1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
|
/* nbdkit
* Copyright Red Hat
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of Red Hat nor the names of its contributors may be
* used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY RED HAT AND CONTRIBUTORS ''AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL RED HAT OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <stdint.h>
#include <inttypes.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <pthread.h>
#include <nbdkit-plugin.h>
#include "cleanup.h"
#include "iszero.h"
#include "vector.h"
#include "allocator.h"
#include "allocator-internal.h"
/* This allocator implements a sparse array of any size up to 2⁶³-1
* bytes.
*
* The array reads as zeroes until something is written.
*
* The implementation aims to be reasonably efficient for ordinary
* sized disks, while permitting huge (but sparse) disks for testing.
* Everything allocated has to be stored in memory. There is no
* temporary file backing.
*/
/* Two level directory for the sparse array.
*
* nbdkit supports disk sizes up to 2⁶³-1. The aim of the sparse
* array is to support up to 63 bit images for testing, although it
* won't necessarily be efficient for that use. However it should
* also be efficient for more reasonable sized disks.
*
* Although the CPU implements effectively the same kind of data
* structure (page tables) there are some advantages of reimplementing
* this:
*
* 1. Support for 32 bit (or even 64 bit since the virtual memory
* address space on 64 bit machines is not 63 bits in size).
*
* 2. In Linux, overcommit defaults prevent use of virtual memory as a
* sparse array without intrusive system configuration changes.
*
* 3. Could choose a page size which is more appropriate for disk
* images, plus some architectures have much larger page sizes than
* others making behaviour inconsistent across arches.
*
* To achieve this we use a B-Tree-like structure. The L1 directory
* contains an ordered, non-overlapping, non-contiguous list of
* (offset, pointer to L2 directory).
*
* Updating the L1 directory requires a linear scan but that operation
* should be very rare. Because the L1 directory is stored in order
* of offset, we can use an efficient binary search for lookups.
*
* Each L1 directory entry can address up to SPARSE_PAGE*L2_SIZE bytes
* in the virtual disk image. With the current parameters this is
* 128MB, which is enough for a 100MB image to fit into a single L1
* directory, or a 10GB image to fit into 80 L1 entries. The page
* pointers in the L2 directory can be NULL (meaning no page / all
* zeroes).
*
* ┌────────────────────┐
* │ L1 directory │ ┌────────────────────┐
* │ offset, entry 0 ─────────▶ | L2 directory |
* │ offset, entry 1 │ | page 0 ─────────▶ page
* │ offset, entry 2 │ │ page 1 ─────────▶ page
* │ ... │ │ page 2 ─────────▶ page
* └────────────────────┘ │ ... │
* │ page L2_SIZE-1 ─────────▶ page
* └────────────────────┘
*/
#define SPARSE_PAGE 32768
#define L2_SIZE 4096
struct l2_entry {
void *page; /* Pointer to page (array of SPARSE_PAGE bytes).*/
};
struct l1_entry {
uint64_t offset; /* Virtual offset of this entry. */
struct l2_entry *l2_dir; /* Pointer to L2 directory (L2_SIZE entries). */
};
DEFINE_VECTOR_TYPE (l1_dir, struct l1_entry);
struct sparse_array {
struct allocator a; /* Must come first. */
/* The shared (read) lock must be held if you just want to access
* the data without modifying any of the L1/L2 metadata or
* allocating or freeing any page.
*
* To modify the L1/L2 metadata including allocating or freeing any
* page you must hold the exclusive (write) lock.
*
* Because POSIX rwlocks are not upgradable this presents a problem.
* We solve it below by speculatively performing the request while
* holding the shared lock, but if we run into an operation that
* needs to update the metadata, we restart the entire request
* holding the exclusive lock.
