
	National Center for Biotechnology Information
National Library of Medicine

National Institutes of Health, Building 38A

8600 Rockville Pike

Bethesda, MD 20984

301-496-2475 FAX 301-480-9241
	

NCBI Software Development ToolKit

Version 1.9 - August 1, 1994

Draft Copy

This documentation is always incomplete and under revision.

NCBI Software Development ToolKit

Short Table of Contents

Full Table of Contents
1

Overview
9

Data Model
19

CoreLib: Portable Core Library
31

AsnLib: ASN.1 Processing
49

General Use Objects
81

Bibliographic References
91

MEDLINE Data
109

Biological Sequences
115

Collections of Sequences
159

Sequence Locations and Identifiers
167

Sequence Features
185

Sequence Alignments
215

Sequence Graphs
225

Sequence Utilities
229

Entrez Data Access
243

Vibrant User Interface Tools
257

Full Table of Contents

1

Full Table of Contents

Overview
9

Introduction
9

Components Of The Software Development ToolKit
10

ASN.1
10

Data Model For Biological Sequences
11

CoreLib: Writing Portable Software
11

AsnLib: Reading and Writing ASN.1
11

Object Loaders: Combining AsnLib and the Data Model
11

Utilities
12

Data Access
12

Vibrant: A Portable Windowing System
12

A Few Samples
13

Using This Document
15

Contacting NCBI
16

Data Model
19

Introduction
19

Biological Sequences
20

Classes of Biological Sequences
21

Locations on Biological Sequences
24

Associating Annotation With Locations On Biological Sequences
24

Feature Tables
25

Sequence Alignments
26

Sequence Graph
27

Collections of Related Biological Sequences
27

Consequences of the Data Model
29

CoreLib: Portable Core Library
31

Introduction
31

Application Frameworks
31

Main Entry Point
32

Getting Program Arguments
32

User Interface Elements
34

Alerts
34

Beeps
36

Monitors
36

Configuration Files
39

File Names
39

File Format
39

Configuration File Functions
40

Error Processing
40

Posting An Error
42

User Error Strings
43

Customization
43

Configuration File Settings
46

Preparing Error Message Files
48

Fetching and Displaying Errors
49

Installing Custom Error Handlers
49

Miscellaneous Utility Functions
50

Files and Directories
50

ANSI-Style Functions
50

Directory Management
51

CD-ROM
52

Customization
53

Memory Management
53

ANSI-Style Functions
53

Fixed Memory
55

Relocatable Memory
55

Byte Stores
56

String Functions
59

ANSI-Style Functions
59

Additional String Functions
59

Number Strings
60

Time Strings
61

SGML Strings
61

ValNode Functions
61

Math Functions
64

Macros
64

Arithmatic Functions
65

Transendental Functions
65

Gamma Functions
65

Advanced Functions
66

Miscellaneous Utilities
66

Macros
66

Random Numbers
67

Sorting
67

Time
67

Process ID
67

Application Properties
67

Debugging Macros
68

Portability Issues
69

Portable Types
71

Integral Types
71

Floating-point Types
71

Pointer Types
71

Avoiding Name Collisions
72

Byte Order
72

Function Prototypes
72

AsnLib: ASN.1 Processing
75

Introduction to ASN.1
75

Why ASN.1
75

Structure of ASN.1
76

Further information about ASN.1
79

AsnLib: Overview
80

Principles of Operation
81

Specification for AsnLib
82

AsnTool
84

AsnTool Tutorial
84

Using AsnLib
86

AsnLib: A Tutorial
87

getmesh.c
87

indexpub.c
89

getpub.c
91

Data-links
93

AsnLib Generated Header Files
94

Returns From AsnLib Parsing
95

Finding AsnTypePtrs at Run-time
96

Custom Read and Write Functions
96

Customizing an AsnIo Stream
97

ASN.1 Object Loaders
97

AsnLib and Object Loaders As a Generalized Iterator
98

AsnLib and Object Loaders Provide a Generalized Copy and Compare
100

AsnLib Interface: asn.h
100

General Use Objects
109

Introduction
109

Large Text Blocks: StringStore
109

The Date
109

Identifying Things: Object-id
110

Identifying Things: Dbtag
110

Identifying People: Person-id
110

Expressing Uncertainty with Fuzzy Integers: Int-fuzz
111

Creating Your Own Objects: User-object
111

ASN.1 Specification: general.asn
112

C Structures and Functions: objgen.h
114

Bibliographic References
119

Introduction
119

Citation Components: Affiliation
119

Citation Components: Authors
119

Citation Components: Imprint
120

Citation Components: Title
120

Citing an Article
121

Citing a Journal
121

Citing a Book
121

Citing a Proceedings
121

Citing a Letter, Manuscript, or Thesis
122

Citing Directly Submitted Data
122

Citing a Patent
122

Identifying a Patent
122

Citing an Article or Book which is In Press
123

Special Cases: Unpublished, Unparsed, or Unusual
123

Accommodating Any Publication Type
123

Grouping Different Forms of Citation for a Single Work
124

Sets of Citations
124

Comparing Citations
124

ASN.1 Specification: biblio.asn
124

C Structures and Functions: objbibli.h
127

ASN.1 Specification: pub.asn
132

C Structures and Functions: objpub.h
133

MEDLINE Data
137

Introduction
137

Structure of a MEDLINE Entry
137

MeSH Index Terms
137

Substance Records
138

Database Cross Reference Records
138

Funding Identifiers
138

Gene Symbols
138

ASN.1 Specification: medline.asn
138

C Structures and Functions: objmedli.h
139

Biological Sequences
143

Introduction
143

Bioseq: the Biological Sequence
143

Seq-id: Identifying the Bioseq
143

Seq-annot: Annotating the Bioseq
144

Seq-descr: Describing the Bioseq and Placing It In Context
144

mol-type: The Molecule Type
145

modif: Modifying Our Assumptions About a Bioseq
145

method: Protein Sequencing Method
146

name: A Descriptive Name
147

title: A Descriptive Title
147

org: What Organism Did this Come From?
148

comment: Commentary Text
148

num: Applying a Numbering System to a Bioseq
148

maploc: Map Location
148

pir: PIR Specific Data
149

sp: SWISSPROT Data
149

embl: EMBL Data
149

prf: PRF Data
149

pdb: PDB Data
149

genbank: GenBank Flatfile Specific Data
149

pub: Description of a Publication
149

region: Name of a Genomic Region
149

user: A User-defined Structured Object
149

neighbors: Bioseqs Related by Sequence Similarity
149

create-date:
150

update-date:
150

het: Heterogen
150

Seq-inst: Instantiating the Bioseq
150

Seq-inst: Virtual Bioseq
150

Seq-inst: Raw Bioseq
150

Seq-inst: Segmented Bioseq
150

Seq-inst: Reference Bioseq
151

Seq-inst: Constructed Bioseq
152

Seq-inst: Typical or Consensus Bioseq
153

Seq-inst: Map Bioseqs
153

Seq-hist: History of a Seq-inst
154

Seq-data: Encoding the Sequence Data Itself
155

IUPACaa: The IUPAC-IUB Encoding of Amino Acids
155

NCBIeaa: Extended IUPAC Encoding of Amino Acids
156

NCBIstdaa: A Simple Sequential Code for Amino Acids
157

NCBI8aa: An Encoding for Modified Amino Acids
158

IUPAC3aa: A 3 Letter Display Code for Amino Acids
158

NCBIpaa: A Profile Style Encoding for Amino Acids
159

IUPACna: The IUPAC-IUB Encoding for Nucleic Acids
160

NCBI4na: A Four Bit Encoding of Nucleic Acids
160

NCBI2na: A Two Bit Encoding for Nucleic Acids
161

NCBI8na: An Eight Bit Sequential Encoding for Modified Nucleic Acids
161

NCBIpna: A Frequency Profile Encoding for Nucleic Acids
161

Tables of Sequence Codes
162

Mapping Between Different Sequence Alphabets
162

Data and Tools for Sequence Alphabets
163

Pubdesc: Publication Describing a Bioseq
163

Numbering: Applying a Numbering System to a Bioseq
163

Num-cont: A Continuous Integer Numbering System
164

Num-real: A Real Number Numbering Scheme
164

Num-enum: An Enumerated Numbering Scheme
164

Num-ref: Numbering by Reference to Another Bioseq
164

Numbering: C Structures and Utility Functions
165

ASN.1 Specification: seq.asn
165

ASN.1 Specification: seqblock.asn
169

ASN.1 Specification: seqcode.asn
172

C Structures and Functions: objseq.h
173

C Structures and Functions: objpubd.h
178

C Structures and Functions: objblock.h
181

C Structures and Functions: objcode.h
184

Collections of Sequences
187

Introduction
187

Seq-entry: The Sequence Entry
187

Bioseq-set: A Set Of Seq-entrys
187

id: local identifier for this set
187

coll: global identifier for this set
187

level: nesting level of set
187

class: classification of sets
188

release: an explanatory string
188

date:
188

descr: Seq-descr for this set
188

seq-set: the sequences and sets within the Bioseq-set
189

annot: Seq-annots for the set
190

Bioseq-sets are Convenient Packages
190

ASN.1 Specification: seqset.asn
190

C Structures and Functions: objsset.h
191

Sequence Locations and Identifiers
195

Introduction
195

Seq-id: Identifying Sequences
195

Seq-id: Semantics of Use
196

local: Privately Maintained Data
196

other: A Local Textseq-id
196

general: Ids from Local Databases
196

gibbsq, gibbmt: GenInfo Backbone Ids
197

genbank, embl, ddbj: The International Nucleic Acid Sequence Databases
197

pir: PIR International
198

swissprot: SWISS-PROT
198

prf: Protein Research Foundation
198

patent: Citing a Patent
199

pdb: Citing a Biopolymer Chain from a Structure Database
199

giim: GenInfo Import Id
199

gi: A Stable, Uniform Id Applied to Sequences From All Sources
199

Seq-id: The C Implementation
199

NCBI ID Database: Imposing Stable Seq-ids
200

Seq-loc: Locations on a Bioseq
201

null: A Gap
201

empty: A Gap in an Alignment
201

whole: A Reference to a Whole Bioseq
202

int: An Interval on a Bioseq
202

packed-int: A Series of Intervals
202

pnt: A Single Point on a Sequence
202

packed-pnt: A Collection of Points
202

mix: An Arbitrarily Complex Location
203

equiv: Equivalent Locations
203

bond: A Chemical Bond Between Two Residues
203

feat: A Location Indirectly Referenced Through A Feature
203

Seq-loc: The C Implementation
203

ASN.1 Specification: seqloc.asn
204

C Structures and Functions: objloc.h
206

Sequence Features
213

Introduction
213

Seq-feat: Structure of a Feature
213

id: Features Can Have Identifiers
213

data: Structured Data Makes Feature Types Unique
213

partial: This Feature is Incomplete
214

except: There is Something Biologically Exceptional
214

comment: A Comment About This Feature
214

product: Does This Feature Produce Another Bioseq?
215

location: Source Location of This Feature
215

qual: GenBank Style Qualifiers
215

title: A User Defined Name
215

ext: A User Defined Structured Extension
215

cit: Citations For This Feature
216

exp-ev: Experimental Evidence
216

xref: Linking To Other Features
216

SeqFeatData: Type Specific Feature Data
216

gene: Location Of A Gene
216

org: Source Organism Of The Bioseq
217

cdregion: Coding Region
217

prot: Describing A Protein
217

rna: Describing An RNA
217

pub: Publication About A Bioseq Region
218

seq: Tracking Original Sequence Sources
218

imp: Importing Features From Other Data Models
218

region: A Named Region
218

comment: A Comment On A Region Of Sequence
219

bond: A Bond Between Residues
219

site: A Defined Site
219

rsite: A Restriction Enzyme Cut Site
219

user: A User Defined Feature
220

txinit: Transcription Initiation
220

num: Applying Custom Numbering To A Region
220

psec-str: Protein Secondary Structure
220

non-std-residue: Unusual Residues
220

het: Heterogen
220

Seq-feat Implementation in C
221

CdRegion: Coding Region
222

orf: Open Reading Frame
222

Translation Information
222

Problems With Translations
222

Genetic Codes
223

C Implementation Of Genetic Codes
223

Rsite-ref: Reference To A Restriction Enzyme
224

RNA-ref: Reference To An RNA
224

Gene-ref: Reference To A Gene
225

Prot-ref: Reference To A Protein
225

Txinit: Transcription Initiation
226

Current Genetic Code Table: gc.prt
226

ASN.1 Specification: seqfeat.asn
228

C Structures and Functions: objfeat.h
234

Sequence Alignments
243

Introduction
243

Seq-align
243

type: global
244

type: partial
244

type: diags
244

dim: Dimensionality Of The Alignment
244

Score: Score Of An Alignment Or Segment
245

Dense-diag: Segments For "diags" Seq-align
245

Dense-seg: Segments for "global" or "partial" Seq-align
245

Std-seg: Aligning Any Bioseq Type With Any Other
246

ASN.1 Specification: seqalign.asn
248

C Structures and Functions: objalign.h
249

Sequence Graphs
253

Introduction
253

Seq-graph: Graph on a Bioseq
253

ASN.1 Specification: seqres.asn
253

C Structures and Functions: objres.h
254

Sequence Utilities
257

Introduction
257

Demo: seqtest.c
257

Finding Features and Descriptors in an Entry
262

Exploring an Object Using ASN.1 Defined Names
263

C Structures and Functions: sequtil.h
264

C Structures and Functions: seqport.h
269

Entrez Data Access
271

Introduction
271

Connecting To and Disconnecting From Data Sources
271

Scanning the List of Available Terms
272

Obtaining the UID Given an Accession Number
272

Obtaining the UIDs That Satisfy a Boolean Query
273

Loading a Sequence Record
274

Loading a MEDLINE Record
275

Streaming Through All of the Data Records
275

Converting to FASTA Format
276

Converting GenBank Format
276

Converting to MEDLARS Format
277

Loading a Document Summary
277

Loading a Set of Document Summaries
277

Retreiving Neighbors and Links
277

C Structures and Functions: accentr.h
278

C Structures and Functions: casn.h
282

Vibrant User Interface Tools
285

Introduction
285

Programming Example
287

Object Specification
288

Callback Functions
291

Reference
294

Object Data Types
295

Callback Types
296

General Global Variables
296

Window Objects
297

Context Functions
297

Grouping Objects
297

Button Objects
298

List Objects
298

Menu Objects
298

Popup Object
299

Prompt Object
299

Text Objects
299

Scroll Bar Object
300

Slate and Panel Objects
301

Repeat Object
302

Switch Object
302

Icon Object
302

Graphical Viewer Object
303

Doc Object
305

Class Functions
305

Miscellaneous Functions
306

Graphical Drawing Functions
307

Index
311

Acknowledgments
316

Trademarks
317

Overview

Introduction
Components Of The Software Development ToolKit
A Few Samples
Using This Document
Contacting NCBI

 Introduction

Molecular biology is generating a host of data which are dramatically altering and deepening our understanding of the processes which underlie all living things. This new knowledge is already affecting medicine, agriculture, biotechnology, and basic science in fundamental and sweeping ways. However, the data on which our growing understanding is based is being accumulated and analyzed in thousands of laboratories all over the world, from large genome centers to small university laboratories, from large pharmaceutical companies to small biotech startups. It is being managed and analyzed on machines from small personal computers to supercomputers, on systems from a few disk files to large commercial database systems. These essential new data require specialized tools for analysis and management, so software tools are being developed in all these different environments at once. Since molecular biology is an infant science, the data itself is not yet fully understood, so its fundamental properties and relationships are constantly being revised as well. Finally, the raw volume of molecular biology data is growing at an astonishing rate.

In recognition of the essential and growing role of bioinformatics in the United States, the National Center for Biotechnology Information (NCBI) was created by act of Congress in November 1988. This law mandates that NCBI shall:

1) Create automated systems for knowledge about molecular biology, biochemistry, and genetics.

2) Perform research into advanced methods of analyzing and interpreting molecular biology data.

3) Enable biotechnology researchers and medical care personnel to use the systems and methods developed.

4) Coordinate efforts to gather biotechnology information worldwide.

To approach these goals, NCBI has been organized into three interoperating branches. The Basic Research Branch (BRB) is a group of scientists who perform research into algorithms and methods for analyzing molecular biology data and publish results in peer reviewed journals, and keeps the other branches abreast of the latest developments from a scientific perspective. The Information Resources Branch (IRB) maintains the infrastructure at NCBI, administers the distribution of data and services provided by NCBI to the community, supports a visiting scientist program to enable researchers to spend time working at NCBI, and interacts with other agencies and bodies. The Information Engineering Branch (IEB) designs and builds databases and software tools for molecular biology information which attempt to incorporate the new approaches and meet the needs of the BRB, while producing data and software tools which are released to the community on a production basis by the IRB.

This document describes the data model and software tools developed by the IEB to achieve their mission. The IEB approaches its task with an understanding of the situation outlined in the first paragraph, that molecular biology data comes from and is used in an extremely heterogeneous, distributed, and changing environment, from both computing and biological points of view. The data processed and integrated by IEB will come from many different sources which may use different models of the data, which can be expected to change over time. The data will be stored and managed on many different computer systems using many different database management systems. The data itself is expected to be valuable for longer than the life cycle of any particular computer system or program. This means that the data must be described in a controlled and formal way, so that all participants can clearly understand what data components are available in common at any time, but without dependence on any particular software tool or language, database management system, or hardware architecture.

Software developed by IEB must be capable of running on all major hardware platforms used in the scientific community and must be designed to be ported to new systems as the computer industry progresses. It must be capable of providing systems for data retrieval by end-user scientists while also providing software hooks for other programs written by bioinformatics specialists in commercial, academic, or government settings, and by academic researchers.

To achieve the goal of a formal, controlled, yet flexible data specification, IEB has adopted the use of Abstract Syntax Notation 1 (ASN.1), and International Standards Organization standard (ISO 8824, 8825) for describing and encoding data in a machine readable way which is independent of hardware or software architecture and language. IEB has created a formal specification in ASN.1 for biotechnology and bibliographic information. This specification is based on a data model which unifies sequence related data from bands on a gel to genetic maps to sequenced nucleic acid and protein molecules. It provides connections from such data to other specialized datasets such as stock center lists, taxonomies, or structures. The specification is done as a series of connected modules. This means selected modules can be reused by other biotechnology databases and new ones added to meet specialized needs. The ASN.1 specification and encoding provide an essential common ground, changing the many to many mapping between the various information sources and applications to a many to one mapping, both for data models and for software interfaces.

