File: ipreasm.c

package info (click to toggle)
ncap 1.9.2-8
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,704 kB
  • sloc: sh: 10,135; ansic: 5,829; perl: 68; makefile: 42; python: 33
file content (755 lines) | stat: -rw-r--r-- 18,541 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
/*
 * ipreasm -- Routines for reassembly of fragmented IPv4 and IPv6 packets.
 *
 * Copyright (c) 2007  Jan Andres <jandres@gmx.net>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 */

#include "ncap_port.h"
#include "ncap_port_net.h"

#include <sys/uio.h>

#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include <pcap.h>

#include "ipreasm.h"

#ifdef DMALLOC
# include <dmalloc.h>
#endif

#define REASM_IP_HASH_SIZE 1021U


enum entry_state {
	STATE_ACTIVE,
	STATE_INVALID
};


enum reasm_proto {
	PROTO_IPV4,
	PROTO_IPV6
};


/*
 * This tuple uniquely identifies all fragments belonging to
 * the same IPv4 packet.
 */
struct reasm_id_ipv4 {
	uint8_t ip_src[4], ip_dst[4];
	uint16_t ip_id;
	uint8_t ip_proto;
};


/*
 * Same for IPv6.
 */
struct reasm_id_ipv6 {
	uint8_t ip_src[16], ip_dst[16];
	uint32_t ip_id;
};


union reasm_id {
	struct reasm_id_ipv4 ipv4;
	struct reasm_id_ipv6 ipv6;
};


struct reasm_frag_entry {
	unsigned len;  /* payload length of this fragment */
	unsigned offset; /* offset of this fragment into the payload of the reassembled packet */
	unsigned data_offset; /* offset to the data pointer where payload starts */
	unsigned char *data; /* payload starts at data + data_offset */
	struct reasm_frag_entry *next;
};


/*
 * Reception of a complete packet is detected by counting the number
 * of "holes" that remain between the cached fragments. A hole is
 * assumed to exist at the upper end of the packet until the final
 * fragment has been received. When the number of holes drops to 0,
 * all fragments have been received and the packet can be reassembled.
 */
struct reasm_ip_entry {
	union reasm_id id;
	unsigned len, holes, frag_count, hash;
	reasm_time_t timeout;
	enum entry_state state;
	enum reasm_proto protocol;
	struct reasm_frag_entry *frags;
	struct reasm_ip_entry *prev, *next;
	struct reasm_ip_entry *time_prev, *time_next;
};


/*
 * This struct contains some metadata, the main hash table, and a pointer
 * to the first entry that will time out. A linked list is kept in the
 * order in which packets will time out. Using a linked list for this
 * purpose requires that packets are input in chronological order, and
 * that a constant timeout value is used, which doesn't change even when
 * the entry's state transitions from active to invalid.
 */
struct reasm_ip {
	struct reasm_ip_entry *table[REASM_IP_HASH_SIZE];
	struct reasm_ip_entry *time_first, *time_last;
	unsigned waiting, max_waiting, timed_out, dropped_frags;
	reasm_time_t timeout;
};


/*
 * Hash functions.
 */
static unsigned reasm_ipv4_hash (const struct reasm_id_ipv4 *id);
static unsigned reasm_ipv6_hash (const struct reasm_id_ipv6 *id);

/*
 * Insert a new fragment to the correct position in the list of fragments.
 * Check for fragment overlap and other error conditions. Update the
 * "hole count".
 */
static bool add_fragment (struct reasm_ip_entry *entry, struct reasm_frag_entry *frag, bool last_frag);

/*
 * Is the entry complete, ready for reassembly?
 */
static bool is_complete (struct reasm_ip_entry *entry);

/*
 * Create the reassembled packet.
 */
static void assemble (struct reasm_ip_entry *entry, unsigned char *out_packet, unsigned *output_len);

/*
 * Drop and free entries.
 */
static void drop_entry (struct reasm_ip *reasm, struct reasm_ip_entry *entry);
static void free_entry (struct reasm_ip_entry *entry);

/*
 * Dispose of any entries which have expired before "now".
 */
static void process_timeouts (struct reasm_ip *reasm, reasm_time_t now);

/*
 * Create fragment structure from IPv6 packet. Returns NULL if the input
 * is not a fragment.
 * This function is called by parse_packet(), don't call it directly.
 */
static struct reasm_frag_entry *frag_from_ipv6 (const unsigned char *packet, unsigned frag_hdr_offset, uint32_t *ip_id, bool *last_frag);

