File: ncbi_heapmgr.c

package info (click to toggle)
ncbi-tools6 6.1.20120620-8
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 241,628 kB
  • ctags: 101,236
  • sloc: ansic: 1,431,713; cpp: 6,248; pascal: 3,949; xml: 3,390; sh: 3,090; perl: 1,077; csh: 488; makefile: 449; ruby: 93; lisp: 81
file content (1070 lines) | stat: -rw-r--r-- 37,491 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
/* $Id: ncbi_heapmgr.c,v 6.50 2012/04/19 16:09:32 kazimird Exp $
 * ===========================================================================
 *
 *                            PUBLIC DOMAIN NOTICE
 *               National Center for Biotechnology Information
 *
 *  This software/database is a "United States Government Work" under the
 *  terms of the United States Copyright Act.  It was written as part of
 *  the author's official duties as a United States Government employee and
 *  thus cannot be copyrighted.  This software/database is freely available
 *  to the public for use. The National Library of Medicine and the U.S.
 *  Government have not placed any restriction on its use or reproduction.
 *
 *  Although all reasonable efforts have been taken to ensure the accuracy
 *  and reliability of the software and data, the NLM and the U.S.
 *  Government do not and cannot warrant the performance or results that
 *  may be obtained by using this software or data. The NLM and the U.S.
 *  Government disclaim all warranties, express or implied, including
 *  warranties of performance, merchantability or fitness for any particular
 *  purpose.
 *
 *  Please cite the author in any work or product based on this material.
 *
 * ===========================================================================
 *
 * Author:  Anton Lavrentiev
 *
 * Abstract:
 *
 * This is a simple heap manager with a primitive garbage collection.
 * The heap contains blocks of data, stored in a common contiguous pool,
 * each block preceded with a SHEAP_Block structure.  Low word of 'flag'
 * is either non-zero (True), when the block is in use, or zero (False),
 * when the block is vacant.  'Size' shows the length of the block in bytes,
 * (uninterpreted) data field of which is extended past the header
 * (the header size IS counted in the size of the block).
 *
 * When 'HEAP_Alloc' is called, the return value is either a heap pointer,
 * which points to the block header, marked as allocated and guaranteed
 * to have enough space to hold the requested data size; or 0 meaning, that the
 * heap has no more room to provide such a block (reasons for that:
 * heap is corrupt, heap has no provision to be expanded, expansion failed,
 * or the heap was attached read-only).
 *
 * An application program can then use the data field on its need,
 * providing not to overcome the size limit.  The current block header
 * can be used to find the next heap block with the use of 'size' member
 * (note, however, some restrictions below).
 *
 * The application program is NOT assumed to keep the returned block pointer,
 * as the garbage collection can occur on the next allocation attempt,
 * thus making any heap pointers invalid.  Instead, the application program
 * can keep track of the heap base (header of the very first heap block -
 * see 'HEAP_Create'), and the size of the heap, and can traverse the heap by
 * this means, or with call to 'HEAP_Walk' (described below). 
 *
 * While traversing, if the block found is no longer needed, it can be freed
 * with 'HEAP_Free' call, supplying the address of the block header
 * as an argument.
 *
 * Prior to the heap use, the initialization is required, which comprises
 * call to either 'HEAP_Create' or 'HEAP_Attach' with the information about
 * the base heap pointer.  'HEAP_Create' also takes the size of initial
 * heap area (if there is one), and size of chunk (usually, a page size)
 * to be used in heap expansions (defaults to alignment if provided as 0).
 * Additionally (but not compulsory) the application program can provide
 * heap manager with 'resize' routine, which is supposed to be called,
 * when no more room is available in the heap, or the heap has not been
 * preallocated (base = 0 in 'HEAP_Create'), and given the arguments:
 * - current heap base address (or 0 if this is the very first heap alloc),
 * - new required heap size (or 0 if this is the last call to deallocate
 * the entire heap). 
 * If successful, the resize routine must return the new heap base
 * address (if any) of expanded heap area, and where the exact copy of
 * the current heap is made.
 *
 * Note that all heap base pointers must be aligned on a 'double' boundary.
 * Please also be warned not to store pointers to the heap area, as a
 * garbage collection can clobber them.  Within a block, however,
 * it is possible to use local pointers (offsets), which remain same
 * regardless of garbage collections.
 *
 * For automatic traverse purposes there is a 'HEAP_Walk' call, which returns
 * the next block (either free, or used) from the heap.  Given a NULL-pointer,
 * this function returns the very first block, whereas all subsequent calls
 * with the argument being the last observed block results in the next block 
 * returned.  NULL comes back when no more blocks exist in the heap.
 *
 * Note that for proper heap operations, no allocation(s) should happen between
 * successive calls to 'HEAP_Walk', whereas deallocation of the seen block
 * is okay.
 *
 * Explicit heap traversing should not overcome the heap limit,
 * as any information outside is not maintained by the heap manager.
 * Every heap operation guarantees that there are no adjacent free blocks,
 * only used blocks can follow each other sequentially.
 *
 * To discontinue to use the heap, 'HEAP_Destroy' or 'HEAP_Detach' can be
 * called.  The former deallocates the heap (by means of a call to 'resize'),
 * the latter just removes the heap handle, retaining the heap data intact.
 * Later, such a heap can be used again if attached with 'HEAP_Attach'.
 *
 * Note that an attached heap is always in read-only mode, that is nothing
 * can be allocated and/or freed in that heap, as well as an attempt to call
 * 'HEAP_Destroy' will not actually touch any heap data (but to destroy
 * the handle only).
 *
 * Note also, that 'HEAP_Create' always does heap reset, that is the
 * memory area pointed to by 'base' (if not 0) gets reformatted and lose
 * all previous contents.
 *
 */