*/
pthread_rwlock_t lock;
l1_dir l1_dir; /* L1 directory. */
};
/* Free L1 and/or L2 directories. */
static void
free_l2_dir (struct l2_entry *l2_dir)
{
size_t i;
for (i = 0; i < L2_SIZE; ++i)
free (l2_dir[i].page);
free (l2_dir);
}
static void
sparse_array_free (struct allocator *a)
{
struct sparse_array *sa = (struct sparse_array *) a;
size_t i;
if (sa) {
for (i = 0; i < sa->l1_dir.len; ++i)
free_l2_dir (sa->l1_dir.ptr[i].l2_dir);
free (sa->l1_dir.ptr);
pthread_rwlock_destroy (&sa->lock);
free (sa);
}
}
static int
sparse_array_set_size_hint (struct allocator *a, uint64_t size)
{
/* Ignored. */
return 0;
}
/* Comparison function used when searching through the L1 directory. */
static int
compare_l1_offsets (const void *offsetp, const struct l1_entry *e)
{
const uint64_t offset = *(uint64_t *)offsetp;
if (offset < e->offset) return -1;
if (offset >= e->offset + SPARSE_PAGE*L2_SIZE) return 1;
return 0;
}
/* Insert an entry in the L1 directory, keeping it ordered by offset.
* This involves an expensive linear scan but should be very rare.
*/
static int
insert_l1_entry (struct sparse_array *sa, const struct l1_entry *entry)
{
size_t i;
for (i = 0; i < sa->l1_dir.len; ++i) {
if (entry->offset < sa->l1_dir.ptr[i].offset) {
/* Insert new entry before i'th directory entry. */
if (l1_dir_insert (&sa->l1_dir, *entry, i) == -1) {
nbdkit_error ("realloc: %m");
return -1;
}
if (sa->a.debug)
nbdkit_debug ("%s: inserted new L1 entry for %" PRIu64
" at l1_dir.ptr[%zu]",
__func__, entry->offset, i);
return 0;
}
/* This should never happens since each entry in the the L1
* directory is supposed to be unique.
*/
assert (entry->offset != sa->l1_dir.ptr[i].offset);
}
/* Insert new entry at the end. */
if (l1_dir_append (&sa->l1_dir, *entry) == -1) {
nbdkit_error ("realloc: %m");
return -1;
}
if (sa->a.debug)
nbdkit_debug ("%s: inserted new L1 entry for %" PRIu64
" at end of l1_dir", __func__, entry->offset);
return 0;
}
/* Look up a virtual offset, returning the address of the offset, the
* count of bytes to the end of the page, and a pointer to the L2
* directory entry containing the page pointer.
*
* If the create flag is set then a new page and/or directory will be
* allocated if necessary. Use this flag when writing.
*
* NULL may be returned normally if the page is not mapped (meaning it
* reads as zero). However if the create flag is set and NULL is
* returned, this indicates an error.
*/
static void *
lookup (struct sparse_array *sa, uint64_t offset, bool create,
uint64_t *remaining, struct l2_entry **l2_entry)
{
struct l1_entry *entry;
struct l2_entry *l2_dir;
uint64_t o;
void *page;
struct l1_entry new_entry;
*remaining = SPARSE_PAGE - (offset & (SPARSE_PAGE-1));
again:
/* Search the L1 directory. */
entry = l1_dir_search (&sa->l1_dir, &offset, compare_l1_offsets);
if (sa->a.debug) {
if (entry)
nbdkit_debug ("%s: search L1 dir: entry found: offset %" PRIu64,
__func__, entry->offset);
else
nbdkit_debug ("%s: search L1 dir: no entry found", __func__);
}
if (entry) {
l2_dir = entry->l2_dir;
/* Which page in the L2 directory? */
o = (offset - entry->offset) / SPARSE_PAGE;
if (l2_entry)
*l2_entry = &l2_dir[o];
page = l2_dir[o].page;
if (!page && create) {
/* No page allocated. Allocate one if creating. */
page = calloc (SPARSE_PAGE, 1);
if (page == NULL) {
nbdkit_error ("calloc: %m");
return NULL;
}
l2_dir[o].page = page;
}
if (!page)
return NULL;
else
return page + (offset & (SPARSE_PAGE-1));
}
/* No L1 directory entry found. */
if (!create)
return NULL;
/* No L1 directory entry, and we're creating, so we need to allocate
* a new L1 directory entry and insert it in the L1 directory, and
* allocate the L2 directory with NULL page pointers. Then we can
* repeat the above search to create the page.