/*
 * Compare packet identification tuples for specified protocol.
 */
static bool reasm_id_equal (enum reasm_proto proto, const union reasm_id *left, const union reasm_id *right);

/*
 * Create fragment structure from an IPv4 or IPv6 packet. Returns NULL
 * if the input is not a fragment.
 */
static struct reasm_frag_entry *parse_packet (const unsigned char *packet, unsigned len, unsigned frag_hdr_offset, enum reasm_proto *protocol, union reasm_id *id, unsigned *hash, bool *last_frag);


static unsigned
reasm_ipv4_hash (const struct reasm_id_ipv4 *id)
{
	unsigned hash = 0;
	int i;

	for (i = 0; i < 4; i++) {
		hash = 37U * hash + id->ip_src[i];
		hash = 37U * hash + id->ip_dst[i];
	}

	hash = 59U * hash + id->ip_id;

	hash = 47U * hash + id->ip_proto;

	return hash;
}


static unsigned
reasm_ipv6_hash (const struct reasm_id_ipv6 *id)
{
	unsigned hash = 0;
	int i;

	for (i = 0; i < 16; i++) {
		hash = 37U * hash + id->ip_src[i];
		hash = 37U * hash + id->ip_dst[i];
	}

	hash = 59U * hash + id->ip_id;

	return hash;
}


bool
reasm_ip_next (struct reasm_ip *reasm, const unsigned char *packet, unsigned len, unsigned frag_hdr_offset, reasm_time_t timestamp, unsigned char *out_packet, unsigned *output_len)
{
	enum reasm_proto proto;
	union reasm_id id;
	unsigned hash = 0;
	bool last_frag = 0;
	struct reasm_frag_entry *frag;
	struct reasm_ip_entry *entry;

	process_timeouts (reasm, timestamp);

	frag = parse_packet (packet, len, frag_hdr_offset, &proto, &id, &hash, &last_frag);
	if (frag == NULL) {
		*output_len = 0;
		return false; /* some packet that we don't recognize as a fragment */
	}

	hash %= REASM_IP_HASH_SIZE;
	entry = reasm->table[hash];
	while (entry != NULL && (proto != entry->protocol || !reasm_id_equal (proto, &id, &entry->id)))
		entry = entry->next;

	if (entry == NULL) {
		struct reasm_frag_entry *list_head;

		entry = malloc (sizeof (*entry));
		if (entry == NULL) {
			free (frag);
			abort ();
		}

		list_head = malloc (sizeof (*list_head));
		if (list_head == NULL) {
			free (frag);
			free (entry);
			abort ();
		}

		memset(entry, 0, sizeof *entry);
		entry->id = id;
		entry->len = 0;
		entry->holes = 1;
		entry->frags = list_head;
		entry->hash = hash;
		entry->protocol = proto;
		entry->timeout = timestamp + reasm->timeout;
		entry->state = STATE_ACTIVE;
		entry->prev = NULL;
		entry->next = reasm->table[hash];
		entry->time_prev = reasm->time_last;
		entry->time_next = NULL;

		memset(list_head, 0, sizeof *list_head);
		list_head->len = 0;
		list_head->offset = 0;
		list_head->data_offset = 0;
		list_head->data = NULL;

		if (entry->next != NULL)
			entry->next->prev = entry;
		reasm->table[hash] = entry;

		if (reasm->time_last != NULL)
			reasm->time_last->time_next = entry;
		else
			reasm->time_first = entry;
		reasm->time_last = entry;

		reasm->waiting++;
		if (reasm->waiting > reasm->max_waiting)
			reasm->max_waiting = reasm->waiting;
	}

	if (entry->state != STATE_ACTIVE) {
		reasm->dropped_frags++;
		*output_len = 0;
        free(frag->data);
        free(frag);
		return true;
	}

	if (!add_fragment (entry, frag, last_frag)) {
		entry->state = STATE_INVALID;
		reasm->dropped_frags += entry->frag_count + 1;
		*output_len = 0;
        free(frag->data);
        free(frag);
		return true;
	}

	if (!is_complete (entry)) {
		*output_len = 0;
		return true;
	}

	assemble (entry, out_packet, output_len);
	drop_entry (reasm, entry);
	return true;
}


static bool
add_fragment (struct reasm_ip_entry *entry, struct reasm_frag_entry *frag, bool last_frag)
{
	bool fit_left, fit_right;
	struct reasm_frag_entry *cur, *next;

