File: ncbimath.c

package info (click to toggle)
ncbi-tools6 6.1.20120620-8
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 241,628 kB
  • ctags: 101,236
  • sloc: ansic: 1,431,713; cpp: 6,248; pascal: 3,949; xml: 3,390; sh: 3,090; perl: 1,077; csh: 488; makefile: 449; ruby: 93; lisp: 81
file content (792 lines) | stat: -rw-r--r-- 20,667 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
/*   ncbimath.c
* ===========================================================================
*
*                            PUBLIC DOMAIN NOTICE
*               National Center for Biotechnology Information
*
*  This software/database is a "United States Government Work" under the
*  terms of the United States Copyright Act.  It was written as part of
*  the author's official duties as a United States Government employee and
*  thus cannot be copyrighted.  This software/database is freely available
*  to the public for use. The National Library of Medicine and the U.S.
*  Government have not placed any restriction on its use or reproduction.
*
*  Although all reasonable efforts have been taken to ensure the accuracy
*  and reliability of the software and data, the NLM and the U.S.
*  Government do not and cannot warrant the performance or results that
*  may be obtained by using this software or data. The NLM and the U.S.
*  Government disclaim all warranties, express or implied, including
*  warranties of performance, merchantability or fitness for any particular
*  purpose.
*
*  Please cite the author in any work or product based on this material.
*
* ===========================================================================
*
* File Name:  ncbimath.c
*
* Author:  Gish, Kans, Ostell, Schuler
*
* Version Creation Date:   10/23/91
*
* $Revision: 6.3 $
*
* File Description:
*   	portable math functions
*
* Modifications:
* --------------------------------------------------------------------------
* Date     Name        Description of modification
* -------  ----------  -----------------------------------------------------
* 04-15-93 Schuler     Changed _cdecl to LIBCALL
* 12-22-93 Schuler     Converted ERRPOST((...)) to ErrPostEx(...)
*
* $Log: ncbimath.c,v $
* Revision 6.3  1999/11/24 17:29:16  sicotte
* Added LnFactorial function
*
* Revision 6.2  1997/11/26 21:26:18  vakatov
* Fixed errors and warnings issued by C and C++ (GNU and Sun) compilers
*
* Revision 6.1  1997/10/31 16:22:49  madden
* Limited the loop in Nlm_Log1p to 500 iterations
*
* Revision 6.0  1997/08/25 18:16:35  madden
* Revision changed to 6.0
*
* Revision 5.4  1997/01/31 22:21:40  kans
* had to remove <fp.h> and define HUGE_VAL inline, because of a conflict
* with <math.h> in 68K CodeWarrior 11
*
 * Revision 5.3  1997/01/28  22:57:57  kans
 * include <fp.h> for CodeWarrior to get HUGE_VAL
 *
 * Revision 5.2  1996/12/03  21:48:33  vakatov
 * Adopted for 32-bit MS-Windows DLLs
 *
 * Revision 5.1  1996/06/20  14:08:00  madden
 * Changed int to Int4, double to Nlm_FloatHi
 *
 * Revision 5.0  1996/05/28  13:18:57  ostell
 * Set to revision 5.0
 *
 * Revision 4.1  1996/03/06  19:47:15  epstein
 * fix problem observed by Epstein & fixed by Spouge in log calculation
 *
 * Revision 4.0  1995/07/26  13:46:50  ostell
 * force revision to 4.0
 *
 * Revision 2.11  1995/05/15  18:45:58  ostell
 * added Log line
 *
*
*
* ==========================================================================
*/

#define THIS_MODULE g_corelib
#define THIS_FILE _this_file

#include <ncbimath.h>

#ifdef OS_MAC
#ifdef COMP_METRO
/*#include <fp.h>*/
#ifndef HUGE_VAL
#define HUGE_VAL __inf()
double_t __inf ( void );
#endif
#endif
#endif

extern char * g_corelib;
static char * _this_file = __FILE__;