#include "ncbi_priv.h"
#include <connect/ncbi_heapmgr.h>
#include <stdlib.h>
#include <string.h>

#define NCBI_USE_ERRCODE_X   Connect_HeapMgr

#if defined(NCBI_OS_MSWIN)  &&  defined(_WIN64)
/* Disable ptr->long conversion warning (even on explicit cast!) */
#  pragma warning (disable : 4311)
#endif /*NCBI_OS_MSWIN && _WIN64*/

#ifdef   abs
#  undef abs
#endif
#define  abs(a) ((a) < 0 ? (a) : -(a))

#ifdef NCBI_OS_LINUX
#  if NCBI_PLATFORM_BITS == 64
#     ifdef __GNUC__
#       define HEAP_PACKED  __attribute__ ((packed))
#     else
#       error "Don't know how to pack on this 64-bit platform"
#     endif
#  else
#     define HEAP_PACKED /* */
#  endif
#else
#  define HEAP_PACKED /* */
#endif


/* Heap's own block view */
typedef struct HEAP_PACKED {
    SHEAP_Block head;         /* Block head                                  */
    TNCBI_Size  prevfree;     /* Heap index for prev free block (if free)    */
    TNCBI_Size  nextfree;     /* Heap index for next free block (if free)    */
} SHEAP_HeapBlock;


struct SHEAP_tag {
    SHEAP_HeapBlock* base;    /* Current base of heap extent: !base == !size */
    TNCBI_Size       size;    /* Current size of heap extent: !base == !size */
    TNCBI_Size       free;    /* Current index of first free block (OOB=none)*/
    TNCBI_Size       last;    /* Current index of last heap block (RW heap)  */
    TNCBI_Size       chunk;   /* Aligned;  0 when the heap is read-only      */
    FHEAP_Resize     resize;  /* != NULL when resizeable (RW heap only)      */
    void*            auxarg;  /* Auxiliary argument to pass to "resize"      */
    unsigned int     refcnt;  /* Reference count (for heap copy, 0=original) */
    int              serial;  /* Serial number as assigned by (Attach|Copy)  */
};


static int/*bool*/ s_HEAP_fast = 1/*true*/;


#define _HEAP_ALIGN_EX(a, b)  ((((unsigned long)(a) + ((b) - 1)) / (b)) * (b))
#define _HEAP_ALIGN(a, b)     (( (unsigned long)(a) + ((b) - 1)) & ~((b) - 1))
#define _HEAP_ALIGNSHIFT      4
#define _HEAP_ALIGNMENT       (1 << _HEAP_ALIGNSHIFT)
#define HEAP_ALIGN(a)         _HEAP_ALIGN(a, _HEAP_ALIGNMENT)
#define HEAP_LAST             0x80000000UL
#define HEAP_USED             0x0DEAD2F0UL
#define HEAP_FREE             0
#define HEAP_NEXT(b)          ((SHEAP_HeapBlock*)((char*)(b) + (b)->head.size))
#define HEAP_INDEX(b, base)   ((TNCBI_Size)((b) - (base)))
#define HEAP_ISFREE(b)        (((b)->head.flag & ~HEAP_LAST) == HEAP_FREE)
#define HEAP_ISUSED(b)        (((b)->head.flag & ~HEAP_LAST) == HEAP_USED)
#define HEAP_ISLAST(b)        ( (b)->head.flag &  HEAP_LAST)


HEAP HEAP_Create(void*      base,  TNCBI_Size   size,
                 TNCBI_Size chunk, FHEAP_Resize resize, void* auxarg)
{
    HEAP heap;

    assert(_HEAP_ALIGNMENT == sizeof(SHEAP_HeapBlock));
    assert(_HEAP_ALIGN_EX(1, sizeof(SHEAP_Block)) ==
           _HEAP_ALIGN   (1, sizeof(SHEAP_Block)));

    if (!base != !size)
        return 0;
    if (size  &&  size < _HEAP_ALIGNMENT) {
        CORE_LOGF_X(1, eLOG_Error,
                    ("Heap Create: Storage too small: "
                     "provided %u, required %u+",
                     size, _HEAP_ALIGNMENT));
        return 0;
    }
    if (!(heap = (HEAP) malloc(sizeof(*heap))))
        return 0;
    heap->base   = (SHEAP_HeapBlock*) base;
    heap->size   = size >> _HEAP_ALIGNSHIFT;
    heap->free   = 0;
    heap->last   = 0;
    heap->chunk  = chunk        ? HEAP_ALIGN(chunk) : 0;
    heap->resize = heap->chunk  ? resize            : 0;
    heap->auxarg = heap->resize ? auxarg            : 0;
    heap->refcnt = 0/*original*/;
    heap->serial = 0;
    if (base) {
        SHEAP_HeapBlock* b = heap->base;
        /* Reformat the pre-allocated heap */
        if (_HEAP_ALIGN(base, sizeof(SHEAP_Block)) != (unsigned long) base) {
            CORE_LOGF_X(2, eLOG_Warning,
                        ("Heap Create: Unaligned base (0x%08lX)",
                         (long) base));
        }
        b->head.flag = HEAP_FREE | HEAP_LAST;
        b->head.size = size & ~(_HEAP_ALIGNMENT - 1);
        b->nextfree  = 0;
        b->prevfree  = 0;
    }
    return heap;
}