	/*
	 * When a fragment is inserted into the list, different cases can occur
	 * concerning the number of holes.
	 * - The new fragment can be inserted in the middle of a hole, such that
	 *   it will split the hole in two. The number of holes increases by 1.
	 * - The new fragment can be attached to one end of a hole, such that
	 *   the rest of the hole remains at the opposite side of the fragment.
	 *   The number of holes remains constant.
	 * - The new fragment can fill a hole completely. The number of holes
	 *   decreases by 1.
	 */

	/*
	 * If more fragments follow and the payload size is not an integer
	 * multiple of 8, the packet will never be reassembled completely.
	 */
	if (!last_frag && (frag->len & 7) != 0)
		return false;

	if (entry->len != 0 && frag->len + frag->offset > entry->len)
		return false; /* fragment extends past end of packet */

	fit_left = false;
	fit_right = false;

	if (last_frag) {
		if (entry->len != 0)
			return false;
		entry->len = frag->offset + frag->len;
		fit_right = true;
	}

	cur = entry->frags;
	next = cur->next;

	while (cur->next != NULL && cur->next->offset <= frag->offset)
		cur = cur->next;
	next = cur->next;

	/* Fragment is to be inserted between cur and next; next may be NULL. */

	/* Overlap checks. */
	if (cur->offset + cur->len > frag->offset)
		return false; /* overlaps with cur */
	else if (cur->offset + cur->len == frag->offset)
		fit_left = true;

	if (next != NULL) {
		if (last_frag)
			return false; /* next extends past end of packet */
		if (frag->offset + frag->len > next->offset)
			return false; /* overlaps with next */
		else if (frag->offset + frag->len == next->offset)
			fit_right = true;
	}

	/*
	 * Everything's fine, insert it.
	 */
	if (frag->len != 0) {
		frag->next = cur->next;
		cur->next = frag;

		if (fit_left && fit_right)
			entry->holes--;
		else if (!fit_left && !fit_right)
			entry->holes++;

		entry->frag_count++;
	} else {
		/*
		 * If the fragment has zero size, we don't insert it into the list,
		 * but one case remains to be handled: If the zero-size fragment
		 * is the last fragment, and fits exactly with the fragment to its
		 * left, the number of holes decreases.
		 */
		if (last_frag && fit_left)
			entry->holes--;
	}


	return true;
}


struct reasm_ip *
reasm_ip_new (void)
{
	struct reasm_ip *reasm = malloc (sizeof (*reasm));
	if (reasm == NULL)
		return NULL;

	memset (reasm, 0, sizeof (*reasm));
	return reasm;
}


void
reasm_ip_free (struct reasm_ip *reasm)
{
	while (reasm->time_first != NULL)
		drop_entry (reasm, reasm->time_first);
	free (reasm);
}


static bool
is_complete (struct reasm_ip_entry *entry)
{
	return entry->holes == 0;
}


static void
assemble (struct reasm_ip_entry *entry, unsigned char *out_packet, unsigned *output_len)
{
	struct reasm_frag_entry *frag = entry->frags->next; /* skip list head */
	unsigned offset0 = frag->data_offset;

	switch (entry->protocol) {
		case PROTO_IPV4:
			break;
		case PROTO_IPV6:
			offset0 -= 8; /* size of frag header */
			break;
		default:
			abort ();
	}

	if (entry->len + offset0 > *output_len) {
		/* The output buffer is too small. */
		*output_len = 0;
		return;
	}

	*output_len = entry->len + offset0;

	/* copy the (unfragmentable) header from the first fragment received */
	memcpy (out_packet, frag->data, offset0);

	/* join all the payload fragments together */
	while (frag != NULL) {
		memcpy (out_packet + offset0 + frag->offset, frag->data + frag->data_offset, frag->len);
		frag = frag->next;
	}

	/* some cleanups, e.g. update the length field of reassembled packet */
	switch (entry->protocol) {
		case PROTO_IPV4: {
			struct ip *ip_header = (struct ip *) out_packet;
			unsigned i, hl = 4 * ip_header->ip_hl;
			int32_t sum = 0;
			ip_header->ip_len = htons (offset0 + entry->len);
			ip_header->ip_off = 0;
			ip_header->ip_sum = 0;