/*
    Nlm_Expm1(x)
    Return values accurate to approx. 16 digits for the quantity exp(x)-1
    for all x.
*/
NLM_EXTERN Nlm_FloatHi LIBCALL Nlm_Expm1(register Nlm_FloatHi	x)
{
  register Nlm_FloatHi	absx;

  if ((absx = ABS(x)) > .33)
    return exp(x) - 1.;

  if (absx < 1.e-16)
    return x;

  return x * (1. + x *
              (0.5 + x * (1./6. + x *
                          (1./24. + x * (1./120. + x *
                                         (1./720. + x * (1./5040. + x *
                                                         (1./40320. + x * (1./362880. + x *
                                                                           (1./3628800. + x * (1./39916800. + x *
                                                                                               (1./479001600. + x/6227020800.)
                                                                                               ))
                                                                           ))
                                                         ))
                                         ))
                          )));
}

/*
    Nlm_Log1p(x)
    Return accurate values for the quantity log(x+1) for all x > -1.
*/
NLM_EXTERN Nlm_FloatHi LIBCALL Nlm_Log1p(register Nlm_FloatHi x)
{
	register Int4	i;
	register Nlm_FloatHi	sum, y;

	if (ABS(x) >= 0.2)
		return log(x+1.);

	/* Limit the loop to 500 terms. */
	for (i=0, sum=0., y=x; i<500 ; ) {
		sum += y/++i;
		if (ABS(y) < DBL_EPSILON)
			break;
		y *= x;
		sum -= y/++i;
		if (y < DBL_EPSILON)
			break;
		y *= x;
	}
	return sum;
}


/*
** Special thanks to Dr. John ``Gammas Galore'' Spouge for deriving the
** method for calculating the gamma coefficients and their use.
** (See the #ifdef-ed program included at the end of this file).
**/

/*
    For discussion of the Gamma function, see "Numerical Recipes in C",
    Press et al. (1988) pages 167-169.
*/

static Nlm_FloatHi NEAR general_lngamma PROTO((Nlm_FloatHi x,Int4 n));

static Nlm_FloatHi _default_gamma_coef [] = {
	 4.694580336184385e+04,
	-1.560605207784446e+05,
	 2.065049568014106e+05,
	-1.388934775095388e+05,
	 5.031796415085709e+04,
	-9.601592329182778e+03,
	 8.785855930895250e+02,
	-3.155153906098611e+01,
	 2.908143421162229e-01,
	-2.319827630494973e-04,
	 1.251639670050933e-10
	 };
static Nlm_FloatHi	PNTR gamma_coef = _default_gamma_coef;
static unsigned	gamma_dim = DIM(_default_gamma_coef);
static Nlm_FloatHi	xgamma_dim = DIM(_default_gamma_coef);

NLM_EXTERN void LIBCALL Nlm_GammaCoeffSet(Nlm_FloatHi PNTR cof, unsigned dim) /* changes gamma coeffs */
{
	if (dim < 3 || dim > 100) /* sanity check */
		return;
	gamma_coef = cof;
	xgamma_dim = gamma_dim = dim;
}


static Nlm_FloatHi NEAR
general_lngamma(Nlm_FloatHi x, Int4 order)	/* nth derivative of ln[gamma(x)] */
	/* x is 10-digit accuracy achieved only for 1 <= x */
	/* order is order of the derivative, 0..POLYGAMMA_ORDER_MAX */
{
	Int4		i;
	Nlm_FloatHi	xx, tx;
	Nlm_FloatHi	y[POLYGAMMA_ORDER_MAX+1];
	register Nlm_FloatHi	tmp, value, PNTR coef;

	xx = x - 1.;  /* normalize from gamma(x + 1) to xx! */
	tx = xx + xgamma_dim;
	for (i = 0; i <= order; ++i) {
		tmp = tx;
		/* sum the least significant terms first */
		coef = &gamma_coef[gamma_dim];
		if (i == 0) {
			value = *--coef / tmp;
			while (coef > gamma_coef)
				value += *--coef / --tmp;
		}
		else {
			value = *--coef / Nlm_Powi(tmp, i + 1);
			while (coef > gamma_coef)
				value += *--coef / Nlm_Powi(--tmp, i + 1);
			tmp = Nlm_Factorial(i);
			value *= (i%2 == 0 ? tmp : -tmp);
		}
		y[i] = value;
	}
	++y[0];
	value = Nlm_LogDerivative(order, y);
	tmp = tx + 0.5;
	switch (order) {
	case 0:
		value += ((NCBIMATH_LNPI+NCBIMATH_LN2) / 2.)
					+ (xx + 0.5) * log(tmp) - tmp;
		break;
	case 1:
		value += log(tmp) - xgamma_dim / tmp;
		break;
	case 2:
		value += (tmp + xgamma_dim) / (tmp * tmp);
		break;
	case 3:
		value -= (1. + 2.*xgamma_dim / tmp) / (tmp * tmp);
		break;
	case 4:
		value += 2. * (1. + 3.*xgamma_dim / tmp) / (tmp * tmp * tmp);
		break;
	default:
		tmp = Nlm_Factorial(order - 2) * Nlm_Powi(tmp, 1 - order)
				* (1. + (order - 1) * xgamma_dim / tmp);
		if (order % 2 == 0)
			value += tmp;
		else
			value -= tmp;
		break;
	}
	return value;
}


