File: pse_darwin.go

package info (click to toggle)
nats-server 2.10.27-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,332 kB
  • sloc: sh: 691; makefile: 3
file content (86 lines) | stat: -rw-r--r-- 2,702 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
// Copyright 2015-2021 The NATS Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package pse

// On macs after some studying it seems that typical tools like ps and activity monitor report MaxRss and not
// current RSS. I wrote some C code to pull the real RSS and although it does not go down very often, when it does
// that is not reflected in the typical tooling one might compare us to, so we can skip cgo and just use rusage imo.
// We also do not use virtual memory in the upper layers at all, so ok to skip since rusage does not report vss.

import (
	"math"
	"sync"
	"syscall"
	"time"
)

type lastUsage struct {
	sync.Mutex
	last time.Time
	cpu  time.Duration
	rss  int64
	pcpu float64
}

// To hold the last usage and call time.
var lu lastUsage

func init() {
	updateUsage()
	periodic()
}

// Get our usage.
func getUsage() (now time.Time, cpu time.Duration, rss int64) {
	var ru syscall.Rusage
	syscall.Getrusage(syscall.RUSAGE_SELF, &ru)
	now = time.Now()
	cpu = time.Duration(ru.Utime.Sec)*time.Second + time.Duration(ru.Utime.Usec)*time.Microsecond
	cpu += time.Duration(ru.Stime.Sec)*time.Second + time.Duration(ru.Stime.Usec)*time.Microsecond
	return now, cpu, ru.Maxrss
}

// Update last usage.
// We need to have a prior sample to compute pcpu.
func updateUsage() (pcpu float64, rss int64) {
	lu.Lock()
	defer lu.Unlock()

	now, cpu, rss := getUsage()
	// Don't skew pcpu by sampling too close to last sample.
	if elapsed := now.Sub(lu.last); elapsed < 500*time.Millisecond {
		// Always update rss.
		lu.rss = rss
	} else {
		tcpu := float64(cpu - lu.cpu)
		lu.last, lu.cpu, lu.rss = now, cpu, rss
		// Want to make this one decimal place and not count on upper layers.
		// Cores already taken into account via cpu time measurements.
		lu.pcpu = math.Round(tcpu/float64(elapsed)*1000) / 10
	}
	return lu.pcpu, lu.rss
}

// Sampling function to keep pcpu relevant.
func periodic() {
	updateUsage()
	time.AfterFunc(time.Second, periodic)
}

// ProcUsage returns CPU and memory usage.
// Note upper layers do not use virtual memory size, so ok that it is not filled in here.
func ProcUsage(pcpu *float64, rss, vss *int64) error {
	*pcpu, *rss = updateUsage()
	return nil
}