			/* Recompute checksum. */
			for (i = 0; i < hl; i += 2) {
				uint16_t cur = (uint16_t) out_packet[i] << 8 | out_packet[i + 1];
				sum += cur;
				if ((sum & 0x80000000) != 0)
					sum = (sum & 0xffff) + (sum >> 16);
			}
			while ((sum >> 16) != 0)
				sum = (sum & 0xffff) + (sum >> 16);
			ip_header->ip_sum = htons (~sum);
			break;
		}
		case PROTO_IPV6: {
			struct ip6_hdr *ip6_header = (struct ip6_hdr *) out_packet;
			ip6_header->ip6_plen = htons (offset0 + entry->len - 40);
			break;
		}
		default:
			abort ();
	}
}


static void
drop_entry (struct reasm_ip *reasm, struct reasm_ip_entry *entry)
{
	if (entry->prev != NULL)
		entry->prev->next = entry->next;
	else
		reasm->table[entry->hash] = entry->next;

	if (entry->next != NULL)
		entry->next->prev = entry->prev;

	if (entry->time_prev != NULL)
		entry->time_prev->time_next = entry->time_next;
	else
		reasm->time_first = entry->time_next;

	if (entry->time_next != NULL)
		entry->time_next->time_prev = entry->time_prev;
	else
		reasm->time_last = entry->time_prev;

	reasm->waiting--;

	free_entry (entry);
}


static void
free_entry (struct reasm_ip_entry *entry)
{
	struct reasm_frag_entry *frag = entry->frags, *next;
	while (frag != NULL) {
		next = frag->next;
		if (frag->data != NULL)
			free (frag->data);
		free (frag);
		frag = next;
	}

	free (entry);
}


unsigned
reasm_ip_waiting (const struct reasm_ip *reasm)
{
	return reasm->waiting;
}


unsigned
reasm_ip_max_waiting (const struct reasm_ip *reasm)
{
	return reasm->max_waiting;
}


unsigned
reasm_ip_timed_out (const struct reasm_ip *reasm)
{
	return reasm->timed_out;
}


unsigned
reasm_ip_dropped_frags (const struct reasm_ip *reasm)
{
	return reasm->dropped_frags;
}


bool
reasm_ip_set_timeout (struct reasm_ip *reasm, reasm_time_t timeout)
{
	if (reasm->time_first != NULL)
		return false;

	reasm->timeout = timeout;
	return true;
}


static void
process_timeouts (struct reasm_ip *reasm, reasm_time_t now)
{
	while (reasm->time_first != NULL && reasm->time_first->timeout < now) {
		reasm->timed_out++;
		drop_entry (reasm, reasm->time_first);
	}
}


static struct reasm_frag_entry *
frag_from_ipv6 (const unsigned char *packet, unsigned frag_hdr_offset, uint32_t *ip_id, bool *last_frag)
{
	const struct ip6_hdr *ip6_header = (const struct ip6_hdr *) packet;
	unsigned offset = 40; /* IPv6 header size */
	uint8_t nxt = ip6_header->ip6_nxt;
	unsigned total_len = 40 + ntohs (ip6_header->ip6_plen);
	unsigned last_nxt = offsetof (struct ip6_hdr, ip6_nxt);
	struct reasm_frag_entry *frag;
	const struct ip6_frag *frag_header;
	unsigned char *frag_data;

	/*
	 * IPv6 extension headers from RFC 2460:
	 *   0 Hop-by-Hop Options
	 *  43 Routing
	 *  44 Fragment
	 *  60 Destination Options
	 *
	 * We look out for the Fragment header; the other 3 header
	 * types listed above are recognized and considered safe to
	 * skip over if they occur before the Fragment header.
	 * Any unrecognized header will cause processing to stop and
	 * a subsequent Fragment header to stay unrecognized.
	 */
	if (frag_hdr_offset != 0)
		offset = frag_hdr_offset;
	else {
		while (nxt == IPPROTO_HOPOPTS || nxt == IPPROTO_ROUTING || nxt == IPPROTO_DSTOPTS) {
			unsigned exthdr_len;

			if (offset + 2 > total_len)
				return NULL;  /* header extends past end of packet */

			exthdr_len = 8 + 8 * packet[offset + 1];
			if (offset + exthdr_len > total_len)
				return NULL;  /* header extends past end of packet */

			nxt = packet[offset];
			last_nxt = offset;
			offset += exthdr_len;
		}

		if (nxt != IPPROTO_FRAGMENT)
			return NULL;
	}

	if (offset + 8 > total_len)
		return NULL;  /* Fragment header extends past end of packet */

	frag = malloc (sizeof (*frag));
	if (frag == NULL)
		abort ();

	frag_header = (const struct ip6_frag *) (packet + offset);
	offset += 8;

	frag_data = malloc (total_len);
	if (frag_data == NULL)
		abort ();
	memcpy (frag_data, packet, total_len);