To achieve the goals of software portability and of providing different levels of access from database producer to programmer to end-user, IEB has developed a layered software toolkit. The toolkit is used internally at NCBI to process and analyze data from a variety of sources to build and maintain the unified databases and also serves as the components for the end-user applications NCBI distributes. This means it is subjected to the continuous demands for quality and performance imposed by a large, production operation in the course of our daily work. The source code for the toolkit is made available without restriction for use by anyone wishing to take advantage of the work done by NCBI. The software runs on a wide variety of common platforms and is layered to allow programmers use both very low level or very high level tools to access and manipulate data.

Components Of The Software Development ToolKit

ASN.1

A brief introduction is provided to the ASN.1 language itself in the beginning of the AsnLib chapter. Those familiar with Backus-Naur form should have no trouble reading it immediately, while a short explanation may be required for others. It is a simple, logical way to specify data and is used for many purposes in the computer industry to describe and exchange data. A number of books, articles, and software tools from the computer industry at large are readily available for those who wish a more in-depth knowledge of ASN.1. This is an important aspect of choosing the ASN.1 language to describe biological data. ASN.1 is a formal data description language, developed, tested, and used within the computer industry, not an ad hoc file format developed by biologists. Would you program in an ad hoc programming language developed by biologists? Then why describe data that way?

Data Model For Biological Sequences

The selection of a data description language does not define what it is used for any more than the selection of English defines what a book is about. The IEB has defined a model for biotechnology information (which happens to be specified in ASN.1) which is centered around the concept of a biological sequence as a simple, linear coordinate system. Genetic and physical maps, sequenced pieces of nucleic acids and proteins, and complex assemblies of such components can all be considered specializations of the basic sequence concept of an identified coordinate system. Relationships between sequences (e.g. sequence alignments, sequence assemblies, relationships of genetic to physical maps) can all be considered mappings from one sequence coordinate system to another. Information about sequences can be considered mappings of specialized data objects (e.g. publications, genes, coding regions) to any sequence coordinate system. Such specialized data objects may themselves contain keys to other databases containing more specialized information not necessarily captured by the common data model, but unique to a particular organism, discipline, or database.

CoreLib: Writing Portable Software

The CoreLib is a small set of "C' language functions, macros, and guidelines that permit the writing of programs which compile and execute without change on over fourteen different hardware/operating system/compiler combinations. If one wishes to distribute one's code to as many molecular biologists as possible with as little work as possible, learning to write CoreLib style code is a tremendous advantage. If one wishes to write on one platform, but interface with NCBI software, one should still understand the CoreLib approach (read the introduction in the CoreLib chapter), but it does not require that one write CoreLib code oneself.

AsnLib: Reading and Writing ASN.1

AsnLib is a function library written with CoreLib, which provides functions for reading and validating ASN.1 specifications and generating parse trees to encoded and decode data conforming to the specification. The parse trees can be generating dynamically at run-time from any input specification, or parse trees for particular specifications can be produced as "C" language header files to be incorporated into applications. Given a parse tree generated either way, AsnLib provides low level functions for encoding and decoding data in either the text or binary forms of ASN.1, one element at a time. Converters to other languages (ASN.1 to Prolog or ASN.1 to LISP have been done), filters (get all journal titles from an ASN.1 encoded stream of bibliographic citations), or indexing programs (index a file of ASN.1 encoded bibliographic citations on author name) can be written with tools at this level.

Object Loaders: Combining AsnLib and the Data Model

Every ASN.1 specification module in the NCBI data model has a corressponding "object loader" module. This is a "C" language ".c" and ".h" file which typedef a "C" structure for every entity defined in ASN.1 (called an "object" here). For each object there is a function to create it, read it from an ASN.1 stream, write it to an ASN.1 stream, and free it. These take the form of [AsnName]New(), [AsnName]AsnRead(), [AsnName]AsnWrite(), and [AsnName]Free(). If an "object" is considered data associated with methods, these routines define the structure of the data (as mapped from ASN.1) and define routines to load such objects in and out of memory from ASN.1.

In some cases additional functions such as compare, duplicate, find, or print are defined here as well. The Data Access layer returns pointers to these structures and the Utilities layer provides more routines to compare, explore, manipulate, and display these structures. Using the object loader layer incorporates a great deal of NCBI code into your application, but most programmers find this the easiest level to access NCBI data for complex objects such as whole sequence entries.

In the following document detailed discussion of an ASN.1 module and its corresponding object loader are combined together in a single chapter. The chapters are organized by grouping closely related objects together. The discussion in each chapter focuses on particular issues surrounding the implementation of that data type but may not mention every function. The complete ASN.1 specification and object loader ".h" files follow at the end of each such chapter for the comprehensive and definitive specification.

Utilities

A growing number of utility functions have been written that manipulate or analyze the structures defined in the object loaders. For example, one function compares two (arbitrarily complex) locations on sequences and determines if they overlap or if one is contained in the other. Another opens a "port" on any (arbitrarily complex) sequence or part(s) of a sequence(s) and treat it as a single sequence, in any selected sequence alphabet, with operations provided such as "seek to location", "get next residue", "read x residues into a buffer", and so on. A whole family of functions allow the exploration of any arbitrarily complex structure in memory with a call to a user supplied function when encountering any structure based on it's ASN.1 name (e.g. find all coding region features, or find all publications, or find all author names in publications). Finally there are functions that will output a sequence entry in GenBank format, FASTA format, or a report format.

Data Access

A family of functions supplies high level access to sequence and bibliographic data on the Entrez:Sequences CDROM provided by NCBI. These functions allow the evaluation of Boolean operations on a list of terms, resulting the sequence ids (or MEDLINE ids) that satisfy the query. Other functions take sequence or MEDLINE id and retrieve the record from the CDROM, or retrieve its "neighbors", entries which are similar to it.

These same functions have been implemented as Internet network access functions to the NCBI data servers, and will become publicly available in 1993. Software which accesses data on the Entrez: Sequences CDROM using the access functions can be changed to access the network servers by just linking to a different library.

The access functions mean that a programmer can incorporate any or all of the functionality shown by the Entrez application into a program of their own design. This means customized analysis and retrieval systems can be written which nonetheless take advantage of the public data retrieval systems.

Vibrant: A Portable Windowing System

Vibrant is a portable windowing system written with CoreLib which allows windowing applications to be written which are source code identifical on Macintosh, MicroSoft Windows, UNIX X11 Motif and VMS X11 Motif. Vibrant is not meant to provide every possible tool supported by the host system or other commercial products, but rather to vastly simplify writing basic scientific applications which are compatible with the modern windowing environments widely used by scientists now in a portable way.

NCBI fondly hopes that eventually a standard windowing API or appropriate tools will emerge from the computer industry. We will only support Vibrant until that time. While we make it available to the public to use as desired, Vibrant is primarily aimed at serving internal NCBI needs.

A Few Samples

This document contains a large mass of detailed information and new ideas. Just as learning a new language, it is a substantial commitment to learn and understand it all. But knowing it all may not be necessary to get started. This is a quick sample of what is available to give you a flavor of what this is.

This is the ASN.1 definitions used for an article citation (from a book, journal, or proceedings.. only journal is shown). The "::=" means "is defined as" and SEQUENCE means "the following items come in order", not a biological sequence. You can probably just read the rest.

Cit-art ::= SEQUENCE { -- article in journal or book

 title Title OPTIONAL , -- title of paper (ANSI requires)

 authors Auth-list OPTIONAL , -- authors (ANSI requires)

 from CHOICE { -- journal or book

 journal Cit-jour ,

 book Cit-book ,

 proc Cit-proc } }

Cit-jour ::= SEQUENCE { -- Journal citation

 title Title , -- title of journal

 imp Imprint }

Auth-list ::= SEQUENCE {

 names CHOICE {

 std SEQUENCE OF Author , -- full citations

 ml SEQUENCE OF VisibleString , -- MEDLINE, semi-structured

 str SEQUENCE OF VisibleString } , -- free for all

 affil Affil OPTIONAL } -- author affiliation

Title ::= SET OF CHOICE {

 name VisibleString , -- Title, Anal,Coll,Mono AJB

 tsub VisibleString , -- Title, Subordinate A B

 trans VisibleString , -- Title, Translated AJB

 jta VisibleString , -- Title, Abbreviated J

 iso-jta VisibleString , -- specifically ISO jta J

 ml-jta VisibleString , -- specifically MEDLINE jta J

 coden VisibleString , -- a coden J

 issn VisibleString , -- ISSN J

 abr VisibleString , -- Title, Abbreviated B

 isbn VisibleString } -- ISBN B

Imprint ::= SEQUENCE { -- Imprint group

 date Date , -- date of publication

 volume VisibleString OPTIONAL ,

 issue VisibleString OPTIONAL ,

 pages VisibleString OPTIONAL ,

 section VisibleString OPTIONAL ,

 pub Affil OPTIONAL, -- publisher, required for book

 cprt Date OPTIONAL, -- copyright date, " " "

 part-sup VisibleString OPTIONAL , -- used in MEDLINE

 language VisibleString DEFAULT "ENG" , -- put here for simplicity

prepub ENUMERATED { -- for prepublication citaions

submitted (1) , -- submitted, not accepted

in-press (2) ,

-- accepted, not published

other (255) } OPTIONAL }

That is a very complete and detailed specification but here is a sample of a journal citation in text form ASN.1. You can easily see how it conforms to the specification and how one would locate the journal title for example.

Cit-art ::= {

 title {

 name "Developmental regulation of a constitutively expressed mouse mRNA

 encoding a 72-kDa heat shock-like protein." } ,

 authors {

 names

 ml {

 "Giebel LB" ,

 "Dworniczak BP" ,

 "Bautz EK" } ,

 affil

 str "Zentrum fur Molekulare Biologie, Universitat Heidelberg (ZMBH),

 Federal Republic of Germany." } ,

 from

 journal {

 title {

 ml-jta "Dev Biol" } ,

 imp {

 date

 std {

 year 1988 ,

 month 1 } ,

 volume "125" ,

 issue "1" ,

 pages "200-7" } } }

Here is the object loader "C" structure and its attendant functions for a Cit-art. There is even a matching function for this object. Details of using the "fromptr" to access the CitJour, CitBook, or CitProc for the article are given in the Bibliographic References chapter. This is just to give the flavor.

/***

*

* Cit-art

*

***/

typedef struct citart {

ValNodePtr title; /* choice[1]=name,[2]=tsub,[3]=trans */

AuthListPtr authors;

Uint1 from; /* [1]=journal,[2]=book,[3]=proc */

Pointer fromptr;

} CitArt, PNTR CitArtPtr;

extern CitArtPtr CitArtNew PROTO((void));

extern CitArtPtr CitArtFree PROTO((CitArtPtr cap));

extern CitArtPtr CitArtAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean CitArtAsnWrite PROTO((CitArtPtr cap, AsnIoPtr aip, AsnTypePtr atp));

Int2 CitArtMatch PROTO((CitArtPtr a, CitArtPtr b));

Here is a data access function which retrieves a MEDLINE record (a MedlineEntry) from the Entrez: Sequences CDROM, given a MEDLINE unique identifier (uid). A MedlineEntry contains an article citation (i.e. it reuses the Cit-art object from the bibliographic module then adds the additional index terms and information needed to make a MEDLINE record).

MedlineEntryPtr GetMedline (Int4 uid)

{

MedlineEntryPtr mep = NULL;

if (! EntrezInit())

/* intitialize Entrez CDROM */

return NULL;

/* failed to initialize */

mep = EntrezMedlineEntryGet(uid);
/* get the Medline entry */

EntrezFini();

/* close CDROM */

return mep;

}

Here is a code fragment that will exhaustively explore the MedlineEntry structure in memory and call the user supplied callback function when it finds Imprint in the Cit-jour of the Cit-art (i.e. the article was published in a journal which was printed at a particular time). The string "Cit-art.from.jour.imp" defines a path to the journal imprint following the ASN.1 specification given above.

ExploreExample(MedlineEntryPtr mep)

{

AsnIoPtr aip;

aip = AsnIoNullOpen();

/* attach a callback below */

AsnExpOptNew(aip, "Cit-art.from.jour.imp", NULL, GetImprint);

MedlineEntryAsnWrite(mep, aip, NULL);
/* traverse structure */

AsnIoClose(aip);

return;

}

/*** this is called whenever a journal imprint in an article is found **/

void GetImprint(AsnExpOptStructPtr aeosp)

{

ImprintPtr ip;

/*

** Make sure we are at the beginning of an Imprint

*/

if (aeosp->dvp->intvalue != START_STRUCT) return;

ip = (ImprintPtr)aeosp->the_struct; /* we have the Imprint */

/*.... do whatever you want with it */

return;

}

Finally, here we print out the MedlineEntry in EndNote format and free the memory it used.

MedlineToFile (MedlineEntryPtr mep)

{

FILE *fp;

fp = FileOpen("test.out", "w");

MedlineEntryToDocFile (mep, fp);

FileClose(fp);

MedlineEntryFree(mep);

return;

}

Using This Document

This document has a detailed table of contents which can direct you to the topic of interest. For an initial acquaintance with the system, read the Data Model chapter and the introductions to the other chapters. Then, depending on your style and interests, either:

1) Download the software toolkit, build it, and make the demo programs. Print the ".c" files for the demos and look them over. Print the ".asn" files from the \asn directory and look them over. Print the ".h" files from the \object directory. Print "sequtil.h" and "seqport.h" from \api. Print "accentr.h" from \cdromlib. Go back and read the rest of the documentation.

2) Read the documentation by scanning the sections after the introductions in each chapter. Then return in detail to what interests you.

Contacting NCBI

You can download the software tools (all versions) by anonymous ftp to ftp.ncbi.nlm.nih.gov.

cd toolbox\ncbi_tools

bin

get ncbi.tar.Z

(compressed UNIX tar file)

or

get ncbiZ.exe

(self extracting DOS archive)

or

get ncbi.sea.hqx

(self extracting Mac archive)

You can get on an email list to be notified of new releases of software by sending your name, address, institution, and email address to bits-request@ncbi.nlm.nih.gov

You can email to toolbox@ncbi.nlm.nih.gov

You can FAX 301-480-9241, attn. toolbox

You can mail to:

toolbox

NCBI

Bldg 38A, NIH

8600 Rockville Pike

Bethesda, MD 20850

All comments are welcome. If you are part of a larger project or group who wish to make use of the NCBI tools or to establish data exchange with NCBI, please let us know and we will do whatever we can to ensure your success.

Data Model

Introduction
Biological Sequences
Classes of Biological Sequences
Locations on Biological Sequences
Associating Annotation With Locations On Biological Sequences
Collections of Related Biological Sequences
Consequences of the Data Model

 Introduction

The NCBI sequence databases and software tools are designed around a particular model of biological sequence data. It is designed to provide a few unifying concepts which cross a wide range of domains, providing a path between the domains. Specialized objects are defined which are appropriate within a domain. In the following sections we will present the unifying ideas, and then examine each area of the model in more detail.

Since we expect that computer technologies will continue to develop at a rapid rate, NCBI has made considerable investment of time and energy to ensure that our data and software tools are not too tightly bound to any particular computer platform or database technology. However, we also wish to embrace the intellectual rigor imposed by describing our data within a formal system and in a machine readable and checkable way. For this reason we have chosen to describe our data in Abstract Syntax Notation 1 (ASN.1; ISO 8824, 8825). Enough explanation will be given here to allow the reader to examine the data definitions. A much fuller description of ASN.1 and the NCBI software tools which use it appears in later chapters.

 The data specification chapters are arranged by ASN.1 module with detailed discussions of data objects defined in each and the software functions available to operate on those objects. Each ASN.1 defined object has a matching "C" language structure. Each "C" structure has at a minimum, a function to create it, write it to an ASN.1 stream, read it from an ASN.1 stream, and destroy it. Many objects have additional functions. Some of these are described in the chapter on the module and some with more extensive interfaces are described in additional chapters. Each module chapter begins with a description of the elements, followed by the full ASN.1 definition of the module, then the "C" code header defining the structures.

This chapter provides an overview of all modules. Selected ASN.1 definitions are inserted into the body of the text as necessary. They are also described in the chapter on the appropriate module.

There are two major areas for which data objects have been defined. One is bibliographic data. It is clear that this class of information is central to all scientific fields within and outside of molecular biology so we expect these definitions to be widely useful. We have followed the American National Standard for Bibliographic References (ANSI Z39.29-1977) and consulted with the US Patent Office and professional librarians to ensure complete and accurate representation of citation information. Unlike biological data, this data is relatively well understood, so we hope that the bibliographic specification can be quite complete and stable. Despite its importance, the bibliographic specification will not be discussed further here, since it does not present ideas which may be novel to the reader.

The other major area of the specification is biological sequence data and its associated information. Here the data model attempts to achieve a number of goals. Biomedical information is a vast interconnected web of data which crosses many domains of discourse with very different ways of viewing the world. Biological science is very much like the parable of the blind men and elephant. To some of the blind men the elephant feels like a column, to some like a snake, to others like a wall. The excitement of modern biological research is that we all agree that, at least at some level, we are all exploring aspects of the same thing. But it is early enough in the development of the science that we cannot agree on what that thing is.

The power of molecular biology is that DNA and protein sequence data cut across most fields of biology from evolution to development, from enzymology to agriculture, from statistical mechanics to medicine. Sequence data can be viewed as a simple, relatively well defined armature on which data from various disciplines can be hung. By associating diverse data with the sequence, connections can be made between fields of research with no other common ground, and often with little or no idea of what the other field is doing.

This data model establishes a biological sequence as a simple integer coordinate system with which diverse data can be associated. It is reasonable to hope that such a simple core can be very stable and compatible with a very wide range of data. Additional information closely linked to the coordinate system, such as the sequence of amino acids or bases, or genes on a genetic map are layered onto it. With stable identifiers for specific coordinate systems, a greater diversity of information about the coordinate system can be specifically attached to it in a very flexible yet rigorous way. The essential differences between different biological forms are preserved, yet they can viewed as aspects of the same thing around the core, and thus move us toward our goal of understanding the totality.

Biological Sequences

A Bioseq is a single continuous biological sequence. It can be nucleic acid or protein. It can be fully instantiated (i.e. we have data for every residue) or only partially instantiated (e.g. we know a fragment is 10 kilobases long, but we only have sequence data over 1 kilobase). A Bioseq is defined in ASN.1 as follows:

Bioseq ::= SEQUENCE {
 id SET OF Seq-id , -- equivalent identifiers
 descr Seq-descr OPTIONAL , -- descriptors
 inst Seq-inst , -- the sequence data
 annot SET OF Seq-annot OPTIONAL }
In ASN.1 a named datatype begins with a capital letter (e.g. Bioseq). The symbol "::=" means "is defined as". A primitive type is all capitals (e.g. SEQUENCE). A field within a named datatype begins with a lower case letter (e.g. descr). A structured datatype is bounded by curly brackets ({}). We can now read the definition above: a Bioseq is defined as a SEQUENCE (i.e. a structure where the elements must come in order; the mathematical notion of SEQUENCE, not the biological one). The first element of Bioseq is called "id" and is a SET OF (i.e. an unordered collection of repeating elements of the same type) a named datatype called "Seq-id". Seq-id would have its own definition elsewhere. The second element is called "descr" and is a named type called "Seq-descr", which is OPTIONAL. In this text, when we wish to refer to the id element of the named type Bioseq, we will use the notation "Bioseq.id".

