPTN
      COMMON /MGIVXX/  DLMDAS
      EQUIVALENCE      (N     ,VCOM( 1)), (PV    ,VCOM( 5)),
     1                 (NV    ,VCOM( 7)), (NRIGID,VCOM(10)),
     2                 (PHIA  ,VCOM(12)), (NVER  ,VCOM(13)),
     3                 (MAXITR,VCOM(15)), (ITERM ,VCOM(16))
      DATA    MUL3  ,  MCB1,MCB / 0, 0,0,0,2,2,0,0, 7*0    /
      DATA    ZERO  ,  ONE      / 0.0D+0,  1.0D+0          /
      DATA    MGIV  /  4HMGIV   /
C
C     D        = DIAGONAL     TERMS OF THE TRIDIAGONAL MATRIX (N)
C     O        = OFF-DIAGONAL TERMS OF THE TRIDIAGONAL MATRIX (N)
C     VAL      = EIGENVALUES (NV)
C     VLOC     = ORIGINAL ORDERING OF THE EIGENVALUES (NV)
C     V,F,P,Q,R= N DIMENSIONAL ARRAYS
C     VEC      = THE REST OF OPEN CORE
C
C     MT       = TRANSFORMATION TAPE
C     N        = ORDER  OF PROBLEM
C     NV       = NUMBER OF EIGENVECTORS
C     RSTRT
C     V2       = NUMBER   OF EIGENVECTORS ALREADY CLLCULATED
C     VV       = POINTER  TO CURRENT VECTOR IN CORE VEC(1,VV)
C     NM2X     = MIDPOINT OF PROBLEM (SWITCH SINE SAVE TAPES)
C
C
C     INITALIZE VARIABLES
C
      DEPS  = 1.0D-35
      SFT   = 1.0D+20
      SFTINV= 1.0D+0/SFT
      VMULT = 1.0D-02
      NZ    = KORSZ(SVEC)
      IBUF1 = NZ - SYSBUF + 1
      IBUF2 = IBUF1 - SYSBUF
      IM    = 1
      CALL MAKMCB (MCB1,PHIA,N,2,IPREC)
      IM1   = 2
      NZ    = IBUF2 - 1
      PATH  = 0
      NV1   = (NZ-1)/(N+N)
      IM2   = 2
      NM1   = N - 1
      NM2   = N - 2
      NVER  = 0
      V2    = NRIGID
C
C     REARRANGE EIGENVALUES AND EXTRACTION ORDER FOR MULTIPLE ROOTS
C     TO GUARANTEE THAT THEY ARE IN SUBMATRIX ORDER FOR PURPOSES
C     OF TRIAL VECTOR AND ORTHOGONOLIZATION COMPUTATIONS
C
      RMULT = VMULT
      RRMULT= VMULT/100.0D0
      ICLOS = 0
      I = NRIGID + 1
   10 IF (DABS(VAL(I))+DABS(VAL(I+1)) .LT. RMULT) GO TO 20
      IF (VAL(I) .EQ. ZERO) GO TO 90
      IF (DABS(ONE-VAL(I)/VAL(I+1)) .GT. RRMULT) GO TO 80
   20 IF (ICLOS .NE. 0) GO TO 90
      ICLOS = I
      GO TO 90
   30 CONTINUE
      DO 50 I1 = ICLOS,I
      MIN   = VLOC(I1)
      VALUE = VAL(I1)
      K = I1
      DO 40 J = I1,I
      IF (VLOC(J) .GE. MIN) GO TO 40
      K    = J
      MIN  = VLOC(J)
      VALUE= VAL(J)
   40 CONTINUE
      VLOC(K) = VLOC(I1)
      VAL(K)  = VAL(I1)
      VLOC(I1)= MIN
      VAL(I1) = VALUE
   50 CONTINUE
      ICLOS = 0
   80 IF (ICLOS .NE. 0) GO TO 30
   90 I = I + 1
      IF (I     .LT. NV) GO TO 10
      IF (ICLOS .NE.  0) GO TO 30
C
C     START LOOP FOR CORE LOADS OF VECTORS
C
  100 CALL KLOCK (IST)
      V1   = V2 + 1
      V2   = V2 + NV1
      MUL2 = MUL3
      MULP2= 0
      MUL3 = 0
      IF (NV-V2) 101,110,102
  101 V2   = NV
      GO TO 110
C
C     SEARCH FOR MULTIPLICITIES OF EIGENVALUES V2 AND V2+1.