HEAP HEAP_AttachFast(const void* base, TNCBI_Size size, int serial)
{
    HEAP heap;

    assert(_HEAP_ALIGNMENT == sizeof(SHEAP_HeapBlock));
    assert(_HEAP_ALIGN_EX(1, sizeof(SHEAP_Block)) ==
           _HEAP_ALIGN   (1, sizeof(SHEAP_Block)));

    if (!base != !size  ||  !(heap = (HEAP) calloc(1, sizeof(*heap))))
        return 0;
    if (_HEAP_ALIGN(base, sizeof(SHEAP_Block)) != (unsigned long) base) {
        CORE_LOGF_X(3, eLOG_Warning,
                    ("Heap Attach: Unaligned base (0x%08lX)", (long) base));
    }
    heap->base   = (SHEAP_HeapBlock*) base;
    heap->size   = size >> _HEAP_ALIGNSHIFT;
    heap->serial = serial;
    if (size != heap->size << _HEAP_ALIGNSHIFT) {
        CORE_LOGF_X(4, eLOG_Warning,
                    ("Heap Attach: Heap size truncation (%u->%u) "
                     "can result in missing data",
                     size, heap->size << _HEAP_ALIGNSHIFT));
    }
    return heap;
}


HEAP HEAP_AttachEx(const void* base, TNCBI_Size maxsize, int serial)
{
    TNCBI_Size size = 0;

    if (base  &&  (!maxsize  ||  maxsize > sizeof(SHEAP_Block))) {
        const SHEAP_HeapBlock* b = (const SHEAP_HeapBlock*) base;
        for (;;) {
            if (!HEAP_ISUSED(b)  &&  !HEAP_ISFREE(b)) {
                CORE_LOGF_X(5, eLOG_Error,
                            ("Heap Attach: Heap corrupt @%u (0x%08X, %u)",
                             HEAP_INDEX(b, (SHEAP_HeapBlock*) base),
                             b->head.flag, b->head.size));
                return 0;
            }
            size += b->head.size;
            if (maxsize  &&
                (maxsize < size  ||
                 (maxsize - size < sizeof(SHEAP_Block)  &&  !HEAP_ISLAST(b)))){
                CORE_LOGF_X(34, eLOG_Error,
                            ("Heap Attach: Runaway heap @%u (0x%08X, %u)"
                             " size=%u vs. maxsize=%u",
                             HEAP_INDEX(b, (SHEAP_HeapBlock*) base),
                             b->head.flag, b->head.size,
                             size, maxsize));
                return 0;
            }
            if (HEAP_ISLAST(b))
                break;
            b = HEAP_NEXT(b);
        }
    }
    return HEAP_AttachFast(base, size, serial);
}


HEAP HEAP_Attach(const void* base, int serial)
{
    return HEAP_AttachEx(base, 0, serial);
}


/* Collect garbage in the heap, moving all contents to the
 * top, and merging all free blocks at the end into a single
 * large free block.  Return pointer to that free block, or
 * NULL if there is no free space in the heap.
 */
static SHEAP_HeapBlock* s_HEAP_Collect(HEAP heap, TNCBI_Size* prev)
{
    SHEAP_HeapBlock* b = heap->base;
    SHEAP_HeapBlock* f = 0;
    TNCBI_Size free = 0;

    *prev = 0;
    while (b < heap->base + heap->size) {
        SHEAP_HeapBlock* n = HEAP_NEXT(b);
        assert(HEAP_ALIGN(b->head.size) == b->head.size);
        if (HEAP_ISFREE(b)) {
            free += b->head.size;
            if (!f)
                f = b;
        } else if (f) {
            assert(HEAP_ISUSED(b));
            *prev = HEAP_INDEX(f, heap->base);
            memmove(f, b, b->head.size);
            f->head.flag &= ~HEAP_LAST;
            f = HEAP_NEXT(f);
        }
        b = n;
    }
    if (f) {
        assert((char*) f + free == (char*) &heap->base[heap->size]);
        f->head.flag = HEAP_FREE | HEAP_LAST;
        f->head.size = free;
        free = HEAP_INDEX(f, heap->base);
        f->prevfree = free;
        f->nextfree = free;
        heap->last  = free;
        heap->free  = free;
    } else
        assert(heap->free == heap->size);
    return f;
}