NLM_EXTERN Nlm_FloatHi LIBCALL Nlm_PolyGamma(Nlm_FloatHi x, Int4 order) /* ln(ABS[gamma(x)]) - 10 digits of accuracy */
	/* x is and derivatives */
	/* order is order of the derivative */
/* order = 0, 1, 2, ...  ln(gamma), digamma, trigamma, ... */
/* CAUTION:  the value of order is one less than the suggested "di" and
"tri" prefixes of digamma, trigamma, etc.  In other words, the value
of order is truly the order of the derivative.  */
{
	Int4		k;
	register Nlm_FloatHi	value, tmp;
	Nlm_FloatHi	y[POLYGAMMA_ORDER_MAX+1], sx;

	if (order < 0 || order > POLYGAMMA_ORDER_MAX) {
		ErrPostEx(SEV_WARNING,E_Math,ERR_NCBIMATH_DOMAIN,"PolyGamma: unsupported derivative order");
		/**ERRPOST((CTX_NCBIMATH, ERR_NCBIMATH_DOMAIN, "unsupported derivative order"));**/
		return HUGE_VAL;
	}

	if (x >= 1.)
		return general_lngamma(x, order);

	if (x < 0.) {
		value = general_lngamma(1. - x, order);
		value = ((order - 1) % 2 == 0 ? value : -value);
		if (order == 0) {
			sx = sin(NCBIMATH_PI * x);
			sx = ABS(sx);
			if ( (x < -0.1 && (ceil(x) == x || sx < 2.*DBL_EPSILON))
					|| sx == 0.) {
				ErrPostEx(SEV_WARNING,E_Math,ERR_NCBIMATH_DOMAIN,"PolyGamma: log(0)");
				/**ERRPOST((CTX_NCBIMATH, ERR_NCBIMATH_DOMAIN, "log(0)"));**/
				return HUGE_VAL;
			}
			value += NCBIMATH_LNPI - log(sx);
		}
		else {
			y[0] = sin(x *= NCBIMATH_PI);
			tmp = 1.;
			for (k = 1; k <= order; k++) {
				tmp *= NCBIMATH_PI;
				y[k] = tmp * sin(x += (NCBIMATH_PI/2.));
			}
			value -= Nlm_LogDerivative(order, y);
		}
	}
	else {
		value = general_lngamma(1. + x, order);
		if (order == 0) {
			if (x == 0.) {
				ErrPostEx(SEV_WARNING,E_Math,ERR_NCBIMATH_DOMAIN,"PolyGamma: log(0)");
				/**ERRPOST((CTX_NCBIMATH, ERR_NCBIMATH_DOMAIN, "log(0)"));**/
				return HUGE_VAL;
			}
			value -= log(x);
		}
		else {
			tmp = Nlm_Factorial(order - 1) * Nlm_Powi(x,  -order);
			value += (order % 2 == 0 ? tmp : - tmp);
		}
	}
	return value;
}