A Bioseq has two OPTIONAL elements, which both have descriptive information ABOUT the sequence. Seq-descr is a collection of types of information about the context of the sequence. It may set biological context (e.g. define the organism sequenced), or bibliographic context (e.g. the paper it was published in), among other things. Seq-annot is information that is explicitly tied to locations on the sequence. This could be feature tables, alignments, or graphs, at the present time. A Bioseq can have more than one feature table, perhaps coming from different sources, or a feature table and a graph, etc.

A Bioseq is only REQUIRED to have two elements, id and inst. Bioseq.id is one or more identifiers for this Bioseq. An identifier is a key which allows us to retrieve this object from a database or identify it uniquely. It is not a name, which is a human compatible description, but not necessarily a unique identifier. The name "Jane Doe" does not uniquely identify a person in the United States, while the identifier, social security number, does. Each Seq-id is a CHOICE of one of a number of identifier types from different databases, which may have different structures. All Bioseqs MUST have at least one identifier.

Classes of Biological Sequences

The other required element of a Bioseq is a Seq-inst. This element instantiates the sequence itself. It represents things like is it DNA, RNA, or protein? Circular or linear? Double-stranded or single-stranded? How long is it?

Seq-inst ::= SEQUENCE {

repr
ENUMERATED {

not-set (0) ,

virtual (1) ,

raw (2) ,

seg (3) ,

const (4) ,

ref (5) ,

consen (6) ,

map (7) ,

other (255) } ,

mol
ENUMERATED {

not-set (0) ,

dna (1) ,

rna (2) ,

aa (3) ,

na (4) ,

other (255) } ,

length
INTEGER
OPTIONAL ,

fuzz
Int-fuzz

OPTIONAL ,

topology ENUMERATED {

not-set (0) ,

linear (1) ,

circular (2) ,

tandem (3) ,

other (255) } DEFAULT linear ,

strand
ENUMERATED {

not-set (0) ,

ss (1) ,

ds (2) ,

mixed (3) ,

other (255) } OPTIONAL ,

seq-data Seq-data
OPTIONAL ,

ext
Seq-ext
OPTIONAL ,

hist
Seq-hist
 OPTIONAL }

Seq-inst is the parent class of a sequence representation class hierarchy. There are two major branches to the hierarchy. The molecule type branch is indicted by Seq-inst.mol. This could be a nucleic acid, or further sub classified as RNA or DNA. The nucleic acid may be circular, linear, or one repeat of a tandem repeat structure. It can be double, single, or of a mixed strandedness. It could also be a protein, in which case topology and strandedness are not relevant.

There is also a representation branch, which is independent of the molecule type branch. This class hierarchy involves the particular data structure used to represent the knowledge we have about the molecule, no matter which part of the molecule type branch it may be in. The repr element indicates the type of representation used. The aim of such a set of representation classes is to support the information to express different views of sequence based objects, from chromosomes to restriction fragments, from genetic maps to proteins, within a single overall model. The ability to do this confers profound advantages for software tools, data storage and retrieval, and traversal of related sequence and map data from different scientific domains.

A virtual representation is used to describe a sequence about which we may know things like it is DNA, it is double stranded, we may even know it's length, but we do not have the actual sequence itself yet. Most fields of the Seq-inst are filled in, but Seq-inst.seq-data is empty. An example would be a band on a restriction map.

A raw representation is used for what we traditionally consider a sequence. We know it is DNA, it is double stranded, we know its length exactly, and we have the sequence data itself. In this case, Seq-inst.seq-data contains the sequence data.

A segmented representation is very analogous to a virtual representation. We posit that a continuous double stranded DNA sequence of a certain length exists, and pieces of it exist in other Bioseqs, but there is no data in Seq-inst.seq-data. Such a case would be when we have cloned and mapped a DNA fragment containing a large protein coding region, but have only actually sequenced the regions immediately around the exons. The sequence of each exon is an individual raw Bioseq in its own right. The regions between exons are virtual Bioseqs. The segmented Bioseq uses Seq-inst.ext to hold a SEQUENCE OF Seq-loc. That is, the extension is an ordered series of locations on OTHER Bioseqs, in this case the raw and virtual Bioseqs representing the exons and introns. The segmented Bioseq contains data only by reference to other Bioseqs. In order to retrieve the base at the first position in the segmented Bioseq, one would go to the first Seq-loc in the extension, and return the appropriate base from the Bioseq it points to.

A constructed Bioseq is used to describe an assembly or merge of other Bioseqs. It is analogous to the raw representation. In fact, most raw Bioseqs were actually constructed from an assembly of gel readings. However, the constructed representation class is really meant for tracking higher level merging, such as when an expert in a particular organism or gene region may construct a "typical" sequence from that region by merging available sequence data, often published by different groups, using domain knowledge to resolve discrepancies between reports or to select a typical allele. Seq-inst contains an optional Seq-hist object. Seq-hist contains a field called "assembly" which is a SET OF Seq-align, or sequence alignments. The alignments are used to record the history of how the various component Bioseqs used for the merge are related to the final product. A constructed sequence DOES contain sequence data in Seq-inst.seq-data, unlike a segmented sequence, because the component sequences may overlap, or expert knowledge may have been used to determine the "correct" residue at any position that is not captured in the original components. So Seq-hist.assembly is used to simply record the relationship of the merge to the old Bioseqs, but does NOT describe how to generate it from them.

A map is akin to a virtual Bioseq. For example, for a genetic map of E.coli, we might posit that the E.coli chromosome is about 5 million base pairs long, DNA, double stranded, circular, but we do not have the sequence data for it. However, we do know the positions of some genes on this putative sequence. In this case, the Seq-inst.ext is a SEQUENCE OF Seq-feat, that is, a feature table. For a genetic map, the feature table contains Gene-ref features. An ordered restriction map would have a feature table containing Rsite-ref features. The feature table is part of Seq-inst because, for a map, it is an essential part of instantiating the map Bioseq, not merely annotation on a known sequence. In a sense, for a map, the annotation IS part of the sequence. As an aside, note that we have given gene positions on the E.coli genetic map in base pairs, while the standard E.coli map is numbered from 0.0 to 100.0 map units. Numbering systems can be applied to a Bioseq as a descriptor or a feature. For E.coli, we would simply apply the 0.0 - 100.0 floating point numbering system to the map Bioseq. Gene positions can then be shown to the scientists in familiar map units, while the underlying software still treats positions as large integers, just the same as with any other Bioseq.

Coordinates on ANY class of Bioseq are ALWAYS integer offsets. So the first residue in any Bioseq is at position 0. The last residue of any Bioseq is in position (length - 1).

The consequence of this design is that one uses EXACTLY the same data object to describe the location of a gene on an unsequenced restriction fragment, a fully sequenced piece of DNA, a partially sequenced piece of DNA, a putative overview of a large genetic region, or a genetic or physical map. Software to display, manipulate, or compare gene locations can work without change on the full range of possible representations. Sequence and physical map data can be easily integrated into a single, dynamically assembled view by creating a segmented sequence which points alternatively to raw or constructed Bioseqs and parts of a map Bioseq. The relationship between a genetic and physical map is simply an alignment between two Bioseqs of representation class map, no different than the alignment between two sequences of class raw generated by a database search program like BLAST or FASTA.

Locations on Biological Sequences

A Seq-loc is an object which defines a location on a Bioseq. The smooth class hierarchy for Seq-inst makes it possible to use the same Seq-loc to describe an interval on a genetic map as that used to describe an interval on a sequenced molecule.

Seq-loc is itself a class hierarchy. A valid Seq-loc can be an interval, a point, a whole sequence, a series of intervals, and so on.

Seq-loc ::= CHOICE {

null

NULL ,

empty

Seq-id ,

whole

Seq-id ,

int

Seq-interval ,

packed-int
Packed-seqint ,

pnt

Seq-point ,

packed-pnt
Packed-seqpnt ,

mix

Seq-loc-mix ,

equiv

Seq-loc-equiv ,

bond

Seq-bond ,

feat

Feat-id }

Seq-loc.null indicates a region of unknown length for which no data exists. Such a location may be used in a segmented sequence for the region between two sequenced fragments about which nothing, not even length, is known.

All other Seq-loc types, except Seq-loc.feat, contain a Seq-id. This means they are independent of context. This means that data objects describing information ABOUT Bioseqs can be created and exchanged independently from the Bioseq itself. This encourages the development and exchange of structured knowledge about sequence data from many directions and is an essential goal of the data model.

Associating Annotation With Locations On Biological Sequences

Seq-annot, or sequence annotation, is a collection of information ABOUT a sequence, tied to specific regions of Bioseqs through the use of Seq-loc's. A Bioseq can have many Seq-annot's associated with it. This allows knowledge from a variety of sources to be collected in a single place but still be attributed to the original sources. Currently there are three kinds of Seq-annot, feature tables, alignments, and graphs.

Feature Tables

A feature table is a collection of Seq-feat, or sequence features. A Seq-feat is designed to tie a Seq-loc together with a datablock, a block of specific data. Datablocks are defined objects themselves, many of which are objects used in their own right in some other context, such as publications (Pub) or references to organisms (Org-ref) or genes (Gene-ref). Some datablocks, such as coding regions (CdRegion) make sense only in the context of a Seq-loc. However, since by design there is no intention that one datablock need to have anything in common with any other datablock, each can be tailored exactly to do a particular job. If a change or addition is required to one datablock, no others are affected. In those cases where a pre-existing object from another context is used as a datablock, any software that can use that object can now operate on the feature as well. For example, a piece of code to display a publication can operate on a publication from a bibliographic database or one use as a sequence feature with no change.

Since the Seq-feat data structure itself and the Seq-loc used to attach it to the sequence are common to all features, it is also possible to support a class of operations over all features without regard to the different types of datablocks attached to them. So a function to determine all features in a particular region of a Bioseq need not care what type of features they are.

A Seq-feat is bipolar in that it contains up to two Seq-loc's. Seq-feat.location indicates the "source" and is the location similar to the single location in common feature table implementations. Seq-feat.product is the "sink". A CdRegion feature would have its Seq-feat.location on the DNA and it's Seq-feat.product on the protein sequence produced. Used this way it defines the process of translating a DNA sequence to a protein sequence. This establishes in an explicit way the important relationship between nucleic acid and protein sequence databases.

The presence of two Seq-loc's also allows a more complete representation of data conflicts or exceptional biological circumstances. If an author presents a DNA sequence and its protein product in a figure in a paper, it is possible to enter the DNA and protein sequences independently, and then confirm through the CdRegion feature that the DNA in fact translates to that protein sequence. In an unfortunate number of published papers, the DNA presented does not translate to the protein presented. This may be a signal that the database has made an error of some sort, which can be caught early and corrected. Or the original paper may be in error. In this case, the "conflict" flag can be set in CdRegion, but the protein sequence is not lost, and retroactive work can be done to determine the source of the problem. It may also be the case that a genomic sequence cannot be translated to a protein for a known biological reason, such as RNA editing or suppressor tRNAs. In this case the "exception" flag can be set in Seq-feat to indicate that the data are correct, but will not behave in the expected way.

Sequence Alignments

A sequence alignment is essentially a correlation between Seq-locs, often associated with some score. An alignment is most commonly between two sequences, but it may be among many at once. In an alignment between two raw Bioseqs, a certain amount of optimization can be done in the data structure based on the knowledge that there is a one to one mapping between the residues of the sequences. So instead of recording the start and stop in Bioseq A and the start and stop in Bioseq B, it is enough to record the start in A and the start in B and the length of the aligned region. However if one is aligning a genetic map Bioseq with a physical map Bioseq, then one will wish to allow the aligned regions to distort relative one another to account for the differences from the different mapping techniques. To accommodate this most general case, there is a Seq-align type which is purely correlations between Seq-locs of any type, with no constraint that they cover exactly the same number of residues.

A Seq-align is considered to be a SEQUENCE OF segments. Each segment is an unbroken interval on a defined Bioseq, or a gap in that Bioseq. For example, let us look at the following three dimensional alignment with 6 segments:

Seq-ids

id=100

AAGGCCTTTTAGAGATGATGATGATGATGA

id=200

AAGGCCTaTTAG.......GATGATGATGA

id=300

....CCTTTTAGAGATGATGAT....ATGA

| 1 | 2 | 3 | 4| 5 | 6 | Segments

The example above is a global alignment that is each segment sequentially maps a region of each Bioseq to a region of the others. An alignment can also be of type "diags", which is just a collection of segments with no implication about the logic of joining one segment to the next. This is equivalent to the diagonal lines that are shown on a dot-matrix plot.

The example above illustrates the most general form of a Seq-align, Std-seg, where each segment is purely a correlated set of Seq-loc. Two other forms of Seq-align allow denser packing of data for when only raw Bioseqs are aligned. These are Dense-seg, for global alignments, and Dense-diag for "diag" collections. The basic underlying model for these denser types is very similar to that shown above, but the data structure itself is somewhat different.

Sequence Graph

The third annotation type is a graph on a sequence, Seq-graph. It is basically a Seq-loc, over which to apply the graph, and a series of numbers representing values of the graph along the sequence. A software tool which calculates base composition or hydrophobic tendency might generate a Seq-graph. Additional fields in Seq-graph allow specification of axis labels, setting of ranges covered, compression of the data relative to the sequence, and so on.

Collections of Related Biological Sequences

It is often useful, even "natural", to package a group of sequences together. Some examples are a segmented Bioseq and the Bioseqs that make up its parts, a DNA sequence and its translated proteins, the separate chains of a multi-chain molecule, and so on. A Bioseq-set is such a collection of Bioseqs.

Bioseq-set ::= SEQUENCE {

id
Object-id
OPTIONAL ,

coll
Dbtag

OPTIONAL ,

level
INTEGER
OPTIONAL ,

class
ENUMERATED {

not-set (0) ,

nuc-prot (1) ,

segset (2) ,

conset (3) ,

parts (4) ,

gibb (5) ,

gi (6) ,

genbank (7) ,

 pir (8) ,

pub-set (9) ,

equiv (10) ,

swissprot (11) ,

pdb-entry (12) ,

other (255) } DEFAULT not-set ,

release
VisibleString
OPTIONAL ,

date
Date

OPTIONAL ,

descr
Seq-descr
OPTIONAL ,

seq-set
SEQUENCE OF Seq-entry ,

annot
SET OF Seq-annot OPTIONAL }

The basic structure of a Bioseq-set is very similar to that of a Bioseq. Instead of Bioseq.id, there is a series of identifier and descriptive fields for the set. A Bioseq-set is only a convenient way of packaging sequences so controlled, stable identifiers are less important for them than they are for Bioseqs. After the first few fields the structure is exactly parallel to a Bioseq.

There are descriptors which describe aspects of the collection and the Bioseqs within the collection. The general rule for descriptors in a Bioseq-set is that they apply to "all of everything below". That is, a Bioseq-set of human sequences need have only one Org-ref descriptor for "human" at the top level of the set, and it is applied to all Bioseqs within the set.

Then follows the equivalent of Seq-inst, that is the instantiation of the data. In this case, the data is the chain of contained Bioseqs or Bioseq-sets. A Seq-entry is either a Bioseq or Bioseq-set. Seq-entry's are very often used as arguments to display and analysis functions, since one can move around either a single Bioseq or a collection of related Bioseqs in context just as easily. This also makes a Bioseq-set recursive. That is, it may consist of collections of collections.

Seq-entry ::= CHOICE {

seq
Bioseq ,

set
Bioseq-set }

Finally, a Bioseq-set may contain Seq-annot's. Generally one would put the Seq-annot's which apply to more than one Bioseq in the Bioseq-set at this level. Examples would be CdRegion features that point to DNA and protein Bioseqs, or Seq-align which align more than one Bioseq with each other. However, since Seq-annot's always explicitly cite a Seq-id, it does not matter, in terms of meaning; at what level they are put. This is in contrast to descriptors, where context does matter.

Consequences of the Data Model

This data model has profound consequences for building sequence databases and for researchers and software tools interacting with them. Assuming that Seq-ids point to stable coordinate systems, it is easily possible to consider the whole set of data conforming to the model as a distributed, active heterogeneous database. For example, let us suppose that two raw Bioseqs with Seq-ids "A" and "B" are published in the scientific literature and appear in the large public sequence databases. They are both genomic nucleic acid sequences from human, each coding for a single protein.

One researcher is a specialist in transcription initiation. He finds additional experimental information involving detailed work on initiation for the flanking region of Bioseq "A". He can then submit a feature table with a TxInit feature in it to the database with his summarized data. He need not contact the original author of "A", nor edit the original sequence entry for "A" to do this. The database staff, who is not experts in transcription initiation, need not attempt to annotate every transcription initiation paper in sufficient detail and accuracy to be of interest to a specialist in the area. The researcher submitting the feature need not use any particular software system or computer to participate, he need only submit a ASN.1 message which conforms to the specification for a feature.

Another researcher is a medical geneticist who is interested in the medical consequences of mutations in the gene on Bioseq "B". This individual can add annotation to "B" which is totally different in content to that added by the transcription specialist (in fact, it is unlikely that either follows the literature read by the other) and submit the data to the database in precisely the same way.

A third group may be doing bulk sequencing in the region of the human chromosome where "A" and "B" lie. They produce a third sequence, "C", which they discover by sequence similarity and mapping data, overlaps "A" at one end and "B" at the other. This group can submit not just the sequence of "C" but its relationship to "A" and "B" to the database and as part of their publication.

The database now has the information from five different research groups, experts in different fields, using different computer and software systems, and unaware, in many cases, of each other's work, to unambiguously pull together all this related information into an integrated high level view through the use of the shared data model and the controlled Seq-ids on common cited coordinate systems. This integration across disciplines and generation of high level views of the data is continuously and automatically available to all users and can be updated immediately on the arrival of new data without human intervention or interpretation by the database staff. This moves scientific databases from the role of curators of scientific data to the role of facilitators of discourse among researchers. It makes identification of potentially fruitful connections across disciplines an automatic result of data entry, rather than of painstaking analysis by a central group. It takes advantage of the growing rush of molecular biology data, making its volume and diversity advantages rather than liabilities.