/* Book 'size' bytes (aligned, and block header included) within the given
 * free block 'b' of an adequate size (perhaps causing the block to be split
 * in two, if it's roomy enough, and the remaining part marked as a new
 * free block).  Non-zero 'fast' parameter inverses the order of locations of
 * occupied blocks in successive allocations, but saves cycles by sparing
 * updates of the free block list.  Return the block to use.
 */
static SHEAP_Block* s_HEAP_Book(HEAP heap, SHEAP_HeapBlock* b,
                                TNCBI_Size size, int/*bool*/ fast)
{
    unsigned int last = b->head.flag & HEAP_LAST;

    assert(HEAP_ALIGN(size) == size);
    assert(HEAP_ISFREE(b)  &&  b->head.size >= size);
    if (b->head.size >= size + _HEAP_ALIGNMENT) {
        /* the block to use in part */
        if (fast) {
            b->head.flag &= ~HEAP_LAST;
            b->head.size -= size;
            b = HEAP_NEXT(b);
            b->head.size  = size;
            if (last)
                heap->last = HEAP_INDEX(b, heap->base);
        } else {
            SHEAP_HeapBlock* f = (SHEAP_HeapBlock*)((char*) b + size);
            f->head.flag  = b->head.flag;
            f->head.size  = b->head.size - size;
            b->head.flag &= ~HEAP_LAST;
            b->head.size  = size;
            size = HEAP_INDEX(f, heap->base);
            if (last) {
                heap->last = size;
                last = 0;
            }
            if (heap->base + b->prevfree == b) {
                assert(b->prevfree == b->nextfree);
                assert(b->prevfree == heap->free);
                f->prevfree = size;
                f->nextfree = size;
                heap->free = size;
            } else {
                f->prevfree = b->prevfree;
                f->nextfree = b->nextfree;
                assert(HEAP_ISFREE(heap->base + f->prevfree));
                assert(HEAP_ISFREE(heap->base + f->nextfree));
                heap->base[f->nextfree].prevfree = size;
                heap->base[f->prevfree].nextfree = size;
                if (heap->base + heap->free == b)
                    heap->free = size;
            }
        }
    } else {
        /* the block to use in whole */
        size = HEAP_INDEX(b, heap->base);
        if (b->prevfree != size) {
            assert(b->nextfree != size);
            assert(HEAP_ISFREE(heap->base + b->prevfree));
            assert(HEAP_ISFREE(heap->base + b->nextfree));
            heap->base[b->nextfree].prevfree = b->prevfree;
            heap->base[b->prevfree].nextfree = b->nextfree;
            if (heap->free == size)
                heap->free =  b->prevfree;
        } else {
            /* the only free block */
            assert(b->prevfree == b->nextfree);
            assert(b->prevfree == heap->free);
            heap->free = heap->size;
        }
    }
    b->head.flag = HEAP_USED | last;
    return &b->head;
}


static SHEAP_Block* s_HEAP_Take(HEAP heap, SHEAP_HeapBlock* b,
                                TNCBI_Size size, TNCBI_Size need,
                                int/*bool*/ fast)
{
    SHEAP_Block* n = s_HEAP_Book(heap, b, size, fast);
    if (size -= need)
        memset((char*) n + need, 0, size); /* block padding (if any) zeroed */
    return n;
}


static const char* s_HEAP_Id(char* buf, HEAP h)
{
    if (!h)
        return "";
    if (h->serial  &&  h->refcnt)
        sprintf(buf,"[C%d%sR%u]",abs(h->serial),&"-"[h->serial > 0],h->refcnt);
    else if (h->serial)
        sprintf(buf,"[C%d%s]", abs(h->serial), &"-"[h->serial > 0]);
    else if (h->refcnt)
        sprintf(buf,"[R%u]", h->refcnt);
    else
        strcpy(buf, "");
    return buf;
}


static SHEAP_Block* s_HEAP_Alloc(HEAP heap, TNCBI_Size size, int/*bool*/ fast)
{
    SHEAP_HeapBlock* f, *b;
    TNCBI_Size need;
    TNCBI_Size free;
    char _id[32];

    if (!heap) {
        CORE_LOG_X(6, eLOG_Warning, "Heap Alloc: NULL heap");
        return 0;
    }
    assert(!heap->base == !heap->size);

    if (!heap->chunk) {
        CORE_LOGF_X(7, eLOG_Error,
                    ("Heap Alloc%s: Heap read-only", s_HEAP_Id(_id, heap)));
        return 0;
    }
    if (size < 1)
        return 0;

    size += (TNCBI_Size) sizeof(SHEAP_Block);
    need  = HEAP_ALIGN(size);

    free = 0;
    if (heap->free < heap->size) {
        f = heap->base + heap->free;
        b = f;
        do {
            if (!HEAP_ISFREE(b)
                ||  (!fast  &&
                     ((char*) b + b->head.size >
                      (char*)(heap->base + heap->size)  ||
                      heap->base + b->nextfree > heap->base + heap->size))) {
                CORE_LOGF_X(8, eLOG_Error,
                            ("Heap Alloc%s: Heap%s corrupt "
                             "@%u/%u (0x%08X, %u)",
                             s_HEAP_Id(_id, heap),
                             b == f  &&  !HEAP_ISFREE(b) ? " header" : "",
                             HEAP_INDEX(b, heap->base), heap->size,
                             b->head.flag, b->head.size));
                return 0;
            }
            if (b->head.size >= need)
                return s_HEAP_Take(heap, b, need, size, fast);
            free += b->head.size;
            b = heap->base + b->nextfree;
        } while (b != f);
    }