NLM_EXTERN Nlm_FloatHi LIBCALL Nlm_LogDerivative(Int4 order, Nlm_FloatHi PNTR u) /* nth derivative of ln(u) */
	/* order is order of the derivative */
	/* u is values of u, u', u", etc. */
{
  Int4		i;
  Nlm_FloatHi	y[LOGDERIV_ORDER_MAX+1];
  register Nlm_FloatHi	value, tmp;

  if (order < 0 || order > LOGDERIV_ORDER_MAX) {
InvalidOrder:
    ErrPostEx(SEV_WARNING,E_Math,ERR_NCBIMATH_DOMAIN,"LogDerivative: unsupported derivative order");
    /**ERRPOST((CTX_NCBIMATH, ERR_NCBIMATH_DOMAIN, "unsupported derivative order"));**/
    return HUGE_VAL;
  }

  if (order > 0 && u[0] == 0.) {
    ErrPostEx(SEV_WARNING,E_Math,ERR_NCBIMATH_DOMAIN,"LogDerivative: divide by 0");
    /**ERRPOST((CTX_NCBIMATH, ERR_NCBIMATH_DOMAIN, "divide by 0"));**/
    return HUGE_VAL;
  }
  for (i = 1; i <= order; i++)
    y[i] = u[i] / u[0];

  switch (order) {
  case 0:
    if (u[0] > 0.)
      value = log(u[0]);
    else {
      ErrPostEx(SEV_WARNING,E_Math,ERR_NCBIMATH_DOMAIN,"LogDerivative: log(x<=0)");
      /**ERRPOST((CTX_NCBIMATH, ERR_NCBIMATH_DOMAIN, "log(x<=0)"));**/
      return HUGE_VAL;
    }
    break;
  case 1:
    value = y[1];
    break;
  case 2:
    value = y[2] - y[1] * y[1];
    break;
  case 3:
    value = y[3] - 3. * y[2] * y[1] + 2. * y[1] * y[1] * y[1];
    break;
  case 4:
    value = y[4] - 4. * y[3] * y[1] - 3. * y[2] * y[2]
      + 12. * y[2] * (tmp = y[1] * y[1]);
    value -= 6. * tmp * tmp;
    break;
  default:
    goto InvalidOrder;
  }
  return value;
}


NLM_EXTERN Nlm_FloatHi LIBCALL Nlm_Gamma(Nlm_FloatHi x)		/* ABS[gamma(x)] - 10 digits of accuracy */
{
	return exp(Nlm_PolyGamma(x, 0));
}

NLM_EXTERN Nlm_FloatHi LIBCALL Nlm_LnGamma(Nlm_FloatHi x)		/* ln(ABS[gamma(x)]) - 10 digits of accuracy */
{
	return Nlm_PolyGamma(x, 0);
}

NLM_EXTERN Nlm_FloatHi LIBCALL Nlm_DiGamma(Nlm_FloatHi x)	/* digamma, 1st order derivative of log(gamma) */
{
	return Nlm_PolyGamma(x, 1);
}

NLM_EXTERN Nlm_FloatHi LIBCALL Nlm_TriGamma(Nlm_FloatHi x)	/* trigamma, 2nd order derivative of log(gamma) */
{
	return Nlm_PolyGamma(x, 2);
}


#ifdef foo
/* A program to calculate the gamma coefficients based on a method
   by John Spouge.
   Cut this program out, save it in a separate file, and compile.
   Be sure to link with a math library.
*/
/*
	a[n] = ((gamma+0.5-n)^(n-0.5)) * exp(gamma+0.5-n) *
		((-1)^(n-1) / (n-1)!) * (1/sqrt(2*Pi))
*/
#include <stdio.h>
#include <math.h>

main(ac, av)
	int ac;
	char **av;

{
	int	i, j, cnt;
	double	a, x, y, z, ifact = 1.;

	if (ac != 2 || sscanf(av[1], "%d", &cnt) != 1)
		exit(1);

	for (i=0; i<cnt; ++i) {
		x = cnt - (i + 0.5);
		y = log(x) * (i + 0.5) + x;
		y = exp(y);
		if (i > 1)
			ifact *= i;
		y /= ifact;
		if (i%2 == 1)
			y = -y;
		printf("\t\t\t%.17lg", y);
		if (i < cnt-1)
			putchar(',');
		putchar('\n');
	}
}
#endif /* foo */