CoreLib: Portable Core Library

Introduction
Application Frameworks
User Interface Elements
Configuration Files
Error Processing
Files and Directories
Memory Management
Byte Stores
String Functions
ValNode Functions
Math Functions
Miscellaneous Utilities
Portability Issues

 Introduction

NCBI has defined a series of header files, basic utility routines, and programming guidelines for the C programming language intended to encourage good programming practice in general and to facilitate the creation of code which will compile and run without change on a variety of hardware platforms under a variety of operating systems and user interfaces, both command line and windowing. We have developed and tested the system on Intel 80386 and 80486 machines under MS-DOS and Microsoft Windows 3.1, on various Macintosh II machines under Mac-OS, on many different machines under UNIX, on an IBM 3090 running AIX and on VMS VAX. A complete list of systems is given in the README file for the NCBI software toolkit release.

A large number of applications have been written using this set of core tools, and they compile and run without change on all the above system. While there is clearly no perfect or all inclusive system, we find this one works remarkably well. This system is not meant to be a universal panacea. It is meant only to allow the creation of portable code for most of the types of things scientists might want to do on a computer. It is not expected to support extremely interactive or graphically oriented programs, nor is it meant to support extremely computation resource limited applications. It is to make an average application portable and robust.

Application Frameworks

In C, there is a common programming model that we are all accustomed to, in which command-line arguments are made available to the program's main function and the stdin and stdout streams are used for input and output data. However, with some of the modern graphical user interfaces, this may not be convenient or desired. Furthermore, graphical interfaces generally require substantial initialization before any application code runs and may require specific steps be taken before application exits. The exact steps required vary widely from one platform to the next.

To simplify the process of writing programs that run in all of these situations, let us introduce the notion of an application framework, which takes care of whatever initialization and termination steps may be required and provides a uniform mechanism for obtaining program arguments. The NCBI Toolkit provides two application frameworks. The first is part of CoreLib and is extremely simple, but useful for "quick-and-dirty" tool development. The second is provided by Vibrant and supports the full look-and-feel of the target graphical interface (described elsewhere in this manual).

It is important to note that the use of these frameworks is purely optional. Any NCBI Toolbox function, with the single exception of the GetArgs, may be called from any application, whether it a simple UNIX filter program or a full-blown Macintosh application.

Main Entry Point

To use this simple framework, you should write a function called Main, which you can think of this as the entry point to your program. In fact, the true entry point (main or WinMain or whatever) is a function within CoreLib, which will perform whatever initilization is required for the platform and then call Main. From Main you will call functions to perform the task for which the program is designed and then Main should return zero on success or non-zero on failure, as in the following example.

#include <ncbi.h>

Int2 Main()

{

if (!DoSearch("swissprot","query.aa",12,0.1,"blast.out"))

return 1; /* failure */

return 0; /* success */

}

You should include the C header file ncbi.hxe "ncbi.h header file" to get the function definition (prototype) for Main, as well as all other functions, types, and constants described in this chapter. It turn includes various other headers, such as one that contains platform-specific definitions (ncbilcl.h) and others that define the interfaces to the various modules (for example, the memory management functions are defined in ncbimem.h). Since the order of inclusion may be important in certain instances, it is safest to simply include ncbi.h.

Getting Program Arguments

Notice that Main takes no parameters. How, then, will your program get access to arguments that may be supplied by the user? Early in the program, you should make a single call to a function called GetArgs to obtain the program's run-time arguments. Actually, GetArgs does more than just get arguments; it may also prompt the user for input, validate the arguments against allowed ranges, and convert them to the appropriate integer or floating point types. The Arg structurexe "Arg structure" contains all of the information required to do this and contains storage for the values returned by the function.

Boolean GetArgsxe "GetArgs function" (CharPtr progname, Int2 argcount, Arg *arglist)

Gets arguments for the program named progname. The argument specifications are stored in arglist, an array of Arg structures containing argcount elements. The Arg structure has the following definition:

typedef struct {

char *prompt;

/* Visible prompt for user */

char *defaultvalue;
/* Default value */

char *from;

/* Low value in allowed range */

char *to;

/* High value in allowed range */

Boolean
optional;
/* Is this argument optional? */

char
tag;

/* Command-line switch */

Int1
type;

/* Data type */

FloatHi
floatvalue;
/* Returned floating point value */

Int4
intvalue;

/* Returned integer value */

CharPtr
strvalue;
/* Returned string value */

} Arg, *ArgPtr;

The arguments on the command line are expected to consist of the dash (-) character, a single letter tag, and finally the argument value. There may be a space between the tag and the value. For example, "-F fname" and "-Ffname" are equivalent. The field called type determines how the argument is interpreted as well as where it is stored in the Arg structure.

	Datatype Symbol
	Data Type Description
	Storage Field in Arg

	ARG_BOOLEAN
	TRUE/FALSE value
	intvalue

	ARG_INT
	Integer value
	intvalue

	ARG_FLOAT
	Floating point value
	floatvalue

	ARG_STRING
	String value
	strvalue

	ARG_FILE_IN
	Name of input file
	strvalue

	ARG_FILE_OUT
	Name of output file
	strvalue

	ARG_DATA_IN
	Datalink in
	strvalue [[VERIFY]]

	ARG_DATA_OUT
	Datalink out
	strvalue [[VERIFY]]

Arguments are considered to be required unless the optional field is TRUE. The user will be prompted for all non-optional arguments not given on the command line using the string supplied in prompt. Optional arguments not supplied by the user are assigned to defaultvalue (may be NULL). All numerical arguments are converted from strings to either integer or floating point and validated against the valid range defined by the from and to fields (may be NULL for no validation). If all non-default arguments have been supplied and validated, TRUE is returned. If not, or if the only argument given is "-", the program usage is shown and the function returns FALSE.

The example above may be extend as follows.

#include <ncbi.h>

Arg arg[] = {

 {"Database","nr",NULL,NULL,FALSE,'D',ARG_STRING,0.0,0, NULL},

 {"Query file","query.aa",NULL,NULL,FALSE,'Q',ARG_FILE_IN,0.0,0, NULL},

 {"Threshold","13","5","25",TRUE,'T',ARG_BOOLEAN,0.0,0,NULL},

 {"Expect","0.1","0.01","10",TRUE,'E',ARG_FLOAT,0.0,0,NULL },

 {"Output file","blast.out",NULL,NULL,FALSE,'O',ARG_FILE_OUT,0.0,0, NULL}};

Int2 Main()

{

if (!GetArgs("demo",DIM(arg),arg))

return 1; /* failure */

if (!DoSearch(arg[0].strvalue,arg[1].strvalue,

arg[2].intvalue,arg[3].floatvalue,arg[4].strvalue))

return 1; /* failure */

return 0; /* success */

}

The Vibrant version of GetArgs produces a dialog box containing the prompt strings edit fields into which the user may enter the values. If all required arguments are supplied, TRUE is returned.

User Interface Elements

We find it useful to include a minimal set of functions in the core library to provide feedback to the user for such purposes as displaying messages (alerts), providing audible feedback (beeps), and indicating the progress of lengthy operations (monitors). However, we recognize that a significant amount of customization is needed to suit the tastes and requirements of individual applications programmers using this Toolkit. Indeed, every single user interface element described below may be replaced by one of your own design. This is done by registering hook functions with the library that will be called to generate the desired effects. Without this, your program will get the default functionality provided by CoreLib, which is extremely simple and uses primarily console I/O. Programs featuring a graphical interface will almost certainly want to install hook functions to provide something more elegant. For example, the Vibrant application framework installs hooks for all user interface elements prior to calling your Main function.

Alerts

Alerts are used to show a message to the user, which in some cases may be in the form of a question with a small number of possible answers.

MsgAnswer MsgAlertxe "MsgAlert function" (MsgKey key, ErrSev sev, const char *capt,
const char *fmt, ...)

Generates a message string using the format string fmt and a variable number of arguments. The key parameter is used to specify the list of possible user responses and may be any of the following constants.

Symbol
Description

KEY_NONE
No response requried (console) or OK button (graphical)

KEY_OK
OK button

KEY_OKC
OK and Cancel buttons

KEY_YN
Yes and No buttons

KEY_YNC
Yes, No and Cancel buttons

KEY_RC
Retry and Cancel buttons

KEY_ARI
Abort, Retry and Ignore buttons

Two additional parameters, a caption string capt and a severity code sev, may be supplied if desired. Although they are ignored in the default MsgAlert processing provided by CoreLib, these two arguments are passed through to the message hook function (if any) for use in graphical alerts. The caption string is intended for use in the caption bar of the alert window (if it has one) and is normally the name of the application. The severity code is for use in selecting an icon to appear in the content area of the window beside the message text. Any of the severity constants listed for the ErrPostEx function (described later in this chapter) may be used.

MsgAnswer MsgAlertStrxe "MsgAlertStr function" (MsgKey key, ErrSev sev,
const char *caption, const char *str)

Same as MsgAlert except that the message str is a single string instead of a format string and argument list.

MsgAnswer Messagexe "Message function" (Int2 option, const char *fmt, ...)

Displays a message to the user that is generated from the format specification string fmt and a variable list of arguments. The option argument modifies the behavior of the function and may be any one of the following.

Symbol
Description

MSG_ERROR
Beep, show the message, and wait for an acknowlegement from the user before continuing.

MSG_FATAL
Beep, show the message, then halt the program by calling the AbnormalExit function.

MSG_OK
Show the message and wait for an acknowledgement from the user before continuing (press the OK button or wait for a keypress).

MSG_OKC
Show the message and prompt for OK/Cancel.

MSG_YN
Show the message and prompt for Yes/No.

MSG_YNC
Show the message and prompt for Yes/No/Cancel.

MSG_RC
Show the message and prompt for Retry/Cancel.

MSG_ARI
Show the message and prompt for Abort/Retry/Ignore.

MSG_POST
Show the message and continue (in graphical interfaces, the alert must generally be dismissed by explicit action of the user).

MSG_POSTERR
Beep, show the message and continue.

Message calls MsgAlert to actually display the message. If an application property has been installed (see SetAppProperty) with the key "AppName", it is used as the caption when calling MsgAlert. Otherwise, there is no caption. The function result is an enumerated type and may be any of the following values.

typedef enum MsgAnswser

{

ANS_NONE,

ANS_OK,

ANS_CANCEL,

ANS_ABORT,

ANS_RETRY,

ANS_IGNORE,

ANS_YES,

ANS_NO

}

ASN_NONE is returned for the options that do not require any user response (MSG_POST and MSG_POSTERR).

MsgHook SetMessageHookxe "MsgAlert function" (MsgHook hook)

Installs hookxe "Hook function:for messages" as the function to be called for showing messages. A pointer to the previous hook function (if any) is returned, so that it is possible to later restore it. The message hook function should have the following form.

MsgAnswer LIBCALLBACK MyMessageHook (MsgKey key, ErrSev sev,

const char *caption, const char *message)

{

MsgAnswer answer;

/* Create a dialog box using caption as the title. Within

* content region, show message and an icon selected using

* sev. Place buttons on the dialog based on the value of

* key. Wait for the user to press a button, then destroy

* the dialog window and return the appropriate answer code. */

return answer;

}

Beeps

void Beepxe "Beep function" ()

Sounds an audible beep.

BeepHook SetBeepHookxe "SetBeepHook function" (BeepHook hook)

Installs hookxe "Hook function:for beeps" as the function to be called for sounding beeps. The function takes no arguments and has no return value. The return value is a pointer to the previous BeepHook.

void LIBCALLBACK MyBeepHook ()

{

PlaySoundFile("beep.snd");
}

Int2 Main ()

{

SetBeepHook(MyBeepFunction);

...etc...

return 0;

}

Monitors

Monitors are user interface elements used to indicate the status or progress of potentially lengthy operations. There are two general types of monitors. The first is the string monitor, which displays a series of strings, one after the other. The second is the integer range monitor, which indicates progress of an operation as an integer value within some defined range. String monitors and integer monitors must be created before they can be used using either MonitorStrNew or MonitorIntNew, respectively and destroyed when they are no longer needed using MonitorFree.

In addition to these, there is the notion of a default progress monitor which may be used by calling ProgMon, even though these may have been initialized in a completely different code module or not initialized at all. Normally, the default monotor is created in the top-level application code and registered with the system by calling SetProgMon.

The monitor functionality provided by CoreLib is appropriate for use in situations where console I/O is used. For applications having a graphical interface or for console-style programs in which customized monitor behavior is desired, you can write your own monitor hook function to implement the user interface and install it by calling SetMonitorHook. Programs using Vibrant need not do this as the application framework takes care of installing hook functions for all user interface elements.

MonitorPtr MonitorStrNewxe "MonitorStrNew function" (const char *title, Int2 len)

Creates a new string monitor with the caption title and returns a pointer to it. The maximum length of any string value is supplied as the len argument. NULL is returned on failure.

Boolean MonitorStrValuexe "MonitorStrValue function" (MonitorPtr mon, const char *sval)

Sets the value of the string monitor mon to the string sval. The return value indicates success or failure.

MonitorPtr MonitorIntNewxe "MonitorIntNew function" (const char *title, Int4 n1, Int4 n2)

Creates a new integer monitor with the caption title whose extent is from n1 to n2 and returns a pointer to it. NULL is returned on failure.

Boolean MonitorIntValuexe "MonitorIntValue function" (MonitorPtr mon, Int4 ival)

Sets the value of the integer monitor mon to ival. The return value indicates success or failure.

MonitorPtr MonitorFreexe "MonitorFree function" (MonitorPtr mon)

Frees the monitor mon, which may be either of the integer or string monitor class. The return value is always NULL.

MonitorHook SetMonitorHookxe "SetMonitorHook function" (MonitorHook hook)

Installs hook as the function to be called to carry out monitor activities. The value of the previous hook function is returned. The hook function should have the following form.

int LIBCALLBACK MyMonitorHook (Monitor *mon, MonCode code)

{

switch (code)

{

case MonCode_Create :

/* allocate memory & create interface elements here */

if (failure)

return FALSE;

break;

case MonCode_Destroy :

/* free memory & destroy interface elements here */

break;

case MonCode_IntValue :

/* */

break;

case MonCode_StrValue :

/* */

break;

default :

return FALSE;

}

return TRUE;
}

Boolean SetProgMonxe "SetProgMon function" (ProgMonFunc hook, VoidPtr data)

Installs hook as the function to be called for default progress monitor handling. A pointer to an arbitrary data block data and a string are passed to the hook function when it is called. In the example below, a normal string monitor is used for default processing.

Boolean LIBCALLBACK MyProgMonHook (VoidPtr data, CharStr str);

Monitor *defProgMon;

Int Main ()

{

defProgMon = MonitorStrNew(“Progress Messages”,80);

SetProgMon(MyProgMonHook,(void*)defProgMon);

... do stuff ...

MonitorFree(defProgMon);

return 0;
}

Boolean LIBCALLBACK MyProgMonHook (void *data, const char *str)

{

return MonitorStrValue((Monitor*)data,str);

}

Boolean ProgMonxe "ProgMon function" (CharPtr str)

Pass the string str to the default progress monitor. If no default monitor has been installed with SetProgMon, calling this function has no effect. The return value is whatever was returned by the default monitor hook function.

Configuration Files

A scheme for storing and modifying persistent system and application configuration options is provided. It is modeled on services provided in the Microsoft Windows environment and has been extended to work all of the platforms that we support.

File Names

Since each platform may have its own convention for naming configuration files, we have opted to use a common basename from which the actual filename can be derived as appropriate for the system. This is described in the table below, where xxx represents the basename.

	Platform
	File Name
	Locations searched

	UNIX
	.xxxrc
	1. Path from NCBI environment variable
2. User's home directory
3. Current working directory

	VMS
	.xxxrc
	1. Path from NCBI environment variable
2. User's home directory
3. Current working directory

	Macintosh
	xxx.cnf
	1. System Folder:Preferences
2. System Folder

	MS-DOS
	xxx.cfg
	1. Path from NCBI environment variable
2. Current directory

	MS-Windows
	xxx.ini
	1. Windows directory

File Format

Configuration files are plain ASCII text files that may be edited by the user. They are divided into sections, each of which is headed by the section name enclosed in square brackets. Below each section heading is a series of key=value strings, somewhat analogous to the environment variables that are used on many platforms. Any line that begins with a semi-colon is considered a comment. The following lines serve as an example of what may appear in a settings file:

[General]

AsnLoad = c:\ncbi\asnload

AsnData = c:\ncbi\asndata

[CD-ROM]

path = E:\

[NetService]

; Note: set USERNAME = ? to be prompted for your username

username=?

host=dispatcher@ncbi.nlm.nih.gov

timeout=30

Configuration File Functions

Boolean SetAppParamxe "SetAppParam function" (const char *filebase, const char *sect, const char *key, const char *val)

Sets the value of key to val in section sect of the configuration file specified by filebase. The return value indicates success or failure.

Boolean TransientSetAppParamxe "TransientSetAppParam function" (const char *filebase,
const char *sect, const char *key, const char *val)

Sets a configuration value like SetAppParam, except that the setting exists only in memory and is not written to the configuration file.

int GetAppParamxe "GetAppParam function" (const char *filebase, const char *sect,
const char *key, const char *dflt, char *buf, int buflen)

Searches section sect of the configuration file specified by filebase for key and returns its value in the buffer buf. If key is not found, the default value dflt is copied to buf. The return value is the number of characters copied to buf, which may be up to buflen-1.

Boolean FindPathxe "FindPath function function" (const char *filebase, const char *sect,
const char *key, char *buf, int buflen)

Gets a configuration setting by passing the supplied arguments to GetAppParam (with NULL as the default) and then ensures that the returned string is of the proper form for a filesystem path on the particular platform.

Error Processing

The core library includes functions for posting, reporting, logging, and handling whatever error conditions may be encountered during program execution. An important concept is that indicating that an error occurred, or posting an errorxe "Posting an error", can be functionally decoupled from the handling of that error. The function ErrPostEx is provided for posting an error along with an indication of its severity. If no special provisions have been made, default processing of the error will occur, which may include (depending on the severity) displaying the error to the user and halting the program. However, there are a number of ways to customize this behavior. The simplest is to adjust the severity level that will be displayed to the users or that will result in a fatal program exit using ErrSetMessageLevel and ErrSetFatalLevel, respectively. For maximal control, you can use ErrSetHandler to install your own function that will be called whenever an error is posted.

The software toolkit provides the ability to keep a log of all posted errorsxe "Logging errors", which we have found quite useful as an aid to debugging or for producing reports on large data processing runs. Error logging is performed at the time an error is posted, regardless of how or when the error is ever handled. Logging is disabled by default; to enable it, use ErrSetOptFlags with EO_LOGTO_USRFILE as the argument. The name of the file can be modified with the ErrSetLogfile function.

