1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
#!/usr/bin/env bash
# nbdkit
# Copyright Red Hat
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# * Neither the name of Red Hat nor the names of its contributors may be
# used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY RED HAT AND CONTRIBUTORS ''AS IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL RED HAT OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
# USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
# OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
# SUCH DAMAGE.
# Randomized tests of the map filter.
source ./functions.sh
set -e
set -x
set -u
requires_plugin sparse-random
requires_nbdsh_uri
# Uses explicit h.close() method, added in 1.16
requires_libnbd_version 1.16
requires_single_mode
# Use a random seed for the test so the test could be reproduced
# by setting this seed.
seed=$RANDOM
export seed
nbdsh -c - <<'EOF'
import os
import random
seed = int(os.getenv("seed"))
random.seed(seed)
# Tunables for sparse-random plugin.
max_size=2**32
runlength=65536
percent=50
size = random.randint(1024, max_size)
nr_maps = random.randint(0, 100)
maps = []
maps_cli = []
for i in range(0, nr_maps):
start = random.randint(0, size-1024)
end = random.randint(start, size-1)
len = end-start+1
dest = random.randint(0, size-len)
maps += [(start, end, dest, len)]
maps_cli += ["map=%d-%d:%d" % (start, end, dest)]
# We will run two copies of nbdkit. One will only be the sparse-random
# plugin, thus exposing the underlying plugin data/extents directly.
# The other will have the map filter with the random map on top.
# Since the seed is the same for both, the underlying content is the same.
h1 = nbd.NBD()
h1.add_meta_context("base:allocation")
args = ["nbdkit", "-s", "--exit-with-parent", "-v",
"sparse-random", str(size),
"seed=" + str(seed),
"runlength=" + str(runlength),
"percent=" + str(percent)]
print("%r" % args, flush=True)
h1.connect_command(args)
h2 = nbd.NBD()
h2.add_meta_context("base:allocation")
args += ["--filter=map"]
args += maps_cli
print("%r" % args, flush=True)
h2.connect_command(args)
# Function to map location of a byte to its position in the underlying disk.
# Recall the rule that first matching map wins.
def map_offset(offset):
for (start, end, dest, len) in maps:
if start <= offset and offset <= end:
mapped = dest + offset-start
print("map %d -> %d because of rule map=%d-%d:%d" % \
(offset, mapped, start, end, dest))
return mapped
# No explicit mapping, use implicit 1-1 mapping.
return offset
# Read the data at an offset (inefficiently).
def get_byte(h, offset):
b = h.pread(1, offset)
return b[0]
# Read the sparseness at an offset (inefficiently).
def get_sparse(h, offset):
is_sparse = None
def f(mc, offs, e, err):
nonlocal is_sparse
is_sparse = e[1] & 3
h.block_status(1, offset, f)
assert is_sparse is not None
return is_sparse != 0 # 0 = data, 3 = hole
# Read some random data from the filter and compare it to what we expect.
for t in range(0, 100):
offset = random.randint(0, size-1)
mapped_offset = map_offset(offset)
expected = get_byte(h1, mapped_offset)
expected_sparse = get_sparse(h1, mapped_offset)
actual = get_byte(h2, offset)
actual_sparse = get_sparse(h2, offset)
print("test: offset %d expected: %r actual: %r" % \
(offset, (expected, expected_sparse), (actual, actual_sparse)),
flush=True)
assert expected == actual
assert expected_sparse == actual_sparse
h1.close()
h2.close()
EOF
|