#define FACTORIAL_PRECOMPUTED	36

NLM_EXTERN Nlm_FloatHi LIBCALL Nlm_Factorial(Int4 n)
{
	static Nlm_FloatHi	precomputed[FACTORIAL_PRECOMPUTED]
		= { 1., 1., 2., 6., 24., 120., 720., 5040., 40320., 362880., 3628800.};
	static Int4	nlim = 10;
	register Int4	m;
	register Nlm_FloatHi	x;

	if (n >= 0) {
		if (n <= nlim)
			return precomputed[n];
		if (n < DIM(precomputed)) {
			for (x = precomputed[m = nlim]; m < n; ) {
				++m;
				precomputed[m] = (x *= m);
			}
			nlim = m;
			return x;
		}
		return exp(Nlm_LnGamma((Nlm_FloatHi)(n+1)));
	}
	return 0.0; /* Undefined! */
}

/* Nlm_LnGammaInt(n) -- return log(Gamma(n)) for integral n */
NLM_EXTERN Nlm_FloatHi LIBCALL Nlm_LnGammaInt(Int4 n)
{
	static Nlm_FloatHi	precomputed[FACTORIAL_PRECOMPUTED];
	static Int4	nlim = 1; /* first two entries are 0 */
	register Int4 m;

	if (n >= 0) {
		if (n <= nlim)
			return precomputed[n];
		if (n < DIM(precomputed)) {
			for (m = nlim; m < n; ++m) {
				precomputed[m+1] = log(Nlm_Factorial(m));
			}
			return precomputed[nlim = m];
		}
	}
	return Nlm_LnGamma((Nlm_FloatHi)n);
}



/*
	Combined Newton-Raphson and Bisection root-finder

	Original Function Name:  Inv_Xnrbis()
	Author:  Dr. John Spouge
	Location:  NCBI
	Received:  July 16, 1991
*/
#define F(x)  ((*f)(x)-y)
#define DF(x) ((*df)(x))
#define NRBIS_ITMAX 100

NLM_EXTERN Nlm_FloatHi LIBCALL Nlm_NRBis(Nlm_FloatHi y, Nlm_FloatHi (LIBCALL *f )PROTO ((Nlm_FloatHi )), Nlm_FloatHi (LIBCALL *df )PROTO ((Nlm_FloatHi )), Nlm_FloatHi p, Nlm_FloatHi x, Nlm_FloatHi q, Nlm_FloatHi tol)		/* tolerance */

{
	Nlm_FloatHi	temp;	/* for swapping end-points if necessary */
	Nlm_FloatHi	dx;		/* present interval length */
	Nlm_FloatHi	dxold;	/* old interval length */
	Nlm_FloatHi	fx;		/* f(x)-y */
	Nlm_FloatHi	dfx;	/* Df(x) */
	Int4	j;                       /* loop index */
	Nlm_FloatHi	fp, fq;

/* Preliminary checks for improper bracketing and end-point root. */
	if ((fp = F(p)) == 0.)
		return p;
	if ((fq = F(q)) == 0.)
		return q;
	if ((fp > 0. && fq > 0.) || (fp < 0. && fq < 0.)) {
		ErrPostEx(SEV_WARNING,E_Math,ERR_NCBIMATH_INVAL,"NRBis: root not bracketed");
		/**ERRPOST((CTX_NCBIMATH, ERR_NCBIMATH_INVAL, "root not bracketed"));**/
		return HUGE_VAL;
	}
/* Swaps end-points if necessary to make F(p)<0.<F(q) */
	if (fp > 0.) {
		temp = p;
		p = q;
		q = temp;
	}
/* Set up the Bisection & Newton-Raphson iteration. */
	if ((x-p) * (x-q) > 0.)
		x = 0.5*(p+q);
	dxold = dx = p-q;
	for (j = 1; j <= NRBIS_ITMAX; ++j) {
		fx = F(x);
		if (fx == 0.) /* Check for termination. */
			return x;
		if (fx < 0.)
			p = x;
		else
			q = x;
		dfx = DF(x);
/* Check: root out of bounds or bisection faster than Newton-Raphson? */
		if ((dfx*(x-p)-fx)*(dfx*(x-q)-fx) >= 0. || 2.*ABS(fx) > ABS(dfx*dx)) {
			dx = dxold;               /* Bisect */
			dxold = 0.5*(p-q);
			x = 0.5*(p+q);
			if (ABS(dxold) <= tol)
				return x;
		} else {
			dx = dxold;               /* Newton-Raphson */
			dxold = fx/dfx;
			x -= dxold;
			if (ABS(dxold) < tol && F(x-SIGN(dxold)*tol)*fx < 0.)
				return x;
		}
	}
	