When interpreting an error message, it is sometimes useful to know something about the context in which the error was posted. For example, knowing that an error is from the ASN.1 function library as opposed to the network services library might be of assistance in diagnosing problems with a client program that retrieves ASN.1 data from a network service. In the past we have used defined integer context codes for this purpose. However, for a variety of reasons, we now prefer to use a string to indicate the context, or module, in which the error occurred. At a finer granularity, you might want to know the filename and line number in the C source file in which the error was posted, but that is mainly of interest to programmers and not shown by default. In order to allow some context information to be captured with minimal effort, we make use of two macros, THIS_MODULExe "THIS_MODULE macro" and THIS_FILExe "THIS_FILE macro", which you can (but are not required to) define once at the top of each source file. Both represent strings and may be defined as NULL if they are to be ignored. If you do not define them at all, you will inherit the default definitions from ncbierr.h:

#ifndef THIS_MODULE

#define THIS_MODULE NULL

#endif

#ifndef THIS_FILE

#define THIS_FILE __FILE__

#endif

ErrPostEx is actually implemented as a macro, which passes these two strings, along with the line number, to the toolbox functions (this obviates the need for several additional arguments). Since not all linkers will merge duplicate strings, it is usually best to instantiate string variables for the module and filename and define the macros as aliases. Without doing this it is possible to end up with one copy of each string for each expansion of the ErrPostEx macro.

A typical example would be:

static char *this_module = "MyModule";

#define THIS_MODULE this_module

static char *this_file = __FILE__;

#define THIS_FILE this_file

#include <ncbi.h>

If you wish to include the ncbi.h header file first, then you can undefine the symbols prior to redefining them.

A recent enhancement to the error processing code is support for error message filesxe "Error message files:about". These files may contain information allowing you to (1) convert integer error codes to a mnemonic string on output, (2) provide a verbose explanatory message to be appended to the standard error message, and (3) specify the severity level to be used for any error. The files are plain ASCII text and fairly easy to edit, so they may be used to customize error reporting according to the preferences of individual users.

Posting An Error

void ErrPostxe "ErrPost function" (int context, int errcode, const char *fmt, ...)

Posts a fatal error that is defined by errcode and described to the user by means of a string that is generated from the format string fmt a variable number of arguments. The context argument is effectively the equivalent of the module, but it is only displayed if THIS_MODULE has not been defined to anything (i.e., if it is defined to NULL, as it is in ncbierr.h).

NOTE: This is an old function that has been retained for compatibility purposes. New code should use ErrPostEx instead.

int ErrPostExxe "ErrPostEx function" (ErrSev sev, int errcode, int subcode,
const char *fmt, ...)

Posts an error of severityxe "Error severities" sev. The error is defined by errcode and subcode and described to the user by means of a string that is generated from the format string fmt a variable number of arguments. The return value is the same as that returned by ErrPostStr (see below). The possible severity codes are:

Symbol
Description

SEV_INFO
Purely an informational message, not a true error.

SEV_WARNING
Warning of a possible error condition.

SEV_ERROR
An error has occurred but execution can continue.

SEV_FATAL
An fatal (non-continuable) error has occurred.

int ErrPostStrxe "ErrPostStr function" (ErrSev sev, int errcode, int subcode,
const char *str)

Posts an error as described for the ErrPostEx function except that str contains the descriptive error text as a single string instead of a format string plus variable argument list (hence, it can be called from programs that are written in languages other than C or C++).

Both ErrPost and ErrPostEx call ErrPostStr after formatting the string and this is where the real work takes place. First, an internal ErrDesc structure is populated with all of the information describing the error that occurred. If logging is enabled and sev is greater than or equal to the current LogLevel, this information is then logged according to whatever style flags have been set using the ErrSetOptFlags function. The user-supplied error handler function is given the first opportunity to handle the error. If it returns zero or if there is no such function, default processing takes place. If sev is greater than or equal to the current MessageLevel, Message is called to display the error to the user. If sev is greater than or equal to the current FatalLevel, the program is halted by calling AbnormalExit.

The return value is one of the "answer codes" (e.g. ANS_OK) that may be returned by the MsgAlert function. If the programmer has installed an error handler function, it should return one of these codes if it handles the error or zero otherwise. If MsgAlert was called as a result of default error processing, its result value is returned to the caller. If neither of these is true, zero is returned.

User Error Strings

One thing we have found to be quite useful is the ability to include in the error messages additional strings defined by the user (meaning the programmer in this case) in order to provide additional information about the context in which the error occurred. For example, image that you have a program that streams through every record in a sequence database performing some sort of analysis or calculation. Before processing each record you could use ErrUserInstall supplying (say) its accession number as the string. Then, if any error occurs during the run, you would know which record was being processed at the time because its accession number would be part of the error message.

ErrStrId ErrUserInstallxe "ErrUserInstall function" (const char *msg, ErrStrId id)

If id is zero, the string msg is added to the list of user-defined error strings and a unique id value for that string is returned. Otherwise, the text of an existing entry in the list identified by id is replaced with msg.

Boolean ErrUserDeletexe "ErrUserDelete function" (ErrStrId id)

Deletes the user-defined error string identified by id (returned by ErrUserInstall).

void ErrUserClearxe "ErrUserClear function" ()

Clears the entire list of user-defined error strings.

Customization

int ErrSetFatalLevelxe "ErrSetFatalLevel function" (ErrSev level)

Sets the minimum severity that will result in a fatal exit to level. The return value is the previous setting. The default value is SEV_FATAL, but changing it to SEV_MAX will prevent the application aborting.

int ErrGetFatalLevelxe "ErrGetFatalLevel function" ()

Returns the current FatalLevel value.

int ErrSetMessageLevelxe "ErrSetMessageLevel function" (ErrSev level)

Sets the minimum severity that will be displayed to the user (via the Message function) to level.The return value is the previous setting. The default value is SEV_WARNING, but setting it to SEV_MAX will disable all error reporting.

int ErrGetMessageLevelxe "ErrGetMessageLevel function" ()

Returns the current MessageLevel setting.

int ErrSetLogLevelxe "ErrSetLogLevel function" (ErrSev level)

Sets the minimum severity that will be logged to level. The return value is the previous setting. The default value is SEV_INFO. Note that one of the log output channels (logfile, stderr, or trace) must be enabled before any logging will occur.

int ErrGetLogLevelxe "ErrGetLogLevel function" ()

Returns the current LogLevel setting.

int ErrSetLogfilexe "ErrSetLogfile function" (const char *filename, unsigned long flags)

Sets the name of the error log file to filename (from the default name "error.log"). Note that the ER_LOG_USRFILE flag must be set (see below) to actually enable logging to the named file. The flags may be any of the following, which may be combined with the bitwise-OR operator.

Symbol
Description

ELOG_BANNER
Writes a banner line with the current time and date.

ELOG_APPEND
Appends to an existing file (if there is one).

ELOG_NOCREATE
Do not attempt to create the file at this time (wait until the first error is posted). Ignored if ELOG_BANNER given.

unsigned long ErrSetOptFlagsxe "ErrSetOptFlags function" (unsigned long flags)

Sets one or more bit-flags, which should be combined with the bitwise-OR operator into the flags argument. The flags may be any of the following [default state in brackets]:

Symbol
Description

EO_LOG_SEVERITY
Log an indication of the severity (e.g. "WARNING") to the file [yes]

EO_MSG_SEVERITY
Show an indication of the severity (e.g. "WARNING") to the user [yes]

EO_SHOW_SEVERITY
EO_LOG_SEVERITY | EO_MSG_SEVERITY

EO_LOG_CODES
Log the module name, error code, and subcode [yes]

EO_MSG_CODES
Show the module name, error code, and subcode to the user [yes]

EO_SHOW_CODES
EO_LOG_CODES | EO_MSG_CODES

EO_LOG_FILELINE
Log the source file and line number at which ErrPostEx was called [yes]

EO_MSG_FILELINE
Show the source file and line number to the user [no]

EO_SHOW_FILELINE
EO_LOG_FILELINE | EO_MSG_FILELINE

EO_LOG_USERSTR
Log programmer-defined error strings [yes]

EO_MSG_USERSTR
Show programmer-defined error strings to the user [yes]

EO_SHOW_USERSTR
EO_LOG_USERSTR | EO_MSG_USERSTR

EO_LOG_ERRTEXT
Show the error message to the user [yes]

EO_MSG_ERRTEXT
Log the error message [yes]

EO_SHOW_ERRTEXT
EO_LOG_ERRTEXT | EO_MSG_ERRTEXT

EO_LOG_MSGTEXT
Retrieve and log the verbose explanatory text from a message file [no]

EO_MSG_MSGTEXT
Retrieve the verbose explanatory text from a message file and and present it to the user [no]

EO_SHOW_MSGTEXT
EO_LOG_MSGTEXT | EO_MSG_MSGTEXT

EO_XLATE_CODES
Translate the integer error code and subcode into the mnemonic strings defined in an error message file. (If the file cannot be found, the integer values are displayed as if this flag were not set.)

EO_BEEP
Produce an audible beep when displaying an error to the user [no]

EO_WAIT_KEYPRESS
Wait for the user to press a key or button before continuing [no]

EO_PROMPT_ABORT
Prompt the user as to whether to abort [no]

EO_LOGTO_USRFILE
Log to the error log file [no]

EO_LOGTO_STDOUT
Log to stdout [no]

EO_LOGTO_STDERR
Log to stderr [no]

EO_LOGTO_TRACE
Log to the "trace device" (see TRACE, below) [no]

unsigned long ErrClearOptFlagsxe "ErrClearOptFlags function" (unsigned long flags)

Clears one or more bit-flags (see above), which may be combined with the bitwise-OR operator into the flags argument.

unsigned long ErrTestOptFlagsxe "ErrTestOptFlags function" (unsigned long flags)

Tests one or more bit-flags (see above), which may be combined with the bitwise-OR operator into the flags argument.

void ErrSaveOptionsxe "ErrSaveOptions function" (ErrOpts *erropt)

Copies all error option settings to the local buffer pointed to by erropt. This will include severity levels for logging, displaying, and aborting as well as all option flags. This should be done prior to changing any settings if you intend to later restore the state.

void ErrRestoreOptionsxe "ErrRestoreOptions function" (const ErrOpts *erropt)

Restores the error options state using the information that was previously captured using ErrSaveOptions in the buffer pointed to by erropt.

Configuration File Settings

The main configuration file for the NCBI toolkit (variously called .ncbirc, ncbi.ini, or ncbi.cfg, etc., depending on the platform) may contain settings within the "ErrorProcessing" section to provide additional runtime customization. Here are some example settings:

[ErrorProcessing]

; need to tell the system where the message files are kept

MsgPath=/sun/ncbi/errmsg

SEV_INFO = "==> note "

SEV_WARNING = "==> WARNING "

SEV_ERROR = "==> ERROR "

SEV_FATAL = "==> FATAL "

; override a few of the option flags

EO_SHOW_MSGTEXT = 1 ;always show me everything...

EO_BEEP = 0 ;...but those beeps drive me nuts

The MsgPath key is used to tell the system where to look for error message files. If this setting is not present, only the current directory will be examined. Failure to locate the error message file will not prevent any application from running. Instead, it will simply not be possible to convert integer error codes to strings or to display verbose error messages.

The strings that are used to indicate the severity of the error ("WARNING", for example) may be modified if desired. To do so, use the same symbols used to indicate severity in your code (e.g., SEV_WARNING) as the key with the desired string as the value. In the example above, the strings are quoted, but this is only required if leading or trailing spaces are to be included in the string.

In a similar fashion, each of the option flags may be set or cleared by using the symbol for that flag as the key and either 1 (one) or 0 (zero) as the value (alternatively, you can use YES/NO or TRUE/FALSE). Note that these settings override anything that the programmer may have chosen to implement. For example, if the configuration file contained the line EO_BEEP=0, there would be no beeps sounded on an error even if the code explicitly contained the command ErrSetOptFlags(EO_BEEP).

Preparing Error Message Files

You can use your favorite text editor to prepare error message filesxe "Error message files:preparing" as they are plain ASCII text. However, the name of the file is significant; it must be derived from the module name by converting to all lower case characters and appending the ".msg" extension. For example, the message file for the "CoreLib" module should be called "corelib.msg" (shown below). The first line of the file should consist of the keyword "MODULE" followed by the name of the module (e.g. "CoreLib" in the example below).

MODULE CoreLib

$$ NoMemory, 1, SEV_FATAL

$$ File, 2, SEV_INFO

$^ Open, 1

This often indicates that the file simply does not exist.

Alternatively, it may exist but you do not have permission to

access the file in the requested mode.

$^ Read, 2

Not sure what would cause this...

$^ Write, 3, SEV_FATAL

This may indicate that the filesystem is full.

$$ Math, 3

$^ Param, 1

$^ Domain, 2

$^ Range, 3

$^ Iter, 4

$$ SGML, 4

$^ Init, 1

$^ Braces, 2

$^ Entity, 3

Lines beginning with "$$" are used to define a main-level error code. The first two (comma delimited) tokens on the line are the mnemonic string and integer representations of the error. In the example above, the string "NoMemory" is equated to error code 1. These two tokens are required, but a third optional token may be supplied to specify a severity level to be used when posting that error. Note that this overrides the severity used by the programmer and therefore allows for runtime customization of the program. In the example above, all "NoMemory" errors would be fatal.

In a similar manner, lines beginning with "$^" may be used to define subcodes within the scope of the maincode that appears above it. In the example above, "Open" is a subcode within "File". A subcode can inherit a severity from its parent if it does not have one of its own. For example, SEV_INFO would used for all "File" errors with the exception of "Write", which would be SEV_FATAL.

Below any maincode or subcode line you may (optionally) enter a block of text to be used as the verbose error message. This is appended to the actual error message posted by the program and is intended to provide additional explanation. A common pitfall is to repeat the error message in the explanation. For example, you would probably not want to begin the explanation for File.Write with "A file write error has occurred" because this would almost certainly be in the original error message.

Fetching and Displaying Errors

int ErrPeekxe "ErrPeek function" ()

Returns a non-zero value if an error pending (i.e., has been posted but not yet processed).

int ErrCopyxe "ErrCopy function" (ErrDesc *errdesc)

In an error is pending, information about the error is copied to the local buffer pointed to by errdesc and a non-zero value is returned. The error is not cleared by this function and may still be displayed by calling ErrShow. Zero is returned if no error is pending.

void ErrClearxe "ErrClear function" ()

Clears a pending error, if there is one.

int ErrFetchxe "ErrFetch function" (ErrDesc *errdesc)

Copies the description of the pending error, if there is one, to errdesc and then clears the error condition (functionally equivalent to ErrCopy followed by ErrClear).

int ErrShowxe "ErrShow function" ()

If an error is pending and its severity is greater than or equal to the MessageLevel setting, it is displayed to the user via a call to the MsgAlert function. If the EO_PROMPT_ABORT option flag has been set, the message includes the question "Abort, Retry, or Ignore ?". In this case, if the users responds "Abort", the program aborts (otherwise, execution continues and either ANS_RETRY or ANS_IGNORE is returned so the caller may decide whether or not to distinguish between these alternatives). If the EO_PROMPT_ABORT bit is cleared (as it is by default), the program will abort if the severity of the error is greater than or equal to the FatalLevel.

Installing Custom Error Handlers

ErrHookProc ErrSetHandlerxe "ErrSetHandler function" (ErrHookProc hook)

Installs hookxe "Hook function:for error handling" as the function to be called when an error posted. If error logging is enabled, the error will already have been logged before the hook function is called. The hook function takes a pointer to an ErrDesc structure and should return a non-zero value if it handled the error (preferably ANS_OK) and zero if it did not. In the latter case, the system will perform the default error handling, which may involve displaying the error and/or halting the program.

Here's an Example:

#include <ncbi.h>

int LIBCALLBACK MyErrorHandler (const ErrDesc *err)

{

if (strcmp(err->cntxstr,"CoreLib") ==0 &&

err->errcode == E_NoMemory)

{

Beep(); Beep(); Beep(); /* something they'll notice! */

ReleaseLifeboat(); /* free up memory reserves */

return ErrShow();

}

return 0; /* zero means we didn't handle the error */

}

int main (int argc, char **argv)

{

ErrSetHandler(MyErrorHandler);

... do stuff ...

return 0;

}

Miscellaneous Utility Functions

void ErrLogPrintfxe "ErrLogPrintf function" (const char *fmt, ...)

Formats a string using a printf-style format string fmt and a variable-length list of arguments and then writes it to any error logging streams that may have been enabled.

void ErrLogPrintStrxe "ErrLogPrintStr function" (const char *str)

Similar to ErrLogPrintf, except that str is a single string to be written to the error logging streams (for users of programming languages other than C or C++).

void AbnormalExitxe "AbnormalExit function" (int)

Terminates the program immediately. This function should only be called if an application is not capable of exiting any other way. Cleanup code (e.g. closing files and sockets) will not generally get called before program halts. On some systems, calling this function may also invoke a debugger if one has been installed.

Files and Directories

[[...insert text here...]]

ANSI-Style Functions

	NCBI Toolbox
	ANSI C
	Description

	FileOpen
	fopen
	Opens a file for reading or writing

	FileClose
	fclose
	Closes an open file

	FileRead
	fread
	Reads bytes from an open file

	FileWrite
	fwrite
	Writes bytes to an open file

	FileGets
	fgets
	Reads a string from an open file

	FilePuts
	fputs
	Writes a string to an open file

Directory Management

Boolean CreateDirxe "CreateDir function" (char *pathname)

Creates a directory called pathname. The return value indicates success or failure.

void FileCreatexe "FileCreate function function" (char *fileName, char *type, char *creator)

[[...insert text here...]]

char* TmpNamxe "TmpNam function" (char *tmp)

Generates a unique temporary file name. If a pointer to a string buffer is supplied as the tmp argument, the name is placed there; otherwise it is formatted in a static buffer within the library. Either way, the return value points to the generated temporary file name.

Boolean FileRemovexe "FileRemove function" (char *fileName)

Removes the file fileName, if it exists. The return value indicates success or failure.

Boolean FileRenamexe "FileRename function" (char *oldFileName, char *newFileName)

Changes the name of a file from oldFileName to newFileName. The file cannot generally be moved from one directory to another, so no path should be included. The return value indicates success or failure.

char* FileBuildPathxe "FileBuildPath function" (char *root, char *subpath, char *filename)

[[...insert text here...]]

char* FileNameFindxe "FileNameFind function" (char *pathname)

Returns a pointer to the filename portion of pathname. For example, on a Macintosh system, FileNameFind("harddisk:System Folder:Excel Settings") would return a pointer to "Excel Settings".

Int4 FileLengthxe "FileLength function" (char *fileName)

Returns the length (in bytes) of the file called fileName. If the length cannot be determined, zero is returned.

CD-ROM

Boolean EjectCdxe "EjectCd function" (char *sVolume, char *deviceName, char *rawDeviceName, char *mountPoint, char *mountCmd)

Ejects a CD-ROM from the device. This function has no effect on DOS and Microsoft Windows systems.