    /* Heap exhausted: no large enough and free block found */
    if (free >= need)
        b = s_HEAP_Collect(heap, &free/*dummy*/);
    else if (!heap->resize)
        return 0;
    else {
        TNCBI_Size dsize = heap->size << _HEAP_ALIGNSHIFT;
        TNCBI_Size hsize = _HEAP_ALIGN_EX(dsize + need, heap->chunk);
        SHEAP_HeapBlock* base = (SHEAP_HeapBlock*)
            heap->resize(heap->base, hsize, heap->auxarg);
        if (_HEAP_ALIGN(base, sizeof(SHEAP_Block)) != (unsigned long) base) {
            CORE_LOGF_X(9, eLOG_Warning,
                        ("Heap Alloc%s: Unaligned base (0x%08lX)",
                         s_HEAP_Id(_id, heap), (long) base));
        }
        if (!base)
            return 0;
        dsize = hsize - dsize;
        memset(base + heap->size, 0, (size_t) dsize); /* security */

        b = base + heap->last;
        if (!heap->base) {
            b->head.flag = HEAP_FREE | HEAP_LAST;
            b->head.size = hsize;
            b->nextfree  = 0;
            b->prevfree  = 0;
            heap->free   = 0;
            heap->last   = 0;
        } else {
            assert(HEAP_ISLAST(b));
            if (HEAP_ISUSED(b)) {
                b->head.flag &= ~HEAP_LAST;
                /* New block is at the very top on the heap */
                b = base + heap->size;
                b->head.flag = HEAP_FREE | HEAP_LAST;
                b->head.size = dsize;
                heap->last   = heap->size;
                if (heap->free < heap->size) {
                    assert(HEAP_ISFREE(base + heap->free));
                    b->prevfree = heap->free;
                    b->nextfree = base[heap->free].nextfree;
                    base[heap->free].nextfree  = heap->size;
                    base[b->nextfree].prevfree = heap->size;
                } else {
                    b->prevfree = heap->size;
                    b->nextfree = heap->size;
                }
                heap->free = heap->size;
            } else {
                /* Extend last free block */
                assert(HEAP_ISFREE(b));
                b->head.size += dsize;
            }
        }
        heap->base = base;
        heap->size = hsize >> _HEAP_ALIGNSHIFT;
    }
    assert(b  &&  HEAP_ISFREE(b)  &&  b->head.size >= need);
    return s_HEAP_Take(heap, b, need, size, fast);
}


SHEAP_Block* HEAP_Alloc(HEAP heap, TNCBI_Size size)
{
    return s_HEAP_Alloc(heap, size, 0);
}


SHEAP_Block* HEAP_AllocFast(HEAP heap, TNCBI_Size size)
{
    return s_HEAP_Alloc(heap, size, 1);
}


static void s_HEAP_Free(HEAP heap, SHEAP_HeapBlock* p, SHEAP_HeapBlock* b)
{
    unsigned int last = b->head.flag & HEAP_LAST;
    SHEAP_HeapBlock* n = HEAP_NEXT(b);
    TNCBI_Size free;

    if (p  &&  HEAP_ISFREE(p)) {
        free = HEAP_INDEX(p, heap->base);
        if (!last  &&  HEAP_ISFREE(n)) {
            /* Unlink last: at least there's "p" */
            assert(heap->base + n->nextfree != n);
            assert(heap->base + n->prevfree != n);
            assert(HEAP_ISFREE(heap->base + n->prevfree));
            assert(HEAP_ISFREE(heap->base + n->nextfree));
            heap->base[n->nextfree].prevfree = n->prevfree;
            heap->base[n->prevfree].nextfree = n->nextfree;
            /* Merge */
            b->head.flag  = n->head.flag;
            b->head.size += n->head.size;
            last = b->head.flag & HEAP_LAST;
        }
        /* Merge all together */
        if (last) {
            p->head.flag |= HEAP_LAST;
            heap->last = free;
        }
        p->head.size += b->head.size;
        b = p;
    } else {
        free = HEAP_INDEX(b, heap->base);
        b->head.flag = HEAP_FREE | last;
        if (!last  &&  HEAP_ISFREE(n)) {
            /* Merge */
            b->head.flag  = n->head.flag;
            b->head.size += n->head.size;
            if (heap->base + n->prevfree == n) {
                assert(n->prevfree == n->nextfree);
                assert(n->prevfree == heap->free);
                b->prevfree = free;
                b->nextfree = free;
            } else {
                assert(heap->base + n->nextfree != n);
                b->prevfree = n->prevfree;
                b->nextfree = n->nextfree;
                /* Link in */
                assert(HEAP_ISFREE(heap->base + b->prevfree));
                assert(HEAP_ISFREE(heap->base + b->nextfree));
                heap->base[b->nextfree].prevfree = free;
                heap->base[b->prevfree].nextfree = free;
            }
            if (HEAP_ISLAST(n))
                heap->last = free;
        } else if (heap->free < heap->size) {
            /* Link in at the heap free position */
            assert(HEAP_ISFREE(heap->base + heap->free));
            b->prevfree = heap->free;
            b->nextfree = heap->base[heap->free].nextfree;
            heap->base[heap->free].nextfree = free;
            heap->base[b->nextfree].prevfree = free;
        } else {
            /* Link in as the only free block */
            b->nextfree = free;
            b->prevfree = free;
        }
    }
    heap->free = free;
}