C
  102 VV = V2
  103 IF (DABS(VAL(V2))+DABS(VAL(V2+1)) .LT. RMULT) GO TO 1041
      IF (DABS(ONE-VAL(V2)/VAL(V2+1))   .GT. RMULT) GO TO 110
 1041 CONTINUE
      L1 = VLOC(V2  )
      L2 = VLOC(V2+1)
      N1 = MIN0(L1,L2)
      N2 = MAX0(L1,L2) - 1
      DO 104 K = N1,N2
      IF (O(K) .EQ. ZERO) GO TO 110
  104 CONTINUE
      V2 = V2 - 1
      IF (V2+6.GT.N1 .AND. V2.GT.V1) GO TO 103
      V2 = VV
      MUL3  = 1
C
C     FIND EIGENVECTORS V1 - V2.
C
  110 N1 = 0
      N2 = 0
      NV2= V2 - V1 + 1
      DO 175 VV = 1,NV2
      VECTOR = V1 + VV - 1
      VALUE  = VAL (VECTOR)
C
C     FOR MGIV METHOD, USE ORIGINAL LAMBDA COMPUTED BY QRITER
C     IN EIGENVECTOR COMPUTATIONS
C
      IF (IOPTN .EQ. MGIV) VALUE = 1.0D0/(VALUE + DLMDAS)
      LOC = VLOC(VECTOR)
      IF (LOC.GE.N1 .AND. LOC.LE.N2) GO TO 120
C
C     SEARCH FOR A DECOUPLED SUBMATRIX.
C
      MUL1 = 0
      IF (LOC .EQ. 1) GO TO 112
      DO 111 K = 2,LOC
      N1 = LOC - K + 2
      IF (O(N1-1) .EQ. ZERO) GO TO 113
  111 CONTINUE
  112 N1 = 1
  113 IF (LOC .EQ. N) GO TO 115
      DO 114 K = LOC,NM1
      IF (O(K) .EQ. ZERO) GO TO 116
  114 CONTINUE
  115 N2 = N
      GO TO 120
  116 N2 = K
  120 IF (MUL1.NE.0 .OR. MUL2.NE.0) GO TO 122
      DO 121 I = 1,N
      V(I) = ZERO
  121 CONTINUE
      IF (N1 .NE. N2) GO TO 122
      V(LOC) = ONE
      GO TO 152
  122 N2M1 = N2 - 1
      N2M2 = N2 - 2
C
C     SET UP SIMULTANEOUS EQUATIONS
C
      X = D(N1) - VALUE
      Y = O(N1)
      DO 131 K = N1,N2M1
      IF (X .EQ. ZERO) GO TO 125
      F(K) = -O(K)/X
      GO TO 126
  125 F(K) = -SFT*O(K)
  126 IF (DABS(X)-DABS(O(K))) 127,128,129
C
C     PIVOT.
C
  127 P(K) = O(K)
      Q(K) = D(K+1) - VALUE
      R(K) = O(K+1)
      Z    =-X/P(K)
      X    = Z*Q(K) + Y
      Y    = Z*R(K)
      GO TO 130
C
C     DO NOT PIVOT.
C
  128 IF (X .EQ. ZERO) X = SFTINV
  129 P(K) = X
      Q(K) = Y
      R(K) = ZERO
      X    = D(K+1) - (VALUE+O(K)*(Y/X))
      Y    = O(K+1)
  130 CONTINUE
  131 CONTINUE
      IF (MUL1.NE.0 .OR. MUL2.NE.0) GO TO 135
      DO 134 K = N1,N2M1
  134 V(K) = ONE
      W    = ONE/DSQRT(DBLE(FLOAT(N2-N1+1)))
      V(N2)= ONE
C
C     SOLVE FOR AN EIGENVECTOR OF THE TRIDIAGONAL MATRIX.
C
  135 MUL2   = 0
      MAXITR = 3
      DO 150 ITER = 1,MAXITR
C
C     BACK SUBSTITUTION
C
      IF (X .EQ. ZERO) GO TO 136
      V(N2) = V(N2)/X
      GO TO 137
  136 V(N2  ) = V(N2)*SFT
  137 V(N2-1) = (V(N2-1) - Q(N2-1)*V(N2))/P(N2-1)
      MAX = N2
      IF (DABS(V(N2)) .LT. DABS(V(N2-1))) MAX = N2M1
      IF (N2M2 .LT. N1) GO TO 140
      DO 138 K = N1,N2M2
      L    = N2M2 - (K-N1)
      V(L) = (V(L)-Q(L)*V(L+1) - R(L)*V(L+2))/P(L)
      IF (DABS(V(L)) .GT. DABS (V(MAX))) MAX = L
  138 CONTINUE
C
C     NORMALIZE THE VECTOR.