	Parameter
	Operating System
	Description

	sVolume
	MacOS
	Volume name, e.g. “SEQDATA”

	deviceName
	UNIX
	Name of CD-ROM device, e.g. “/dev/sr0”

	rawDeviceName
	UNIX
	Name of raw device, e.g. “dev/rsr0”

	mountPoint
	UNIX, VMS
	Filesystem location where CD-ROM data should be mounted, e.g. “/cdrom”

	mountCmp
	UNIX
	A script or program that performs the ejecting and mounting actions. For many UNIX systems, mounting requires super-user privileges

Boolean MountCdxe "MountCd function" (char *sVolume, char *deviceName,
char *mountPoint, char *mountCmd)

Mounts a CD-ROM. The parameters are the same as those described for EjectCd, except that the raw device is not needed. This function has no effect on DOS and Microsoft Windows systems.

Customization

void SetFileOpenHook (FileOpenHook hook)

Installs hook as the function to be called by FileOpen to actually open the file. The arguments of the hook function are the same as those for FileOpen. In the following example, the hook function looks to see if a full path is given and, if so, first attempts to open a file of the same name in the current directory. If that fails, a normal file open is performed using the fopen function.

FILE* LIBCALLBACK MyFileOpenHook (const char *fname, const char *fmode);

Int 2 Main ()

{

SetFileOpenHook (myFileOpenHook);

... do stuff ...

return 0;
}

FILE* LIBCALLBACK MyFileOpenHook (const char *fname, const char *fmode)

{

/* Note: FileOpen checks for NULL arguments, so we don’t

have to do it here */

char *p = strchr(fname,DIRDELIMCHR);

if (p != NULL)

{

FILE *fd = fopen(p+1,fmode);

if (fd != NULL)

return fd;

}

return fopen(fname,fmode);
}

Memory Management

Services for the dynamic allocation and deallocation of memory differ widely among platforms. All of them provide standard ANSI functions, such as malloc, which allocates non-relocatable memory blocks that are referenced by pointers. In addition, the Macintosh and Microsoft Windows environments provide the ability to allocate relocatable memory blocks, which is designed to reduce heap fragmentation. Relocatable blocks are referenced by handles instead of pointers. They must be locked before use and a valid pointer is obtained as part of the lock operation. When they are later unlocked, the pointer becomes invalid. For most routine uses, we recommend using fixed memory. Clearly, fixed memory is easier to use (since locking is unnecessary), and ongoing advances in chip architectures and system software on the microcomputer platforms are eliminating the performance advantage that relocatable memory currently offers.

ANSI-Style Functions

	NCBI Toolkit
	ANSI C
	Description

	Malloc
	malloc
	Allocates memory

	Calloc
	calloc
	Allocates memory

	Realloc
	realloc
	Changes the size of a previously allocated block.

	Free
	free
	Frees a memory block.

	MemCopy
	memcpy
	Copies a range of bytes .

	MemMove
	memmove
	Copies a range of bytes (source and destination may overlap).

	MemFill
	memset
	Sets a range of bytes to a particular value.

Fixed Memory

void* MemGetxe "MemGet function" (size_t size, unsigned int flags)

Allocates a fixed memory block containing size bytes using options encoded in flags and returns a pointer to it. The flags may be any of the following:

Symbol
Description

MGET_CLEAR
Clears the allocated memory to zeros.

MGET_ERRPOST
Posts an error (severity ERR_FATAL) on memory allocation failure.

void* MemNewxe "MemNew function" (size_t bytes)

General-purpose fixed memory allocator that calls MemGet with the MGET_CLEAR and MGET_ERRPOST flags.

void* MemMorexe "MemMore function" (void *ptr, size_t size)

Changes the size of a fixed memory block ptr to size bytes. On failure, NULL is returned.

void* MemExtendxe "MemExtend function" (void *ptr, size_t size, size_t oldsize)

Changes the size of a fixed memory block ptr, the current size of which must be supplied as oldsize, to a new size of size. If size is greater than oldsize, the additional memory is cleared to zeros. On failure, NULL is returned.

void* MemDupxe "MemDup function" (const void *ptr, size_t size)

Duplicates a fixed memory block ptr, the size of which must be supplied as the size argument. On failure, NULL is returned.

void* MemFreexe "MemFree function" (void *ptr)

Frees the mixed memory block ptr (if it is non-NULL). The return value is always NULL.

Relocatable Memory

We provide functions for the manipulation of relocatable memory, but on systems where this is not available, fixed memory is used instead (and the type Handle is equivalent to Pointer).

Handle HandGetxe "HandGet function" (size_t size, Boolean clear)

Allocates a moveable memory block containing size bytes. On failure, NULL is returned (no error is posted).

Handle HandNewxe "HandNew function" (size_t size)

Allocates a moveable memory block containing size bytes and clears it to zeros. On failure, an error is posted (SEV_FATAL) and NULL is returned.

Handle HandMorexe "HandMore function" (Handle hnd, size_t size)

Changes the size of moveable block hnd to size bytes. On success, the return value is the re-sized block, which may or may not be the same as hnd. On failure, NULL is returned.

Handle HandFreexe "HandFree function" (Handle hnd)

Frees moveable memory block hnd (if non-NULL). The return value is always NULL.

void* HandLockxe "HandLock function" (Handle hnd)

Locks moveable memory block hnd and returns a pointer to it. The pointer remains valid until HandUnlock is called.

void* HandUnlockxe "HandUnlock function" (Handle hnd)

Unlocks moveable memory block hnd that was previously locked with HandLock.

NOTE: Ensure that you do not have nested HandLock/HandUnlock calls. Although some systems will handle this situation properly, others do not. Notably, on the Macintosh, HandUnlock will always unlocked by HandUnlock regardless of how many times it was locked.

Byte Stores

We have implemented an additional type of dynamic storage called a ByteStore. It is designed to look and behave much like an unformatted file, but its data exist in memory (however, due to various virtual memory schemes, the data may be in files after all!). A ByteStore is especially useful for storing large amounts of data that would normally exceed the limits imposed by systems using 16-bit memory addressing.

A ByteStore is created by BSNew and the pointer it returns is a requried argument for the remaining ByteStore functions. At the end of its lifespan, it is deallocated by the BSFree function.

A ByteStore has a logical length, which is returned by BSLen and corresponds to the number of bytes of data it contains. The physical length of a ByteStore is actual amount of memory allocated and is often larger than the logical length. All functions that add data to a ByteStore automatically take care of increasing the physical length to accommodate the logical length.

As with file I/O, a ByteStore uses the notion of a current position that is used for reading and writing data. The functions BSSeek and BSTell provide a means of setting and querying the current position. The functions BSRead, BSWrite, BSGetByte, and BSPutByte are analogous to functions used in file I/O. However, unlike file I/O, an block of data may be inserted or deleted internally using BSInsert and BSDelete.

ByteStorePtr BSNewxe "BSNew function" (long len)

Creates a ByteStore with an initial physical length of len and returns a pointer to it. If len is zero, a default physical size is used.

ByteStorePtr BSDupxe "BSDup function" (ByteStorePtr bs)

Creates a new ByteStore that is a copy of bs.

void* BSMergexe "BSMerge function" (ByteStorePtr bs, void *buff)

Copies all of the data in ByteStore bs to a single memory buffer buff. If buff is NULL, the function will allocate a buffer of the correct size. Otherwise, it is the responsibility of the caller to ensure that the buffer is at least as large as the value returned by BSLen. The return value is the pointer to the buffer containing the merged data.

ByteStorePtr BSFreexe "BSFree function" (ByteStorePtr bs)

Deallocates ByteStore bs (if bs is NULL, nothing happens). The return value is always NULL.

long BSLenxe "BSLen function" (ByteStorePtr bs)

Returns the logical length of ByteStore bs.

Int2 BSSeekxe "BSSeek function" (ByteStorePtr bs, long offset, int origin)

Moves the current position of ByteStore bs to offset bytes from the point indicated by origin, which may be any of the following:

Symbol
New position

SEEK_SET
offset bytes from the beginning of the ByteStore

SEEK_END
offset bytes from the end of the ByteStore

SEEK_CUR
offset bytes from the current position

long BSTellxe "BSTell function" (ByteStorePtr bs)

Returns the current position of ByteStore bs.

long BSWritexe "BSWrite function" (ByteStorePtr bs, void *buff, long len)

Writes len bytes of data from the memory buffer buff to the current position of ByteStore bs. Following this operation, the current position will be increased by the number of bytes written. The return value is the same as len if the write was successful or zero if not.

long BSReadxe "BSRead function" (ByteStorePtr bs, void *buff, long len)

Attempts to read len bytes of data from the current position of ByteStore bs to the buffer buff. The return value is the number of bytes actually read, which may be less than len if the logical end of data is reached. Following this operation, the current position will be increased by the number of bytes read.

long BSInsertxe "BSInsert function" (ByteStorePtr bs, void *buff, long len)

Inserts len bytes from memory buffer buff before the current position in ByteStore bs. The current position is then increased by len so that it points to the position just after the inserted range. The return value is the same as len if the insertion was successful or zero if not.

long BSInsertFromBSxe "BSInsertFromBS function" (ByteStorePtr bs, ByteStore *bs2, long len)

Inserts len bytes into ByteStore bs by reading them from a second ByteStore bs2. The return value is the actual number of bytes transferred, and the current positions of both ByteStores will be increased by this amount.

long BSDeletexe "BSDelete function" (ByteStorePtr bs, long len)

Deletes len bytes from ByteStore bs beginning at the current position (which is not changed by the operation). The return value specifies the actual number of bytes deleted, which may be less than len if the logical end of data was reached.

Int2 BSPutBytexe "BSPutByte function" (ByteStorePtr bs, int b)

Inserts the byte b at the current position of ByteStore bs and advances the position by one. If b is equal to the constant EOF, the ByteStore is truncated at the current position. The return value is b on success or EOF on failure.

Int2 BSGetBytexe "BSGetByte function" (ByteStorePtr bs)

Returns the byte at the current position of ByteStore bs and advances the position by one. If the logical end of data has been reached, the constant EOF is returned.

String Functions

ANSI-Style Functions

	NCBI Toolkit
	ANSI C
	Description

	StringLen
	strlen
	Gets string length

	StringCpy
	strcpy
	Copies a string

	StringNCpy
	strncpy
	Copies a string (n chars)

	StringCat
	strcat
	Catenates strings

	StringNCat
	strncat
	Catenates strings (n chars)

	StringCmp
	strcmp
	Compares strings

	StringNCmp
	strncmp
	Compares strings (n chars)

	StringChr
	strchr
	Searches for a character in a string (from beginning)

	StringRChr
	strrchr
	Searches for a chatacter in a string (from end)

	StringPBrk
	strpbrk
	Searches for first characters in a string that is a member of a specified set

	StringStr
	strstr
	Searches for a substring in a string

	StringSpn
	strspn
	Counts leading characters that are members of a specified set

	StringCSpn
	strcspn
	Counts leading characters that are not members of a specified set

	StringSet
	strset
	Sets all characters of a string to a specified character

	StringNSet
	strnset
	Sets up to n characters of a string to a specified character

	StringTok
	strtok
	Breaks a string into tokens

Refer to ANSI C documentation for details.

Additional String Functions

int StringICmpxe "StringICmp function" (const char *a, const char *b)

Compares strings a and b like StringCmp, but ignoring case (assumes ASCII character set).

int StringNICmpxe "StringNICmp function" (const char *a, const char *b, size_t n)

Compares up to the first n characters of strings a and b like StringNCmp, but ignoring case (assumes ASCII character set).

char* StringMovexe "StringMove function" (char *dst, const char *src)

Copies the string src to dst and returns a pointer to the null byte that terminates the concatenated string.

char* StringSavexe "StringSave function" (const char *str)

Copies str to a dynamically allocated memory block an returns a pointer to that block.

size_t StringCntxe "StringCnt function" (const char *str, const char *list)

Searches the string str for any of the characters of the string list and returns the number of occurrences found.

Number Strings

Several functions are provided for converting integers to ASCII strings. The following option flags determine how the string is formatted (may be combined with the bitwise-OR operator).

Symbol
Description

MISC_COMMAS
Insert commas only when |value| >= 10,000

MISC_ALLCOMMAS
Insert commas for any |value| >= 1,000

MISC_ANYCOMMAS
Both MISC_COMMAS and MISC_ALLCOMMAS

MISC_PLUSSIGNS
Prepend a plus sign (+) to positive values

char* Ltostrxe "Ltostr function" (long x, int opts)

Converts the integer value x to ASCII using options opts.

int Lwidthxe "Lwidth function" (long x, int opts)

Returns the length of the string that would result from the conversion of integer value x to ASCII using options opts.

char* Ultostrxe "Ultostr function" (unsigned long x, int opts)

Converts the unsigned integer value x to ASCII using options opts.

int Ulwidthxe "Ulwidth function" (unsigned long x, int opts)

Returns the length of the string that would result from the conversion of unsigned integer value x to ASCII using options opts.

Time Strings

Boolean DayTimeStrxe "DayTimeStr function" (char *buf, Boolean date, Boolean time)

Gets the current calendar time and generates a string representation in buf. containing the date and/or time as specified by the date and time arguments. The buffer should be of sufficient size to hold 24 characters.

SGML Strings

[[...insert text here...]]

char* Sgml2Asciixe "Sgml2Ascii function" (const char *sgml, char *ascii, size_t buflen)

Converts the SGML string in sgml into a printable ASCII string and copies it to ascii. The buflen parameter gives the length of the ascii buffer. The return value is the same as ascii [[check this]].

size_t Sgml2AsciiLenxe "Sgml2AsciiLen function" (const char *sgml)

Returns the length of the printable ASCII string that would result from convesion from SGML text.

ValNode Functions

A ValNode is a simple data structure that allows a mixture of data types to be grouped into a linked list. It contains a "choice" slot, which is used to discriminate the datatype held in the union called "data". ValNodes are used extensively in ASN.1 objects to represent CHOICE, SEQUENCE OF, and SET OF types. They are also used in other NCBI functions where a very flexible linked list is required.

typedef union dataval

{

VoidPtr ptrvalue;

Int4 intvalue;

FloatHi realvalue;

Boolean boolvalue;

} DataVal, *DataValPtr;

typedef struct valnode

{

Uint1 choice;

/* to pick a choice */

DataVal data;

/* attached data */

struct valnode *next;

/* next in linked list */

} ValNodexe "ValNode structure", *ValNodePtr;

ValNodePtr ValNodeNewxe "ValNodeNew function" (ValNodePtr node)

Creates a new ValNode and returns a pointer to it. If desired, the newly-created node may be attached to the end a linked list, of which node is the tail element. Otherwise node should be NULL.

ValNodePtr ValNodeAddxe "ValNodeAdd function" (ValNodePtr *head)

Creates a new ValNode and returns a pointer to it. The head argument points to a variable that contains the head element of a linked list of ValNodes to which the new node should be appended. If head contains NULL, it will be initialized with the pointer to the newly-created ValNode.

ValNodePtr ValNodeAddBooleanxe "ValNodeAddBoolean function" (ValNodePtr *head, Int2 choice, Boolean bool)

Creates a new ValNode by calling ValNodeAdd and sets its choice member to choice and its data.boolvalue member to bool. The return value is the new ValNode.

ValNodePtr ValNodeAddInt (ValNodePtr *head, Int2 choice, Int4 value)

Creates a new ValNode by calling ValNodeAdd and sets its choice member to choice and its data.intvalue to value. The return value is the new ValNode.
ValNodePtr ValNodeAddFloat (ValNodePtr *head, Int2 choice, FloatHi value)

Creates a new ValNode by calling ValNodeAdd and sets its choice member to choice and its data.intvalue to value. The return value is the new ValNode.
ValNodePtr ValNodeAddStrxe "ValNodeAddStr function" (ValNodePtr *head, Int2 choice, CharPtr str)

Creates a new ValNode by calling ValNodeAdd and sets its choice member to choice and its data.ptrvalue member to the string str. The string is not copied to allocated storage. The return value is the new ValNode.

ValNodePtr ValNodeCopyStrxe "ValNodeCopyStr function" (ValNodePtr *head, Int2 choice, CharPtr str)

Creates a new ValNode by calling ValNodeAdd and sets its choice member to choice and its data.ptrvalue member to a copy of the string str. The return value is the new ValNode.

ValNodePtr ValNodeAddPointer (ValNodePtr *head, Int2 choice, Pointer ptr)

Creates a new ValNode by calling ValNodeAdd and sets its choice member to choice and its data.ptrvalue to ptr. The return value is the new ValNode.

ValNodePtr ValNodeLinkxe "ValNodeLink function" (ValNodePtr *head, ValNodePtr node)

Adds node to the end of a linked list whose head element is in the variable pointed to by head. If head contains NULL, it is initialized with to the value of node. The return value is always the head element of the linked list.

ValNodePtr ValNodeFreexe "ValNodeFree function" (ValNodePtr node)

Frees an entire list of ValNode structures of which node is the head element. Whatever data may be referenced in the data member is not freed. The return value is always NULL.

ValNodePtr ValNodeFreeDataxe "ValNodeFreeData function" (ValNodePtr vn)

Frees a list of ValNode structures like the ValNodeFree function, except that associated data is also freed. This function should only be used if it is known that the data.ptrvalue member of every node in the list is either NULL or a valid pointer to a single fixed memory block.

ValNodePtr ValNodeExtractxe "ValNodeExtract function" (ValNodePtr *head, Int2 choice)

Scans the linked list whose head element is in the variable pointed to by head for the first node whose choice element is equal to choice. If found, the node is unlinked from the list and returned as the function result. If it is not found, NULL is returned.

ValNodePtr ValNodeExtractList (ValNodePtr *headptr, Int2 choice)

Scans the linked list whose head element is in the variable pointed to by head for all nodes whose choice element is equal to choice. The return value is the head element of a linked list of all such nodes.

ValNodePtr ValNodeFindNext (ValNodePtr head, ValNodePtr curr, Int2 choice)

Scans a linked list of ValNodes for a node whose choice member is equal to choice and returns a pointer to it. The search begins with curr, if non-NULL, or head otherwise. If choice is negative, the next node is returned.

ValNodePtr NodeListNewxe "NodeListNew function" (void)

[[...insert text here...]]

ValNodePtr NodeListFreexe "NodeListFree function" (ValNodePtr head)

[[...insert text here...]]

Int2 NodeListLenxe "NodeListLen function" (ValNodePtr node)

Returns the number of elements in the linked list of which node is the head element.

ValNodePtr NodeListFindxe "NodeListFind function" (ValNodePtr head, Int2 item, Boolean extend)

[[...insert text here...]]

Boolean NodeListReadxe "NodeListRead function" (ValNodePtr head, Int2 item, VoidPtr ptr, size_t size)

[[...insert text here...]]