void HEAP_Free(HEAP heap, SHEAP_Block* ptr)
{
    SHEAP_HeapBlock* b, *p;
    char _id[32];

    if (!heap) {
        CORE_LOG_X(10, eLOG_Warning, "Heap Free: NULL heap");
        return;
    }
    assert(!heap->base == !heap->size);

    if (!heap->chunk) {
        CORE_LOGF_X(11, eLOG_Error,
                    ("Heap Free%s: Heap read-only", s_HEAP_Id(_id, heap)));
        return;
    }
    if (!ptr)
        return;

    p = 0;
    b = heap->base;
    while (b < heap->base + heap->size) {
        if (&b->head == ptr) {
            if (HEAP_ISUSED(b)) {
                s_HEAP_Free(heap, p, b);
            } else if (HEAP_ISFREE(b)) {
                CORE_LOGF_X(12, eLOG_Warning,
                            ("Heap Free%s: Freeing free block @%u",
                             s_HEAP_Id(_id, heap), HEAP_INDEX(b, heap->base)));
            } else {
                CORE_LOGF_X(13, eLOG_Error,
                            ("Heap Free%s: Heap corrupt @%u/%u (0x%08X, %u)",
                             s_HEAP_Id(_id, heap), HEAP_INDEX(b, heap->base),
                             heap->size, b->head.flag, b->head.size));
            }
            return;
        }
        p = b;
        b = HEAP_NEXT(b);
    }

    CORE_LOGF_X(14, eLOG_Error,
                ("Heap Free%s: Block not found", s_HEAP_Id(_id, heap)));
}


void HEAP_FreeFast(HEAP heap, SHEAP_Block* ptr, const SHEAP_Block* prev)
{
    SHEAP_HeapBlock* b, *p;
    char _id[32];

    if (!heap) {
        CORE_LOG_X(15, eLOG_Warning, "Heap Free: NULL heap");
        return;
    }
    assert(!heap->base == !heap->size);

    if (!heap->chunk) {
        CORE_LOGF_X(16, eLOG_Error,
                    ("Heap Free%s: Heap read-only", s_HEAP_Id(_id, heap)));
        return;
    }
    if (!ptr)
        return;

    p = (SHEAP_HeapBlock*) prev;
    b = (SHEAP_HeapBlock*) ptr;
    if (!s_HEAP_fast) {
        if (b < heap->base  ||  b >= heap->base + heap->size) {
            CORE_LOGF_X(17, eLOG_Error,
                        ("Heap Free%s: Alien block", s_HEAP_Id(_id, heap)));
            return;
        } else if ((!p  &&  b != heap->base)  ||
                   ( p  &&  (p < heap->base  ||  HEAP_NEXT(p) != b))) {
            CORE_LOGF_X(18, eLOG_Warning,
                        ("Heap Free%s: Invalid hint", s_HEAP_Id(_id, heap)));
            HEAP_Free(heap, ptr);
            return;
        } else if (HEAP_ISFREE(b)) {
            CORE_LOGF_X(19, eLOG_Warning,
                        ("Heap Free%s: Freeing free block @%u",
                         s_HEAP_Id(_id, heap), HEAP_INDEX(b, heap->base)));
            return;
        }
    }

    s_HEAP_Free(heap, p, b);
}


static SHEAP_Block* s_HEAP_Walk(const HEAP heap, const SHEAP_Block* ptr)
{
    SHEAP_HeapBlock* p = (SHEAP_HeapBlock*) ptr;
    SHEAP_HeapBlock* b;
    char _id[32];

    if (p  &&  (p < heap->base  ||  p >= heap->base + heap->size
                ||  p->head.size <= sizeof(SHEAP_Block)
                ||  HEAP_ALIGN(p->head.size) != p->head.size
                ||  (!HEAP_ISFREE(p)  &&  !HEAP_ISUSED(p)))) {
        CORE_LOGF_X(28, eLOG_Error,
                    ("Heap Walk%s: Alien pointer",
                     s_HEAP_Id(_id, heap)));
        return 0;
    }
    b = p ? HEAP_NEXT(p) : heap->base;

    if (b >= heap->base + heap->size
        ||  b->head.size <= sizeof(SHEAP_Block)
        ||  HEAP_ALIGN(b->head.size) != b->head.size
        ||  (!HEAP_ISFREE(b)  &&  !HEAP_ISUSED(b))
        ||  HEAP_NEXT(b) > heap->base + heap->size) {
        if (b != heap->base + heap->size  ||  (b  &&  !p)) {
            CORE_LOGF_X(26, eLOG_Error,
                        ("Heap Walk%s: Heap corrupt",
                         s_HEAP_Id(_id, heap)));
        } else if (b  &&  !HEAP_ISLAST(p)) {
            CORE_LOGF_X(27, eLOG_Error,
                        ("Heap Walk%s: Last block lost",
                         s_HEAP_Id(_id, heap)));
        }
        return 0;
    }