C
  140 Y = DABS(V(MAX))
      Z = ZERO
      DO 141 I = N1,N2
      V(I) = V(I)/Y
      IF (DABS(V(I)) .LT. DEPS) GO TO 141
      Z = Z + V(I)*V(I)
  141 CONTINUE
      Z = DSQRT(Z)
      DO 142 I = N1,N2
      V(I) = V(I)/Z
  142 CONTINUE
C
C     CHECK CONVERGENCE OF THE LARGEST COMPONENT OF THE VECTOR.
C
      Y = DABS(V(MAX))
      IF (SNGL(W) .EQ. SNGL(Y)) GO TO 152
      IF (ITER    .EQ.  MAXITR) GO TO 150
      W = Y
C
C     PIVOT V.
C
      DO 145 I = N1,N2M1
      IF (P(I) .EQ. O(I)) GO TO 144
      V(I+1) = V(I+1) + V(I)*F(I)
      GO TO 145
  144 Z =  V(I+1)
      V(I+1) = V(I) + Z/F(I)
      V(I  ) = Z
  145 CONTINUE
  150 CONTINUE
C
C     TOO MANY ITERATIONS.
C
C     THE ACCURACY OF EIGENVECTOR XXXX CORRESPONDING TO THE EIGENVALUE
C     XXXXXXX  IS IN DOUBT.
C
  152 DO 153 I = 1,N
      VEC(I,VV) = V(I)
  153 CONTINUE
C
C     CHECK MULTIPLICITY OF THE NEXT EIGENVALUE IF IT IS IN THE SAME
C     SUBMATRIX AS THIS ONE.
C
      IF (VECTOR .EQ. V2) GO TO 160
C
C     FOR MGIV METHOD, USE ADJUSTED LAMBDA COMING OUT OF QRITER
C     IN THE FOLLOWING CHECKS
C
      IF (DABS(VAL(VECTOR+1))+DABS(VAL(VECTOR)) .LT. RMULT) GO TO 154
      IF (DABS(VAL(VECTOR+1)-VAL(VECTOR)) .GT.RMULT*DABS(VAL(VECTOR+1)))
     1    GO TO 160
  154 CONTINUE
      L1 = VLOC(VECTOR+1)
      IF (L1.LT.N1 .OR. L1.GT.N2) GO TO 160
C
C     A MULTIPLICITY DOES EXIT...THE INITIAL APPROXIMATION OF THE NEXT
C     EIGENVECTOR SHOULD BE ORTHOGONAL TO THE ONE JUST CALCULATED.
C
      IF (MUL1 .EQ. 0) MUL1 = VV
      MULP2 = MULP2 + 1
      MULP3 = MULP2 + MUL1 - 1
      DO 4001 KKK = N1,N2
 4001 V(KKK) = ONE
      DO 4003 JJJ = MUL1,MULP3
      Z = ZERO
      DO 4004 KK = N1,N2
      DO 4005 II = N1,N2
 4005 Z = Z + VEC(II,JJJ)*V(II)
 4004 V(KK) = V(KK) - Z*VEC(KK,JJJ)
 4003 CONTINUE
      GO TO 175
C
C     DOES THIS EIGENVALUE = PREVIOUS ONE(S) IN THIS SUBMATRIX
C
  160 IF (MUL1 .EQ. 0) GO TO 175
C
C     A MULTIPLICITY OF EIGENVALUES OCCURRED...IMPROVE THE ORTHOGONALITY
C     OF THE CORRESPONDING EIGENVECTORS.
C
      MULP1 = MUL1 + 1
      DO 170 L = MULP1,VV
      DO 161 I = N1,N2
      P(I) = VEC(I,L)
      Q(I) = ZERO
  161 CONTINUE
      LM1 = L - 1
      DO 164 K = MUL1,LM1
      Z = ZERO
      DO 162 I = N1,N2
      Z = Z + P(I)*VEC(I,K)
  162 CONTINUE
      DO 163  I = N1,N2
      Q(I) = Q(I) + Z*VEC(I,K)
  163 CONTINUE
  164 CONTINUE
      Z = ZERO
      DO 165  K = N1,N2
      Q(K) = P(K) - Q(K)
      IF (DABS(Q(K)) .LT. DEPS) GO TO 165
      Z = Z + Q(K)*Q(K)
  165 CONTINUE
      Z = DSQRT(Z)
      DO 166 K = N1,N2
      VEC(K,L) = Q(K)/Z
  166 CONTINUE
  170 CONTINUE
      MUL1  = 0
      MULP2 = 0
  175 CONTINUE
C
C     CORE IS NOW FULL OF EIGENVECTORS OF THE TRIDIAGONAL MATRIX.