Boolean NodeListWritexe "NodeListWrite function" (ValNodePtr head, Int2 item, VoidPtr ptr, size_t size)

[[...insert text here...]]

Boolean NodeListAppendxe "NodeListAppend function" (ValNodePtr head, VoidPtr ptr, size_t size)

[[...insert text here...]]

Boolean NodeListInsertxe "NodeListInsert function" (ValNodePtr head, Int2 item, VoidPtr ptr, size_t size)

[[...insert text here...]]

Boolean NodeListReplacexe "NodeListReplace function" (ValNodePtr head, Int2 item, VoidPtr ptr, size_t size)

[[...insert text here...]]

Boolean NodeListDeletexe "NodeListDelete function" (ValNodePtr head, Int2 item)

[[...insert text here...]]

Math Functions

Macros

	Macro
	Description

	LN2xe "LN2 macro"
	Natural logarithm of 2

	LN10xe "LN10 macro"
	Natural logarithm of 10

	EXP2xe "EXP2 macro"(x)
	Base-2 exponential of x

	LOG2xe "LOG2 macro"(x)
	Base-2 logarithm of x

	EXP10xe "EXP10 macro"(x)
	Base-10 exponential of x

	LOG10xe "LOG10 macro"(x)
	Base-10 logarithm of x

Arithmatic Functions

long Gcdxe "Gcd function" (long a, long b)

Returns the greatest common divisor of a and b.

long Nintxe "Nint function" (double x)

Returns the nearest integer to x.

Transendental Functions

double Log1pxe "Log1p function" (double x)

Returns log(x+1) for all x > -1

double Expm1xe "Expm1 function" (double x)

Returns exp(x)-1 for all x
double Powixe "Powi function" (double x, int n)

Returns the integral power of x
double Factorialxe "Factorial function" (int x)

Returns x! (x factorial)

Gamma Functions

double Gammaxe "Gamma function" (double x)

gamma(x)

double LnGammaxe "LnGamma function" (double x)

log(gamma(x))

double LnGammaIntxe "LnGammaInt function" (int n)

log(gamma(n)), integral n

double DiGammaxe "DiGamma function" (double x)

digamma(x) 1st order derivative of log(gamma(x))

double TriGammaxe "TriGamma function" (double x)

trigamma(x) 2nd order derivative of log(gamma(x))

double PolyGammaxe "PolyGamma function" (double x, int order)

Nth order derivative of log(gamma)

void GammaCoeffSetxe "GammaCoeffSet function" (double *coef, unsigned dimension)

Change gamma coefficients

Advanced Functions

double LogDerivativexe "LogDerivative function" (int order, double *u)

Nth order derivative of ln(u)

double NRBisxe "NRBis function" (double y, double(*f) (double), double (*df) (double), double p, double x, double q, double tol)

Combined Newton-Raphson and Bisection root solver

double RombergIntegratexe "RombergIntegrate function" (double(*f)(double, VoidPtr), void *fargs, double p, double q, double eps, int epsit, int itmin)

Romberg numerical integrator

Miscellaneous Utilities

Macros

	Macro
	Description

	ABSxe "ABS macro"(a)
	Returns the absolute value of a (any numerical type).

	SIGNxe "SIGN macro"(a)
	Returns -1 if a is negative, +1 if it is positive, or 0 if it is zero.

	MINxe "MIN macro"(a,b)
	Returns the maximum of a and b (any numerical type).

	MAXxe "MAX macro"(a,b)
	Returns the minimum of a and b (any numerical type).

	ROUNDUPxe "ROUNDUP macro"(a,b)
	Rounds a up to the nearest multiple of b.

	DIMxe "DIM macro"(a)
	Returns the dimension (number of elements) in the array a.

Random Numbers

void RandomSeedxe "RandomSeed function" (long seed)

Sets the seed value of the random number generator to seed.

long RandomNumxe "RandomNum function" ()

Returns the next value in the series of pseudo-random numbers.

Sorting

void HeapSortxe "HeapSort function" (void *base, size_t nel, size_t size,
int (LIBCALLBACK *cmp)(VoidPtr,VoidPtr))

Sorts an array of elements, which may be of any basic or structured type. The starting address of the array is base, with nel and size being the number and size of elements in the array. A pointer to an element comparison function cmp must also be supplied.

Time

time_t GetSecsxe "GetSecs function" ()

Returns the current value of a timer that ticks once per second.

Boolean GetDayTimexe "GetDayTime function" (struct tm *dtp)

Returns the current time in broken-down format.

Process ID

long GetAppProcessIDxe "GetAppProcessID function" ()

Returns a unique number identifying the process.

Application Properties

We will refer to named block of arbitrary data associated with a single application instance as an application property. Application properties have two main uses. First, they allow for isolation of application instance data in certain shared library contexts where the data space would normally be shared by all applications using the library. Second, they allow for a simple level of communication between code modules without requiring that they “know” anything about each other. For example, during initialization of your program, you might create a property called “ProgramName” with a string giving the name of your program. Other code modules might then use this property when generating various messages and reports. Application properties are identified by a string with case being significant. They are created or modified with SetAppProperty, retrieved with GetAppProperty, and destroyed with RemoveAppProperty. If you want to scan through the property list, use EnumAppProperties with a pointer to a callback function to be called once for each property.

void* SetAppPropertyxe "SetAppProperty function" (const char *key, void *data)

Installs data, identified by key, as a property of the current application.

void* GetAppPropertyxe "GetAppProperty function" (const char *key)

Returns the property data associated with key. If the property does not exist, NULL is returned.

void* RemoveAppPropertyxe "RemoveAppProperty function" (const char *key)

Removes the property of the current application that is identified by key, if there is one. If the data pointer for this property is returned as the function result and it is the responsibility of the programmer to release whatever dynamic memory may be involved.

int EnumAppPropertiesxe "EnumAppProperties function" (AppPropEnumProc proc)

Calls the user-supplied function proc once for each property of the current application.

Debugging Macros

The following macros are designed to assist in debugging during program development (or more precisely to prevent the need for debugging!) and are only enabled if the macro _DEBUG is defined during compilation. However, when the time comes to build a "release version" to distribute to end-users, they can be easily disabled by recompiling without _DEBUG defined.

void TRACExe "TRACE macro" (const char *fmt, ...)

Formats a string using fmt as a printf-style format string along with a variable number of arguments and then writes it to the "trace device". What the trace device actually represents differs with the platform and compiler switches. Under Microsoft Windows, traced messages go to the debugger console (AUX) if it is running. Although similar facilities may exist on other platforms, none are supported at present (but we will entertain any suggestions you may have). For this reason the default “trace device” on UNIX systems is “stderr” and on all other platforms is to a file called “trace.out”. This behavior may be circumvented by doing the following prior to including <ncbi.h>:

#define one of these symbols:

TRACE_TO_STDOUT

TRACE_TO_STDERR

TRACE_TO_AUX (Windows only)

TRACE_TO_FILE (goes to “trace.out”)

Followed by:

TRACE_DEVICE_DEFINED (inhibits redefinition)

Note that all the above only makes TRACEing possible, but does not enable the feature. To do so, compile selected files with the symbol _DEBUG defined. This is _not_ done in the default makefiles. When _DEBUG is not defined, TRACE() has no effect.

ASSERTxe "ASSERT macro"(expression)

If _DEBUG is defined, asserts that expression is TRUE. If it evaluates to FALSE, a message is displayed giving the expression and the file name and line number where the assertion failed. After this, the program halts through a call to AbnormalExit. If _DEBUG is not defined, expression is never evaluated.

VERIFYxe "VERIFY macro"(expression)

Similar to ASSERT, except that expression is always evaluated. This should be used if the expression contains an assignment or function call that should be executed regardless of whether or not _DEBUG is defined.

Portability Issues

There are always a variety of factors conspiring to hinder the portability of C code despite the best intentions of the programmer. These barriers are due to differences in hardware, operating systems, compilers, and filesystems.

We have attempted to sequester all system-specific definitions into a single header file called ncbilcl.hxe "ncbilcl.h header file" (which is included by ncbi.hxe "ncbi.h header file") It contains defined symbols describing the platform as well as type definitions and often a variety of macros. The NCBI Toolkit includes a version of this file for each of the supported platforms.

	Filename
	Hardware
	Operating System
	Compiler

	ncbilcl.370
	IBM 370
	AIX
	System V cc

	ncbilcl.acc
	Sun SPARC
	SunOS
	Sun acc

	ncbilcl.alf
	DEC Alpha-XP
	OSF/1
	DEC C compiler

	ncbilcl.aov
	DEC Alpha-XP
	OpenVMS
	BSD cc

	ncbilcl.aux
	Macintosh 68K
	AU/X
	AU/X

	ncbilcl.bor
	Intel PC
	MS-DOS
	Borland C/C++

	ncbilcl.bwn
	Intel PC
	Windows DOS
	Borland C/C++

	ncbilcl.ccr
	Sun SPARC
	SunOS
	CodeCenter

	ncbilcl.cpp
	Sun SPARC
	SunOS
	Sun C++

	ncbilcl.cra
	Cray YMP
	Unicos
	Cray C compiler

	ncbilcl.cvx
	CONVEX
	UNIX System V
	BSD cc

	ncbilcl.gcc
	Sun SPARC
	SunOS
	Gnu gcc or g++

	ncbilcl.hp
	HP PA-RISC
	HP-UX
	System V cc

	ncbilcl.mpw
	Macintosh 68K
	MacOS
	Apple MPW C

	ncbilcl.msc
	Intel PC
	MS-DOS
	Microsoft C

	ncbilcl.msw
	Intel PC
	Windows DOS
	Microsoft C

	ncbilcl.nxt
	Next
	NextStep
	Next C compiler

	ncbilcl.r6k
	IBM RS 6000
	AIX
	System V cc

	ncbilcl.sgi
	SGI MIPS
	UNIX System V
	System V cc

	ncbilcl.sol
	Sun SPARC
	Sun Solaris
	SunPro

	ncbilcl.sun
	Sun SPARC
	SunOS
	BSD cc

	ncbilcl.thc
	Macintosh 68K
	MacOS
	Symantec C/C++

	ncbilcl.ult
	DEC MIPS
	ULTRIX
	System V cc

	ncbilcl.vms
	VAX
	OpenVMS
	BSD cc

Portable Types

In C, the sizes of basic types vary with each compiler implementation. Certain minimum sizes are guaranteed by the ANSI standard, however. The choice of which type to use in any particular situation may be based on the required precision and the natural word size of the hardware. Always use the sizeof operator rather than assuming any particular size.

We have defined the following types.

Integral Types

	Type
	Description
	Size
	Min. Value
	Max. Value

	Boolean
	A TRUE or FALSE value
	 1
	FALSE
	TRUE

	Byte
	Smallest unit of storage that a C program can address (unsigned)
	1
	0
	UINT_MAX

	Char
	ASCII character occupying one byte of storage (may be either signed or unsigned)
	1
	CHAR_MIN
	CHAR_MAX

	Uchar
	Unsigned ASCII character
	1
	UCHAR_MIN
	UCHAR_MAX

	Int1
	Signed integer, 1 byte
	1
	INT1_MIN
	INT1_MAX

	Uint1
	Unsigned integer, 1 byte
	1
	0
	UINT1_MAX

	Int2
	Signed integer, 2 bytes
	 2
	INT2_MIN
	INT2_MAX

	Uint2
	Unsigned intege, 2 bytes
	 2
	0
	UINT2_MAX

	Int4
	Signed integer, 4 bytes
	 4
	INT4_MIN
	INT4_MAX

	Uint4
	Unsigned integer, 4 bytes
	 4
	0
	UINT4_MAX

Floating-point Types

	Type
	Description
	Min. Value
	Max. Value

	FloatLo
	Low-precision floating point value (same as float)
	FLT_MIN
	FLT_MAX

	FloatHi
	High-precision floating point variable (same as double)
	FLT_MAX
	DBL_MAX

Pointer Types

	Type,
	Description

	VoidPtr
	Generic pointer (same as Pointer)

	BoolPtr
	Pointer to Boolean

	BytePtr
	Pointer to Byte

	CharPtr
	Pointer to Char

	UcharPtr
	Pointer to Uchar

	Int1Ptr
	Pointer to Int1

	Uint1Ptr
	Pointer to Uint1

	Int2Ptr
	Pointer to Int2

	Uint2Ptr
	Pointer to Uint2

	Int4Ptr
	Pointer to Int4

	Uint4Ptr
	Pointer to Uint4

	FloatHiPtr
	Pointer to FloatHi

	FloatLoPtr
	Pointer to FloatLo

	FnPtr
	Generic function pointer

	Pointer
	Generic pointer (same as VoidPtr)

	Handle
	Generic handle. Points to a block of memory that is moveable on Macintosh & Windows. On other platforms it is the same as a Pointer

Avoiding Name Collisions

The types are first typedeffed with names like Nlm_Int2. Then they are defined with easier to use names like #define Int2 Nlm_Int2. A similar procedure is used in declaring the utility functions. This is because one wishes to treat them in your program as real data types. However, if a conflict with a typedeffed name in some other program or header occurs, one cannot "untypdef" things, and it's a problem to use the other headers. #defines can be undefined which solves the conflict problem. We typedef with "Nlm_..." in the expectation that there will be no conflict with the name. We then #define that to something easier to remember, but more likely to conflict, and get the best of both worlds. The defined types are listed below

Byte Order

The order of bytes within any integral value of size greater than 1 is defined by the hardware.

Although other orderings are possible, none of the platforms we support has such a configuration. One of the following symbols should be defined in every ncbilcl.xxx.

	Symbol
	Description

	IS_BIG_ENDIAN
	The target platform is "big endian", having the most significant byte in the lowest address.

	IS_LITTLE_ENDIAN
	The target platform is "little endian", having the most significant byte in the highest address.

Function Prototypes

A mechanism has also been worked out for declaring functions and prototypes such that compilers which can check function prototypes will check them, and those which don't do not see them (prototypes are syntax errors on older compilers !). The trick is to declare the prototype with the PROTO(()) macro (note the double parentheses). A similar macro, VPROTO(()), is provided for functions with variable argument lists.

Int2 StringCmp PROTO((CharPtr str1, CharPtr str2));

Int2 Message VPROTO((Int2 key, char *fmt, ...));

AsnLib: ASN.1 Processing

Introduction to ASN.1
AsnLib: Overview
Principles of Operation
Specification for AsnLib
AsnTool
AsnTool Tutorial
Using AsnLib
AsnLib: A Tutorial
Data-links
AsnLib Generated Header Files
Returns From AsnLib Parsing
Finding AsnTypePtrs at Run-time
Custom Read and Write Functions
Customizing an AsnIo Stream
ASN.1 Object Loaders
AsnLib and Object Loaders As a Generalized Iterator
AsnLib and Object Loaders Provide a Generalized Copy and Compare
AsnLib Interface: asn.h

 Introduction to ASN.1

Why ASN.1

Abstract Syntax Notation 1 (ASN.1) is used to describe the structure of data to be transferred between the Application Layer and the Presentation Layer of the Open Systems Interconnection (OSI). It is meant to provide a mechanism whereby the Presentation Layer can use a single standard encoding to reliably exchange any arbitrary data structure with other computer systems, while the Application layer can map the standard encoding into any type of representation or language that is appropriate for the end user. ASN.1 does not describe the content, meaning, or structure of the data, only the way in which it is specified and encoded.

These properties make it an excellent choice for a standard way of encoding scientific data. Since ASN.1 does not specify content, specifications can be created as new concepts need to be represented. Yet since it is an International Standards Organization (ISO) standard, the new specification can take advantage of various tools built to work with ASN.1 in general. It removes from scientists the role of specifying ad hoc file formats, and focuses them instead on specifying the content and structure of data necessary to convey scientific meaning.

There are two aspects to ASN.1, the specification of the data and the encoded data itself. The specification describes the abstract structure of the data and the allowed values various fields may take. Frequently today scientific data is presented with no formal specification. There may be some documentation describing the data file, but very often it is incomplete or not entirely accurate, since it is usually written about the file, rather than as an integral step toward building the file. The ASN.1 specification is formal language, which means it can be automatically and thoroughly checked for errors and inconsistencies in form by machine before any data are collected at all. Further, it can be used by a computer to validate that any data presented correctly reflect that specification. This is essential in eliminating the random errors and oversights in generating data files that plague scientific data now. A utility program, asntool, was built with the AsnTool libraries to do this sort of checking and validation while developing ASN.1 specifications.

The requirement for a separate specification also means that interested parties can examine and evaluate the structure of the data independent of any particular database or data file. One can understand the limits and strengths of a specification separately from the quality or amount of the data itself. Data structures that prove to be useful can be re-used in a variety of ways; by large public databases, by small private databases, in various software tools, and in assorted data files.

Finally, a separate specification means software to construct, decode, and validate any ASN.1 specified object can be built semi- or fully automatically from the specification. Data encoded according to that specification can then be processed with relatively little manual programming for those aspects of the application dealing directly with ASN.1. This is what the AsnTool routines are for.

Structure of ASN.1

ASN.1 has Type References, identifiers, and values. A Type Reference is the name of an object defined in an ASN.1 specification. An identifier is a field within an object. A value is generally not included in the specification, but rather is the value of a Type Reference or an identifier in data encoded in ASN.1. Values can be encoded in either a text or a binary form. The examples here will obviously be in the text form.

Type References ALWAYS start with an upper case letter. Identifiers ALWAYS start with a lower case letter. Values depend on what type of value it is (integer, string, etc.) and examples are given below. "-" (hyphen) is the ONLY separator character allowed in References and identifiers.

ASN.1 allows elements of SET, SEQUENCE, and CHOICE to not have identifiers if they can be distinguished from each other by their type (e.g. one is an integer and one is a string). However, this can make the text value notation ambiguous and it may also lead to errors in the hands of the novice. So we REQUIRE that every element of a SET, SEQUENCE, and CHOICE have an identifier.

ASN.1 also allows the specification of numerical tags (used for the binary encoding) in [] in addition to or in lieu of identifiers. Again, this can be a problem for the novice. Since we require identifiers, our software generates the numerical tags itself and we can ignore this. It still supports explicitly defined APPLICATION, and PRIVATE tags, but that is beyond the scope of this document. Comments begin with -- and end with -- or end of line.