	ErrPostEx(SEV_WARNING,E_Math,ERR_NCBIMATH_ITER,"NRBis: iterations > NRBIS_ITMAX");
	/**ERRPOST((CTX_NCBIMATH, ERR_NCBIMATH_ITER, "iterations > NRBIS_ITMAX"));**/
	return HUGE_VAL;
}
#undef F /* clean-up */
#undef DF /* clean-up */



/*
	Romberg numerical integrator

	Author:  Dr. John Spouge, NCBI
	Received:  July 17, 1992
	Reference:
		Francis Scheid (1968)
		Schaum's Outline Series
		Numerical Analysis, p. 115
		McGraw-Hill Book Company, New York
*/
#define F(x)  ((*f)((x), fargs))
#define ROMBERG_ITMAX 20

NLM_EXTERN Nlm_FloatHi LIBCALL Nlm_RombergIntegrate(Nlm_FloatHi (LIBCALL *f) (Nlm_FloatHi,Nlm_VoidPtr), Nlm_VoidPtr fargs, Nlm_FloatHi p, Nlm_FloatHi q, Nlm_FloatHi eps, Int4 epsit, Int4 itmin)

{
	Nlm_FloatHi	romb[ROMBERG_ITMAX];	/* present list of Romberg values */
	Nlm_FloatHi	h;	/* mesh-size */
	Int4		i, j, k, npts;
	long	n;	/* 4^(error order in romb[i]) */
	Int4		epsit_cnt = 0, epsck;
	register Nlm_FloatHi	y;
	register Nlm_FloatHi	x;
	register Nlm_FloatHi	sum;

	/* itmin = min. no. of iterations to perform */
	itmin = MAX(1, itmin);
	itmin = MIN(itmin, ROMBERG_ITMAX-1);

	/* epsit = min. no. of consecutive iterations that must satisfy epsilon */
	epsit = MAX(epsit, 1); /* default = 1 */
	epsit = MIN(epsit, 3); /* if > 3, the problem needs more prior analysis */

	epsck = itmin - epsit;

	npts = 1;
	h = q - p;
	x = F(p);
	if (ABS(x) == HUGE_VAL)
		return x;
	y = F(q);
	if (ABS(y) == HUGE_VAL)
		return y;
	romb[0] = 0.5 * h * (x + y);	/* trapezoidal rule */
	for (i = 1; i < ROMBERG_ITMAX; ++i, npts *= 2, h *= 0.5) {
		sum = 0.;	/* sum of ordinates for */
		/* x = p+0.5*h, p+1.5*h, ..., q-0.5*h */
		for (k = 0, x = p+0.5*h; k < npts; k++, x += h) {
			y = F(x);
			if (ABS(y) == HUGE_VAL)
				return y;
			sum += y;
		}
		romb[i] = 0.5 * (romb[i-1] + h*sum); /* new trapezoidal estimate */

		/* Update Romberg array with new column */
		for (n = 4, j = i-1; j >= 0; n *= 4, --j)
			romb[j] = (n*romb[j+1] - romb[j]) / (n-1);

		if (i > epsck) {
			if (ABS(romb[1] - romb[0]) > eps * ABS(romb[0])) {
				epsit_cnt = 0;
				continue;
			}
			++epsit_cnt;
			if (i >= itmin && epsit_cnt >= epsit)
				return romb[0];
		}
	}
	ErrPostEx(SEV_WARNING,E_Math,ERR_NCBIMATH_ITER,"RombergIntegrate: iterations > ROMBERG_ITMAX");
	/**ERRPOST((CTX_NCBIMATH, ERR_NCBIMATH_ITER, "iterations > ROMBERG_ITMAX"));**/
	return HUGE_VAL;
}

/*
	Nlm_Gcd(a, b)

	Return the greatest common divisor of a and b.