C     CONVERT THEM TO EIGENVECTORS OF THE ORIGINAL MATRIX.
C
      IT1 = 2
      IT2 = 2
      JJ  = N
      INCR= 1
C
C     IS THE ORIGINAL MATRIX A 2X2
C
      IF (NM2  .EQ. 0) GO TO 186
      MT = MT1
      IF (PATH .NE. 0) GO TO 176
      MT = MO
  176 CALL GOPEN (MT,SVEC(IBUF1),IM2)
      IF (PATH.EQ.0 .AND. V2.NE.NV) CALL GOPEN (MT1,SVEC(IBUF2),1)
      IT3  = 2
      JJJ  = N
      INCR1= 1
      DO 185 M = 1,NM2
      L1  = N - M
      III = L1+ 1
      IF (PATH .EQ. 0) CALL BCKREC (MT)
      CALL UNPACK (*167,MT,P)
      GO TO 180
  167 DO 179 I = 1,M
      P(I) = ZERO
  179 CONTINUE
  180 IF (PATH.NE.0 .OR. V2.EQ.NV) GO TO 177
      II = L1+1
      CALL PACK (P,MT1,MCB)
  177 IF (PATH .EQ. 0) CALL BCKREC (MT)
      DO 182 K = 1,M
      L2 = N - K + 1
      I  = M - K + 1
      Y  = P(I)
      IF (Y .EQ. ZERO) GO TO 182
      X = ZERO
      IF (DABS(Y) .LT. ONE) X = DSQRT(ONE-Y**2)
      DO 181 VV = 1,NV2
      Z = X*VEC(L1,VV) -Y*VEC(L2,VV)
      VEC(L2,VV) = X*VEC(L2,VV) + Y*VEC(L1,VV)
      VEC(L1,VV) = Z
  181 CONTINUE
  182 CONTINUE
  185 CONTINUE
      CALL CLOSE (MT,1)
      IF (PATH .NE. 0) GO TO 186
      IF (V2 .NE. NV) WRITE (IOTPE,1001) UIM,N,NV,NV1
 1001 FORMAT (A29,' 2016A, WILVEC EIGENVECTOR COMPUTATIONS.', /37X,
     1       'PROBLEM SIZE IS',I6,', NUMBER OF EIGENVECTORS TO BE ',
     2       'RECOVERED IS',I6 , /37X,'SPILL WILL OCCUR FOR THIS ',
     3       'CORE AT RECOVERY OF',I6,' EIGENVECTORS.')
      PATH = 1
      CALL CLOSE (MT1,1)
      IM2  = 0
C
C     WRITE THE EIGENVECTORS ONTO PHIA
C
  186 CALL GOPEN (PHIA,SVEC(IBUF1),IM)
      II  = 1
      IT2 = IPREC
      IF (IM.NE.1 .OR. NRIGID.LE.0) GO TO 205
C
C     PUT OUT ZERO VECTORS FOR RIGID BODY MODES
C
      JJ = 1
      DO 206 VV = 1,NRIGID
      CALL PACK (ZERO,PHIA,MCB1)
  206 CONTINUE
      JJ = N
  205 CONTINUE
      IM = 3
      IF (N .EQ. 1) GO TO 250
      DO 192 VV = 1,NV2
      CALL PACK (VEC(1,VV),PHIA,MCB1)
  192 CONTINUE
  250 IF (V2 .EQ. NV) IM1 = 1
      CALL CLOSE (PHIA,IM1)
      XENTRY = -ENTRY
C
C     ANY TIME LEFT TO FIND MORE
C
      CALL TMTOGO (ITIME)
      CALL KLOCK  (IFIN)
      IF (2*(IFIN-IST) .GE. ITIME) GO TO 200
      IF (V2 .NE. NV) GO TO 100
  201 CALL WRTTRL (MCB1)
      RETURN
C
C     MAX TIME
C
  200 ITERM = 3
      GO TO 201
      END