    if (HEAP_ISFREE(b)) {
        const SHEAP_HeapBlock* c = b;
        if (c->prevfree >= heap->size  ||
            c->nextfree >= heap->size  ||
            !HEAP_ISFREE(heap->base + c->prevfree)  ||
            !HEAP_ISFREE(heap->base + c->nextfree)) {
            c = 0;
        } else if (c->prevfree == c->nextfree  &&
                   heap->base  +  c->nextfree == c) {
            if (heap->chunk/*RW heap*/  &&  heap->base + heap->free != c)
                c = 0;
        } else {
            int/*bool*/ origin = !heap->chunk/*RW: false, RO: true*/;
            size_t n;
            for (n = 0;  n < heap->size;  n++) {
                const SHEAP_HeapBlock* s = c;
                c = heap->base + c->nextfree;
                if (!HEAP_ISFREE(c)  ||  c == s
                    ||  c->nextfree >= heap->size
                    ||  c->prevfree != s->nextfree) {
                    c = 0;
                    break;
                }
                if (c == heap->base + heap->free)
                    origin = 1/*true*/;
                if (c == b) {
                    if (!origin)
                        c = s/*NB: != c => != b*/;
                    break;
                }
            }
        }
        if (!c  ||  c != b) {
            CORE_LOGF_X(21, eLOG_Error,
                        ("Heap Walk%s: Free list %s @%u/%u"
                         " (%u, <-%u, %u->)",
                         s_HEAP_Id(_id, heap),
                         c ? "broken" : "corrupt",
                         HEAP_INDEX(b, heap->base), heap->size,
                         b->head.size, b->prevfree, b->nextfree));
            return 0;
        }
    }
    if (HEAP_ISUSED(b)  &&  heap->chunk/*RW heap*/) {
        size_t n;
        /* check that a used block is not within the free chain but
           ignoring any inconsistencies in the free chain here */
        const SHEAP_HeapBlock* c = heap->base + heap->free;
        for (n = 0;  c < heap->base + heap->size  &&  n < heap->size;  ++n) {
            if (!HEAP_ISFREE(c))
                break;
            if (c <= b  &&  b < HEAP_NEXT(c)) {
                CORE_LOGF_X(20, eLOG_Error,
                            ("Heap Walk%s: Used block @%u within"
                             " the free one @%u",
                             s_HEAP_Id(_id, heap),
                             HEAP_INDEX(b, heap->base),
                             HEAP_INDEX(c, heap->base)));
                return 0;
            }
            if (c == heap->base + c->nextfree)
                break;
            c = heap->base + c->nextfree;
            if (c == heap->base + heap->free)
                break;
        }
    }

    /* Block 'b' seems okay for walking onto, but... */
    if (p) {
        if (HEAP_ISLAST(p)) {
            CORE_LOGF_X(22, eLOG_Error,
                        ("Heap Walk%s: Misplaced last block @%u",
                         s_HEAP_Id(_id,heap),
                         HEAP_INDEX(p, heap->base)));
        } else if (heap->chunk/*RW heap*/
                   &&  HEAP_ISLAST(b)  &&  heap->base + heap->last != b) {
            CORE_LOGF_X(23, eLOG_Error,
                        ("Heap Walk%s: Last block @%u "
                         "not @ last ptr %u",
                         s_HEAP_Id(_id, heap),
                         HEAP_INDEX(b, heap->base), heap->last));
        } else if (HEAP_ISFREE(p)  &&  HEAP_ISFREE(b)) {
            const SHEAP_HeapBlock* c = heap->base;
            while (c < p) {
                if (HEAP_ISFREE(c)  &&  HEAP_NEXT(c) >= HEAP_NEXT(b))
                    break;
                c = HEAP_NEXT(c);
            }
            if (c >= p) {
                CORE_LOGF_X(24, eLOG_Error,
                            ("Heap Walk%s: Adjacent free blocks "
                             "@%u and @%u",
                             s_HEAP_Id(_id, heap),
                             HEAP_INDEX(p, heap->base),
                             HEAP_INDEX(b, heap->base)));
            }
        }
    }
    return &b->head;
}


SHEAP_Block* HEAP_Walk(const HEAP heap, const SHEAP_Block* ptr)
{
    if (!heap) {
        CORE_LOG_X(29, eLOG_Warning, "Heap Walk: NULL heap");
        return 0;
    }
    assert(!heap->base == !heap->size);

    if (s_HEAP_fast) {
        SHEAP_HeapBlock* b;
        if (!ptr)
            return &heap->base->head;
        b = HEAP_NEXT((SHEAP_HeapBlock*) ptr);
        return b < heap->base + heap->size ? &b->head : 0;
    }
    return s_HEAP_Walk(heap, ptr);
}


HEAP HEAP_Trim(HEAP heap)
{
    TNCBI_Size prev, hsize, size;
    SHEAP_HeapBlock* f;
    char _id[32];

    if (!heap)
        return 0;
    assert(!heap->base == !heap->size);
 
   if (!heap->chunk) {
        CORE_LOGF_X(30, eLOG_Error,
                    ("Heap Trim%s: Heap read-only", s_HEAP_Id(_id, heap)));
        return 0;
    }