	Adapted 8-15-90 by WRG from code by S. Altschul.
*/
NLM_EXTERN long LIBCALL Nlm_Gcd(register long a, register long b)
{
	register long	c;

	b = ABS(b);
	if (b > a)
		c=a, a=b, b=c;

	while (b != 0) {
		c = a%b;
		a = b;
		b = c;
	}
	return a;
}

/* Round a floating point number to the nearest integer */
NLM_EXTERN long LIBCALL Nlm_Nint(register Nlm_FloatHi x)	/* argument */
{
	x += (x >= 0. ? 0.5 : -0.5);
	return (long)x;
}

/*
integer power function

Original submission by John Spouge, 6/25/90
Added to shared library by WRG
*/
NLM_EXTERN Nlm_FloatHi LIBCALL Nlm_Powi(Nlm_FloatHi x, Int4 n)	/* power */
{
	Nlm_FloatHi	y;

	if (n == 0)
		return 1.;

	if (x == 0.) {
		if (n < 0) {
			ErrPostEx(SEV_WARNING,E_Math,ERR_NCBIMATH_DOMAIN,"Powi: divide by 0");
			/**ERRPOST((CTX_NCBIMATH, ERR_NCBIMATH_DOMAIN, "divide by 0"));**/
			return HUGE_VAL;
		}
		return 0.;
	}

	if (n < 0) {
		x = 1./x;
		n = -n;
	}

	while (n > 1) {
		if (n&1) {
			y = x;
			goto Loop2;
		}
		n /= 2;
		x *= x;
	}
	return x;

Loop2:
	n /= 2;
	x *= x;
	while (n > 1) {
		if (n&1)
			y *= x;
		n /= 2;
		x *= x;
	}
	return y * x;
}

/*
	Additive random number generator

	Modelled after "Algorithm A" in
	Knuth, D. E. (1981). The art of computer programming, volume 2, page 27.

	7/26/90 WRG
*/

static long	state[33] = {
	(long)0xd53f1852,  (long)0xdfc78b83,  (long)0x4f256096,  (long)0xe643df7,
	(long)0x82c359bf,  (long)0xc7794dfa,  (long)0xd5e9ffaa,  (long)0x2c8cb64a,
	(long)0x2f07b334,  (long)0xad5a7eb5,  (long)0x96dc0cde,  (long)0x6fc24589,
	(long)0xa5853646,  (long)0xe71576e2,  (long)0xdae30df,  (long)0xb09ce711,
	(long)0x5e56ef87,  (long)0x4b4b0082,  (long)0x6f4f340e,  (long)0xc5bb17e8,
	(long)0xd788d765,  (long)0x67498087,  (long)0x9d7aba26,  (long)0x261351d4,
	(long)0x411ee7ea,  (long)0x393a263,  (long)0x2c5a5835,  (long)0xc115fcd8,
	(long)0x25e9132c,  (long)0xd0c6e906,  (long)0xc2bc5b2d,  (long)0x6c065c98,
	(long)0x6e37bd55 };

#define r_off	12

static long	*rJ = &state[r_off],
			*rK = &state[DIM(state)-1];

NLM_EXTERN void LIBCALL Nlm_RandomSeed(long x)
{
	register size_t i;

	state[0] = x;
	/* linear congruential initializer */
	for (i=1; i<DIM(state); ++i) {
		state[i] = 1103515245*state[i-1] + 12345;
	}

	rJ = &state[r_off];
	rK = &state[DIM(state)-1];

	for (i=0; i<10*DIM(state); ++i)
		(void) Nlm_RandomNum();
}


/*
	Nlm_RandomNum --  return value in the range 0 <= x <= 2**31 - 1
*/
NLM_EXTERN long LIBCALL Nlm_RandomNum(void)
{
	register long	r;

	r = *rK;
	r += *rJ--;
	*rK-- = r;

	if (rK < state)
		rK = &state[DIM(state)-1];
	else
		if (rJ < state)
			rJ = &state[DIM(state)-1];
	return (r>>1)&0x7fffffff; /* discard the least-random bit */
}

NLM_EXTERN Nlm_FloatHi LIBCALL Nlm_LnFactorial (Nlm_FloatHi x) {
    if(x<0.0) 
        ErrPostEx(SEV_WARNING,0,0,"LogFact: Negative Argument to Factorial function!\n");
    if(x<=0.0)
        return 0.0;
    else
        return Nlm_LnGamma(x+1.0);
        
}