	/*
	 * The Fragment header will be removed on reassembly, so we have to
	 * replace the Next Header field of the previous header (which is
	 * currently IPPROTO_FRAGMENT), with the Next Header field of the
	 * Fragment header.
	 *
	 * XXX We really shouldn't manipulate the input packet in-place.
	 */
	frag_data[last_nxt] = frag_header->ip6f_nxt;

	memset(frag, 0, sizeof *frag);
	frag->len = total_len - offset;
	frag->data_offset = offset;
	frag->offset = ntohs (frag_header->ip6f_offlg & IP6F_OFF_MASK);
	frag->data = frag_data;

	*ip_id = ntohl (frag_header->ip6f_ident);
	*last_frag = (frag_header->ip6f_offlg & IP6F_MORE_FRAG) == 0;

	return frag;
}


static bool
reasm_id_equal (enum reasm_proto proto, const union reasm_id *left, const union reasm_id *right)
{
	switch (proto) {
		case PROTO_IPV4:
			return memcmp (left->ipv4.ip_src, right->ipv4.ip_src, 4) == 0
				&& memcmp (left->ipv4.ip_dst, right->ipv4.ip_dst, 4) == 0
				&& left->ipv4.ip_id == right->ipv4.ip_id
				&& left->ipv4.ip_proto == right->ipv4.ip_proto;
		case PROTO_IPV6:
			return memcmp (left->ipv6.ip_src, right->ipv6.ip_src, 16) == 0
				&& memcmp (left->ipv6.ip_dst, right->ipv6.ip_dst, 16) == 0
				&& left->ipv6.ip_id == right->ipv6.ip_id;
		default:
			abort ();
	}
}


static struct reasm_frag_entry *
parse_packet (const unsigned char *packet, unsigned len, unsigned frag_hdr_offset, enum reasm_proto *protocol, union reasm_id *id, unsigned *hash, bool *last_frag)
{
	const struct ip *ip_header = (const struct ip *) packet;
	struct reasm_frag_entry *frag = NULL;

	switch (ip_header->ip_v) {
		case 4: {
			uint16_t offset = ntohs (ip_header->ip_off);

			*protocol = PROTO_IPV4;
			if (len >= (unsigned) ntohs (ip_header->ip_len) &&
			    (offset & (IP_MF | IP_OFFMASK)) != 0)
			{
				unsigned pl_hl, pl_len, pl_off;
				u_char *frag_data;

				frag = malloc (sizeof (*frag));
				if (frag == NULL)
					abort ();

				pl_hl = ip_header->ip_hl * 4;
				pl_len = ntohs (ip_header->ip_len);
				pl_off = (offset & IP_OFFMASK) * 8;
				frag_data = malloc (pl_len);
				if (frag_data == NULL)
					abort ();
				memcpy (frag_data, packet, pl_len);

				frag->len = pl_len - pl_hl;
				frag->offset = pl_off;
				frag->data_offset = ip_header->ip_hl * 4;
				frag->data = frag_data;

				*last_frag = (offset & IP_MF) == 0;

				memcpy (id->ipv4.ip_src, &ip_header->ip_src, 4);
				memcpy (id->ipv4.ip_dst, &ip_header->ip_dst, 4);
				id->ipv4.ip_id = ntohs (ip_header->ip_id);
				id->ipv4.ip_proto = ip_header->ip_p;

				*hash = reasm_ipv4_hash (&id->ipv4);
			}
			break;
		}

		case 6: {
			const struct ip6_hdr *ip6_header =
				(const struct ip6_hdr *) packet;
			*protocol = PROTO_IPV6;
			if (len >= (unsigned) ntohs (ip6_header->ip6_plen) + 40)
				frag = frag_from_ipv6 (packet, frag_hdr_offset, &id->ipv6.ip_id, last_frag);
			if (frag != NULL) {
				memcpy (id->ipv6.ip_src, &ip6_header->ip6_src, 16);
				memcpy (id->ipv6.ip_dst, &ip6_header->ip6_dst, 16);
				*hash = reasm_ipv6_hash (&id->ipv6);
			}
			break;
		}

		default:
			break;
	}

	return frag;
}