*/
new_entry.offset = offset & ~(SPARSE_PAGE*L2_SIZE-1);
new_entry.l2_dir = calloc (L2_SIZE, sizeof (struct l2_entry));
if (new_entry.l2_dir == NULL) {
nbdkit_error ("calloc: %m");
return NULL;
}
if (insert_l1_entry (sa, &new_entry) == -1) {
free (new_entry.l2_dir);
return NULL;
}
goto again;
}
static int
sparse_array_read (struct allocator *a,
void *buf, uint64_t count, uint64_t offset)
{
struct sparse_array *sa = (struct sparse_array *) a;
/* Because reads never modify any metadata, it is always safe to
* only hold the shared (read) lock.
*/
ACQUIRE_RDLOCK_FOR_CURRENT_SCOPE (&sa->lock);
uint64_t n;
void *p;
while (count > 0) {
p = lookup (sa, offset, false, &n, NULL);
if (n > count)
n = count;
if (p == NULL)
memset (buf, 0, n);
else
memcpy (buf, p, n);
buf += n;
count -= n;
offset += n;
}
return 0;
}
#define RESTART_EXCLUSIVE -2
static int
do_write (bool exclusive, struct sparse_array *sa,
const void *buf, uint64_t count, uint64_t offset)
{
uint64_t n;
void *p;
while (count > 0) {
if (!exclusive) {
/* If we only hold the shared lock, try it without allocating. */
p = lookup (sa, offset, false, &n, NULL);
if (p == NULL)
return RESTART_EXCLUSIVE;
}
else {
p = lookup (sa, offset, true, &n, NULL);
if (p == NULL)
return -1;
}
if (n > count)
n = count;
memcpy (p, buf, n);
buf += n;
count -= n;
offset += n;
}
return 0;
}
static int
sparse_array_write (struct allocator *a,
const void *buf, uint64_t count, uint64_t offset)
{
struct sparse_array *sa = (struct sparse_array *) a;
int r;
/* First try the write with the shared (read) lock held. */
{
ACQUIRE_RDLOCK_FOR_CURRENT_SCOPE (&sa->lock);
r = do_write (false, sa, buf, count, offset);
}
/* If that failed because we need the exclusive lock, restart. */
if (r == RESTART_EXCLUSIVE) {
ACQUIRE_WRLOCK_FOR_CURRENT_SCOPE (&sa->lock);
r = do_write (true, sa, buf, count, offset);
}
return r;
}
static int sparse_array_zero (struct allocator *a,
uint64_t count, uint64_t offset);
static int
sparse_array_fill (struct allocator *a, char c,
uint64_t count, uint64_t offset)
{
struct sparse_array *sa = (struct sparse_array *) a;
uint64_t n;
void *p;
if (c == 0)
return sparse_array_zero (a, count, offset);
/* Since fill is never called on a hot path, use the exclusive lock. */
ACQUIRE_WRLOCK_FOR_CURRENT_SCOPE (&sa->lock);
while (count > 0) {
p = lookup (sa, offset, true, &n, NULL);
if (p == NULL)
return -1;
if (n > count)
n = count;
memset (p, c, n);
count -= n;
offset += n;
}
return 0;
}
static int
do_zero (bool exclusive, struct sparse_array *sa,
uint64_t count, uint64_t offset)
{
uint64_t n;
void *p;
struct l2_entry *l2_entry;
while (count > 0) {
p = lookup (sa, offset, false, &n, &l2_entry);
if (n > count)
n = count;
if (p) {
if (n < SPARSE_PAGE)
memset (p, 0, n);
else
assert (p == l2_entry->page);
/* If the whole page is now zero, free it. */
if (n >= SPARSE_PAGE || is_zero (l2_entry->page, SPARSE_PAGE)) {
if (!exclusive)
return RESTART_EXCLUSIVE;
if (sa->a.debug)
nbdkit_debug ("%s: freeing zero page at offset %" PRIu64,
__func__, offset);
free (l2_entry->page);
l2_entry->page = NULL;
}
}
count -= n;
offset += n;
}
return 0;
}
static int
sparse_array_zero (struct allocator *a, uint64_t count, uint64_t offset)