    if (!(f = s_HEAP_Collect(heap, &prev))  ||  f->head.size < heap->chunk) {
        assert(!f  ||  (HEAP_ISFREE(f)  &&  HEAP_ISLAST(f)));
        size  =  0;
        hsize =  heap->size << _HEAP_ALIGNSHIFT;
    } else if (!(size = f->head.size % heap->chunk)) {
        hsize = (heap->size << _HEAP_ALIGNSHIFT) - f->head.size;
        if (f != heap->base + prev) {
            f  = heap->base + prev;
            assert(HEAP_ISUSED(f));
        }
    } else {
        assert(HEAP_ISFREE(f));
        assert(size >= _HEAP_ALIGNMENT);
        hsize = (heap->size << _HEAP_ALIGNSHIFT) - f->head.size + size;
    }

    if (heap->resize) {
        SHEAP_HeapBlock* base = (SHEAP_HeapBlock*)
            heap->resize(heap->base, hsize, heap->auxarg);
        if (!hsize)
            assert(!base);
        else if (!base)
            return 0;
        if (_HEAP_ALIGN(base, sizeof(SHEAP_Block)) != (unsigned long) base) {
            CORE_LOGF_X(31, eLOG_Warning,
                        ("Heap Trim%s: Unaligned base (0x%08lX)",
                         s_HEAP_Id(_id, heap), (long) base));
        }
        prev = HEAP_INDEX(f, heap->base);
        heap->base = base;
        heap->size = hsize >> _HEAP_ALIGNSHIFT;
        if (base  &&  f) {
            f = base + prev;
            f->head.flag |= HEAP_LAST;
            if (HEAP_ISUSED(f)) {
                heap->last = prev;
                heap->free = heap->size;
            } else if (size)
                f->head.size = size;
        }
        assert(hsize == heap->size << _HEAP_ALIGNSHIFT);
        assert(hsize % heap->chunk == 0);
    } else if (hsize != heap->size << _HEAP_ALIGNSHIFT) {
        CORE_LOGF_X(32, eLOG_Error,
                    ("Heap Trim%s: Heap not trimmable", s_HEAP_Id(_id, heap)));
    }

    assert(!heap->base == !heap->size);
    return heap;
}


HEAP HEAP_Copy(const HEAP heap, size_t extra, int serial)
{
    HEAP       copy;
    TNCBI_Size size;

    assert(_HEAP_ALIGN_EX(1, sizeof(SHEAP_Block)) ==
           _HEAP_ALIGN   (1, sizeof(SHEAP_Block)));

    if (!heap)
        return 0;
    assert(!heap->base == !heap->size);

    size = heap->size << _HEAP_ALIGNSHIFT;
    copy = (HEAP) malloc(sizeof(*copy) +
                         (size ? sizeof(SHEAP_Block) - 1 + size : 0) + extra);
    if (!copy)
        return 0;
    if (size) {
        char* base = (char*) copy + sizeof(*copy);
        base += _HEAP_ALIGN(base, sizeof(SHEAP_Block)) - (unsigned long) base;
        assert(_HEAP_ALIGN(base, sizeof(SHEAP_Block)) == (unsigned long) base);
        copy->base = (SHEAP_HeapBlock*) base;
    } else
        copy->base = 0;
    copy->size   = heap->size;
    copy->free   = 0;
    copy->chunk  = 0/*read-only*/;
    copy->resize = 0;
    copy->auxarg = 0;
    copy->refcnt = 1/*copy*/;
    copy->serial = serial;
    if (size) {
        memcpy(copy->base, heap->base, size);
        assert(memset((char*) copy->base + size, 0, extra));
    }
    return copy;
}


unsigned int HEAP_AddRef(HEAP heap)
{
    if (!heap)
        return 0;
    assert(!heap->base == !heap->size);
    if (heap->refcnt) {
        heap->refcnt++;
        assert(heap->refcnt);
    }
    return heap->refcnt;
}


unsigned int HEAP_Detach(HEAP heap)
{
    if (!heap)
        return 0;
    assert(!heap->base == !heap->size);
    if (heap->refcnt  &&  --heap->refcnt)
        return heap->refcnt;
    memset(heap, 0, sizeof(*heap));
    free(heap);
    return 0;
}


unsigned int HEAP_Destroy(HEAP heap)
{
    char _id[32];

    if (!heap)
        return 0;
    assert(!heap->base == !heap->size);
    if (!heap->chunk  &&  !heap->refcnt) {
        CORE_LOGF_X(33, eLOG_Error,
                    ("Heap Destroy%s: Heap read-only", s_HEAP_Id(_id, heap)));
    } else if (heap->resize/*NB: NULL for heap copies*/)
        verify(heap->resize(heap->base, 0, heap->auxarg) == 0);
    return HEAP_Detach(heap);
}


void* HEAP_Base(const HEAP heap)
{
    if (!heap)
        return 0;
    assert(!heap->base == !heap->size);
    return heap->base;
}


TNCBI_Size HEAP_Size(const HEAP heap)
{
    if (!heap)
        return 0;
    assert(!heap->base == !heap->size);
    return heap->size << _HEAP_ALIGNSHIFT;
}


int HEAP_Serial(const HEAP heap)
{
    if (!heap)
        return 0;
    assert(!heap->base == !heap->size);
    return heap->serial;
}


/*ARGSUSED*/
void HEAP_Options(ESwitch fast, ESwitch ignored)
{
    switch (fast) {
    case eOff:
        s_HEAP_fast = 0/*false*/;
    case eOn:
        s_HEAP_fast = 1/*true*/;
        break;
    default:
        break;
    }
}