{
struct sparse_array *sa = (struct sparse_array *) a;
int r;
/* First try the zero with the shared (read) lock held. */
{
ACQUIRE_RDLOCK_FOR_CURRENT_SCOPE (&sa->lock);
r = do_zero (false, sa, count, offset);
}
/* If that failed because we need the exclusive lock, restart. */
if (r == RESTART_EXCLUSIVE) {
ACQUIRE_WRLOCK_FOR_CURRENT_SCOPE (&sa->lock);
r = do_zero (true, sa, count, offset);
}
return r;
}
static int
sparse_array_blit (struct allocator *a1,
struct allocator *a2,
uint64_t count,
uint64_t offset1, uint64_t offset2)
{
struct sparse_array *sa2 = (struct sparse_array *) a2;
/* Since blit is never called on a hot path, use the exclusive lock. */
ACQUIRE_WRLOCK_FOR_CURRENT_SCOPE (&sa2->lock);
uint64_t n;
void *p;
struct l2_entry *l2_entry;
assert (a1 != a2);
assert (strcmp (a2->f->type, "sparse") == 0);
while (count > 0) {
p = lookup (sa2, offset2, true, &n, &l2_entry);
if (p == NULL)
return -1;
if (n > count)
n = count;
/* Read the source allocator (a1) directly to p which points into
* the right place in sa2.
*/
if (a1->f->read (a1, p, n, offset1) == -1)
return -1;
/* If the whole page is now zero, free it. */
if (is_zero (l2_entry->page, SPARSE_PAGE)) {
if (sa2->a.debug)
nbdkit_debug ("%s: freeing zero page at offset %" PRIu64,
__func__, offset2);
free (l2_entry->page);
l2_entry->page = NULL;
}
count -= n;
offset1 += n;
offset2 += n;
}
return 0;
}
static int
sparse_array_extents (struct allocator *a,
uint64_t count, uint64_t offset,
struct nbdkit_extents *extents)
{
struct sparse_array *sa = (struct sparse_array *) a;
/* Reading extents never modifies any metadata, so it is always safe
* to only hold the shared (read) lock.
*/
ACQUIRE_RDLOCK_FOR_CURRENT_SCOPE (&sa->lock);
uint64_t n;
uint32_t type;
void *p;
while (count > 0) {
p = lookup (sa, offset, false, &n, NULL);
/* Work out the type of this extent. */
if (p == NULL)
/* No backing page, so it's a hole. */
type = NBDKIT_EXTENT_HOLE | NBDKIT_EXTENT_ZERO;
else {
if (is_zero (p, n))
/* A backing page and it's all zero, it's a zero extent. */
type = NBDKIT_EXTENT_ZERO;
else
/* Normal allocated data. */
type = 0;
}
if (nbdkit_add_extent (extents, offset, n, type) == -1)
return -1;
if (n > count)
n = count;
count -= n;
offset += n;
}
return 0;
}
static struct allocator *
sparse_array_create (const void *paramsv)
{
const allocator_parameters *params = paramsv;
struct sparse_array *sa;
if (params->len > 0) {
nbdkit_error ("allocator=sparse does not take extra parameters");
return NULL;
}
sa = calloc (1, sizeof *sa);
if (sa == NULL) {
nbdkit_error ("calloc: %m");
return NULL;
}
pthread_rwlock_init (&sa->lock, NULL);
return (struct allocator *) sa;
}
static struct allocator_functions functions = {
.type = "sparse",
.preferred = SPARSE_PAGE,
.create = sparse_array_create,
.free = sparse_array_free,
.set_size_hint = sparse_array_set_size_hint,
.read = sparse_array_read,
.write = sparse_array_write,
.fill = sparse_array_fill,
.zero = sparse_array_zero,
.blit = sparse_array_blit,
.extents = sparse_array_extents,
};
static void register_sparse_array (void) __attribute__ ((constructor));
static void
register_sparse_array (void)
{
register_allocator (&functions);
}
|