A simple ASN.1 specification module example is shown below:

Demo-module DEFINITIONS ::=

-- Module-name DEFINITIONS ::= BEGIN

BEGIN

EXPORTS My-type;

-- My-type can be used by other modules

IMPORTS Foreign-type FROM Other-module; -- can import types

-- we define an object called My-type

My-type ::= SEQUENCE {

-- My-type is a Type Reference

first

INTEGER ,

-- first is an identifier

second
INTEGER DEFAULT 2 ,

-- second defaults to 2

third

VisibleString OPTIONAL
-- third is an optional string

}

-- end of object definition

Another ::= Foreign-type

-- can reference other defined types

END

-- end of module, END required

Value notation (or data encoded in the text form of ASN.1) looks like this:

My-type ::= {

first 42

}

This means this My-type will have first = 42, second = 2, and third not present. To present more than one My-type you must have defined:

My-type-set ::= SET OF My-type

-- in Demo-module

 Then you could have:

My-type-set ::= {

-- start SET OF

{

-- a My-type

first 42

 } ,

{

-- another My-type

first 27 ,

second 22 ,

third "Everything set here"

}

}

-- end of SET OF

ASN.1 Primitive Types Supported by AsnLib

	Type,
	Description
	Specification
	Value Notation

	BOOLEAN
	Any TRUE or FALSE value

May have a DEFAULT
	Truth ::= BOOLEAN
	Truth ::= FALSE

	INTEGER
	Any integer value.

May be given named values but range not limited to names.

May have a DEFAULT.
	Number ::= INTEGER

or

Number ::= INTEGER {

 red (1) ,

 blue (2) }
	Number ::= 42

or

Number ::= red

	OCTET STRING
	Any string of bytes.

Returned as or read from ByteStorePtr.

May not have DEFAULT.
	Hstring ::= OCTET STRING
	Hstring ::= '0A01F'H

	NULL
	null is only allowed value
	Nothing ::= NULL
	Nothing ::= null

	REAL
	Floating point number in base 2 or 10.

REAL value notation is 3 integers for { matissa, base, exponent }

May have a DEFAULT.
	Pi ::= REAL
	Pi ::= { 314159, 10, -5 }

	ENUMERATED
	A named set of integer values.

Only named values allowed.

May have a DEFAULT
	Sex ::= ENUMERATED {

 male (1) ,

 female (2) }
	Sex ::= male

	SEQUENCE
	A series of other named types, in order.

Not related to a biological sequence.

All elements must be present unless OPTIONAL or DEFAULT
	Yuppie ::= SEQUENCE {

 income INTEGER ,

 name VisibleString }
	Yuppie ::= {

 income 100000 ,

 name "John Doe" }

	SEQUENCE OF
	A repeating series of a single type in order.
	Stooges ::=

SEQUENCE OF VisibleString
	Stooges ::= {

 "Larry" ,

 "Curly",

 "Moe" }

	SET
	A series of named other types.

Order does not matter.

All elements must be present unless OPTIONAL or DEFAULT
	Yuppie ::= SET {

 income INTEGER ,

 name VisibleString }
	Yuppie ::= {

 income 100000 ,

 name "John Doe" }

	SET OF
	A repeating series of a single type. Order does not matter.
	Stooges ::=

SET OF VisibleString
	Stooges ::= {

 "Larry" ,

 "Curly",

 "Moe" }

	CHOICE
	A way to select one from a set of alternate types.

NOTE: in the value notation you are indicating one choice, so {} are not necessary (or allowed) but the identifier for the selected CHOICE must be given before the value.
	Person ::= CHOICE {

 social-security INTEGER ,

 name VisibleString ,

 badge-id INTEGER }
	Person ::= name "Joe"

	VisibleString
	A string of printable ASCII characters

NOTE: The double quite character (") may be included in a VisibleString by doubling it.
"He said ""Hi Mom!"" to her"
NOTE: AsnLib can accept wrapped long VisibleStrings. That is, a string may contain internal newlines which are stripped on input from the value notation.
 Text ::= "He said ""Hi Mom!"" to her"
would be read as:
"He said ""Hi Mom!"" to her"
	Text ::= VisibleString
	Text ::= "Hi Mom!"

	StringStore
	ONLY in AsnLib. Defines a VisibleString which is read into a ByteStore instead of a CharPtr. Used for long strings like DNA sequences.
	Dna ::= StringStore
	Dna ::= "AGGAGG"

Further information about ASN.1

The Open Book
A Practical Perspective on OSI
by Marshall T. Rose
Prentice Hall, Englewood Cliffs, New Jersey 07632
(c) 1990

ISO Development Environment (public software)
University of Pennsylvania
Dept. of Computer Science and Information Science
Moore School
Attn: David J. Farber (ISODE Distribution)
200 South 33rd Street
Philadelphia, PA 19104-6314
1-215-898-8560

OSIkit Tools from NIST (1989) (public software)
US Dept. of Commerce
National Institute of Standards and Technology
Gaithersburg, MD

Information Processing - Open Systems Interconnection - Specification of Abstract Syntax Notation One (ASN.1). International Organization for Standardization and International Electrotechnical Committee, 1987. International Standard 8824.

Information Processing - Open Systems Interconnection - Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1). International Organization for Standardization and International Electrotechnical Committee, 1987. International Standard 8825.

Information Processing - Open Systems Interconnection - Abstract Syntax Notation One (ASN.1) - Draft Addendum 1: Extensions to ASN.1. International Organization for Standardization and International Electrotechnical Committee, 1987. Draft Addendum 8824/DAD 1.

Information Processing - Open Systems Interconnection - Abstract Syntax Notation One (ASN.1) - Draft Addendum 1: Extensions to ASN.1 Basic Encoding Rules. International Organization for Standardization and International Electrotechnical Committee, 1987. Draft Addendum 8825/DAD 1.

AsnLib: Overview

AsnLib is a library of functions developed by NCBI for manipulating and exchanging ASN.1 specifications and encoded data for scientific purposes.

A number of commercial and public domain tools are available for working with ASN.1 and for automatically building data handlers of various sorts. They are focused on the use for which ASN.1 was originally intended, the exchange of data between layers of the OSI. As such they tend to automate the process more than AsnLib does, because the domain of use is much more limited. The fact that they determine the internal data structures to use and write all the code to handle them themselves is not a big problem in this case.

When ASN.1 is used for scientific data description though, other uses will be made of the encoded data than may have originally been envisaged by the designers of these products. For example, a scientist will often want an application which scans through a large complicated data structure, and just extracts certain fields for use, or even just counts occurrences of certain values. A tool which automatically generates large elaborate data structures and lots of code to parse the stream, generate the structures, and store them in memory is inappropriate for such an application. Further, a scientific application may well wish to manipulate that data in a different language than the tool is written in, such as FORTRAN, PROLOG, or LISP. These applications may well wish to store the whole data structure from the stream, but they will not wish to use the data structures provided by the tool.

ASN.1 can be used to encode data in two ways, an ASCII human readable form called "value notation" or "print form", and a binary encoding. ASN.1 has separate standards documents for the syntax (specification rules) and the binary encoding rules (BER, or "Basic Encoding Rules"). This was done on purpose to allow various encoding rules for the same abstract syntax. The BER is, at this writing, the only official ISO encoding for ASN.1, but several other encodings which are faster or take less space, are under consideration by ISO. Currently the only binary encoding AsnLib supports is BER.

The value notation or ASCII form of the data is not really an official ISO standard. It was meant to provide a human readable form of ASN.1 data for development or explication, but not as a standard for data exchange. Nonetheless, value notation rules are given in the ISO documents for all the data types they describe. With only a few additional rules, value notation is quite robust for data exchange. These rules are listed in Appendix 1. While we do not recommend the ASCII form of ASN.1 encoded data for large amounts of data, it is very useful for developing and testing data representations or for generating ASN.1 values easily from other data files or local databases without specialized tools. Since the value notation and binary encoded forms of data are completely and reliably interconvertable using AsnLib, there is no problem doing this.

Principles of Operation

AsnLib operates on atomic elements of ASN.1 specified data. It is built using the NCBI core software tools and this document assumes you have some acquaintance with them. AsnLib reads or writes strings, integers, etc. with single function calls. Composite objects such as a SEQUENCE or a SET are read or written with a series of calls to read or write its component parts. The process is designed to be relatively intuitive even in this case. One calls a function to start encoding a SEQUENCE, then calls the routines to encode its parts, then calls a function to end encoding the SEQUENCE. NCBI has built functions to read and write such higher level objects in single function calls (described in the chapters on data), which use the low level AsnLib functions described here.

One can read and write any type using only three functions. They take as arguments the identifier of an ASN.1 encoded stream (binary or ASCII), a pointer to a node in a parse tree (generated from the ASN.1 specification), and a pointer to a union which can hold a value of any type. All aspects of how to encode a value properly, error checking to be sure that all appropriate nodes in the tree are visited in the proper order and that values are valid for a particular type are all taken care of within AsnLib and are not the concern of application programmer. The application programmers must read and understand the ASN.1 specification to make proper use of it, but all the other details of using ASN.1 correctly are not their concern.

The parse tree contains information about the type of every node, its name, its binary tag, allowed values, default values, and the next valid element. The header file also contains a series of #defines which associate names derived from the ASN.1 specification with pointers to nodes in the parse tree. Thus one's code would refer to JOURNAL_title, not a pointer to a specific node. Using these defines means that if an ASN.1 specification is changed, but the names and types of nodes an application cares about have not changed, the application can be updated by just compiling with the new header file.

There are also functions which allow more interpreter-like code to be written. One function will load an ASN.1 specification from a file, validate it, and build the appropriate parse tree on the fly, rather than at compile time by including a header file. One can still identify nodes in the tree by name with a function that searches the tree for nodes with names matching a string. As with all interpreter/compiler trade offs, such an application is slower, but more flexible.

AsnLib assumes that specifications will be written as a collection of smaller modules. Data types may be declared as IMPORTS or EXPORTS by any module. Multiple modules which reference each other may be loaded at once into AsnLib or through the interpreter function described above. It will then link the modules before outputing the header file, thus effectively building a single parse tree containing all the modules.

In another approach, one might build a series of functions which handle the datatypes in a particular module. Then when one writes code which uses a module which IMPORTS another module type, it is left unlinked in that parse tree and one just calls the appropriate function to read it. AsnLib contains two functions for temporarily linking, then unlinking local parse subtrees to a parent object parse tree for this purpose. We have begun to build a library of such modular object functions, so one need not link the whole world of possible datatypes into a single routine or module, or write the basic routines to create, destroy, and exchange such sub-objects.

Specification for AsnLib

AsnLib supports the following types from ISO 8824XE "ISO 8824" and the ASN.1 enhancements. The internal representation used by AsnLib (from the NCBI core tools) for routines dealing with these types is also shown.

Supported ASN.1 primitive types

	type
	internal representation

	BOOLEAN
	Boolean

	INTEGER
	Int4

	OCTET STRING
	ByteStorePtr

	NULL
	no value

	REAL
	FloatHi

	ENUMERATED
	Int4

	SEQUENCE
	no value

	SEQUENCE OF
	no value

	SET
	no value

	SET OF
	no value

	CHOICE
	no value

	VisibleString
	CharPtr

	StringStore
	ByteStorePtr

Other ASN.1 string types are supported as VisibleString. No checks are made to ensure restrictions of character usage by the various string types. Types not supported by AsnLib at this point (although they will be accepted in a module specification as valid ASN.1) are:

Unsupported ASN.1 primitive types

	BIT STRING

	OBJECT IDENTIFIER

	ObjectDescriptor

	EXTERNAL

	ANY

	GeneralizedTime

	UTCTime

The following keywords are currently supported by AsnLib:

Supported ASN.1 keywords

	DEFINITIONS

	BEGIN

	END

	EXPORTS

	IMPORTS

	FROM

	APPLICATION

	PRIVATE

	UNIVERSAL

	DEFAULT

	OPTIONAL

	FALSE

	TRUE

The following ASN.1 keywords are not supported by AsnLib (although they are passed in a module specification as valid ASN.1):

Unsupported ASN.1 keywords

	IMPLICIT

	ABSENT

	BY

	COMPONENT

	DEFINED

	INCLUDES

	MIN

	MINUS-INFINITY

	MAX

	PRESENT

	PLUS-INFINITY

	SIZE

	TAGS

	WITH

AsnLib uses indefinite encoding for output of all binary encoded non‑ primitive types. It can decode either definite or indefinite binary encoded data for all types. This conforms to the BER.

DEFAULT values may be given in an ASN.1 specification. AsnLib accepts and records them in the parse tree. However, it does not supply the value if it is missing from the input stream on the assumption that the application would want to distinguish a value actually supplied from a value defaulted locally. DEFAULT is only supported for simple types like INTEGER or VisibleString, but not for structure types like SEQUENCE because it is too difficult to code.

Values may not be assigned in a specification module to types defined in a different module. Each module is self contained and does not "know" anything about types defined in other modules except their names if they were IMPORTS. So suppose one module defines:

Dna-strand ::= ENUMERATED { plus(1), minus(2) }

A different module may not use the DEFAULT in the following case:

 Dna-sequence ::= SEQUENCE {

length INTEGER ,

strand Dna-strand DEFAULT plus }

because it does not know Dna-strand is ENUMERATED or what its allowed values are. Such a construct is acceptable if the definition of Dna-strand and Dna‑ sequence are in the same module and the Dna-strand definition comes first.

Elements of a SEQUENCE are checked that they are all received or sent in the correct order and that no non-OPTIONAL or non-DEFAULT elements are missing. However, because AsnLib does not store whole structures, it can only check that the types of elements in a SET are correct, but cannot check if more than one element of a type is used or if a required element is missing. For this reason it is safer to use SEQUENCE rather than SET as a rule when using AsnLib. While there is a semantic difference, there is no representational limitation in doing this.

AsnTool

An application program called "asntool", is built by the NCBI Software Toolkit using the AsnLib function libraries, which in turn are based on the NCBI portable core software tools. This application is a utility program which can:

1.
Read, write, and error check an ASN.1 specification.

2.
Read, write, and check ASCII values conforming to the specification in 1.

3.
Read, write, and check binary values conforming to the specification in 1.

4.
Combinations of 2 and 3 to translate or convert between binary and ASCII

5.
Output a C language header file which contains a parse tree for specification 1 which can be used in an application program.

AsnTool Tutorial

It may be quickest to demonstrate the use of AsnLib through example. In the distribution directory of the NCBI Software Toolkit, \ncbi, there are two subdirectories. \demo contains demonstration source code to be used in the section below and 2 samples of MEDLINE entries as ASN.1 value notation (ASCII). medline.ent is a single Medline-entry and medline.prt is a Pub-set containing many MEDLINE entries. \asn contains the ASN.1 specifications for the modules used to describe the MEDLINE entries. They are:

	File
	Module
	Description

	general.asn
	NCBI-GeneralXE "NCBI-General"
	general purpose data types

	pub.asn
	NCBI-PubXE "NCBI-Pub"
	branch point for various publication types.

	biblio.asn
	NCBI-BiblioXE "NCBI-Biblio"
	standard bibliographic citations for journals, books, manuscripts, patents based on ANSI standard

	medline.asn
	NCBI-MedlineXE "NCBI-Medline"
	MEDLINE entry (based on NCBI-Biblio)

	asnpub.all
	all
	all above modules in one file

asntool should have been built as part of installing the system. It is in \ncbi\bin. Set your path, or move asntool to a place it can be executed.

From within the \demo directory, run asntool with no arguments. It presents its argument usage to you. Note that you must always give a module file name. asntool takes only one module file, so if you wish to use more than one you must concatenate them into a single file, such as asnpub.all.

Try the following exercises -- type:

asntool -m ..\asn\asnpub.all

This will read the publication modules and validate that they are correctly built. asntool will notify you of various syntax errors and typos, usually giving the line number where the error occurred. It makes sure that everything EXPORTS from a module is defined in that module and that everything IMPORTS is used by that module. Everything not IMPORTS must be defined within the module. In the case of multiple modules, it will try to link EXPORTS from one module with IMPORTS from others. It is not an error to be unable to link an IMPORTS, but it does imply you expect it to be handled by an outside function. There are no errors in asnpub.all, so asntool is silent. The path may have a different form on various machines.

asntool -m ..\asn\asnpub.all -v medline.ent

This does everything above, and then reads the file medline.ent which it expects to be of a type defined in asnpub.all. It checks for errors, reporting any it finds. There are none, so asntool is silent.

asntool -m ..\asn\asnpub.all -v medline.ent -p stdout

On command line systems, everything above will happen, except that medline.ent will be encoded from asntool's internal structures to ASN.1 value notation on stdout, your terminal. On Macintosh or Microsoft Windows, the output will go to a disk file named "stdout".

asntool -m ..\asn\asnpub.all -v medline.prt -e medline.val

This reads the set of MEDLINE records from medline.prt and encodes them in binary ASN.1 in the file medline.val

asntool -m ..\asn\asnpub.all -d medline.val -t Pub-set -p stdout

This reads (decodes) the set of MEDLINE records from the binary ASN.1 file we just made and outputs them as value notation on stdout. Note that we MUST specify the type (Pub-set) of the binary file or message. That is because the binary form does not have that information. The value notation form does, so asntool can figure it out, but the binary, which is the real ISO standard, does not.

asntool -m ..\asn\asnpub.all -o allpub.h

This outputs a header file for an application which will use the asntool routines to encode and decode objects defined in asnpub.all.
Using AsnLib

If you take a look at the allpub.h you generated above, you will see that it includes <asn.h> which defines the interface to the AsnLib library and which includes <ncbi.h> which defines the interface to the NCBI core software tools.

Then the arrays of structures defining the parse tree come. You should never program directly for these structures as they may change without notice. You should always use the functions described below.

Last come the #defines for pointers to specific nodes in the parse tree. They are built from the names of objects specified in the ASN.1 modules. The name of the type itself is upper case, and component parts are in lower case. An example of the mapping between the ASN.1 specification medline.asn and the #defines in allpub.h is shown in Appendix 2.

One less intuitive aspect of this system applies only to SET OF or SEQUENCE OF which are repeating series of the same type. Since any one element of such a repeating series does not have a name, one must be invented. This is done by appending a _E (for Element of) to the parent name (e.g.. if Name-list ::= SEQUENCE OF VisibleString, then one name (VisibleString) of that SEQUENCE OF would have a #defined node name of NAME_LIST_E). Names defined this way are limited to a maximum of 31 characters. If they grow longer than that, the leftmost characters are truncated. The suggestion is: keep names as short as you can and still be meaningful. Also, since "-" is the only valid separator character in ASN.1 but "_" is the only valid separator character in C, the Name-list (mentioned above) node in the parse tree would be defined as NAME_LIST.

ASN.1 encoded values are represented basically as identifier/value pairs. AsnLib has two parsing functions that correspond to the members of the pair:

atp = AsnReadId(aip, amp, atp);

 Reads an identifier from an input stream (aip) and returns a pointer to the appropriate node in the parse tree for it (atp as the return value). atp will be one of the nodes #defined in the header generated by AsnLib.

success = AsnReadVal(aip, atp, avp);

Reads the value of atp from the stream (aip) into an AsnValue (a union of Pointer, Int4, Boolean, FloatHi). If AsnReadVal() is called with avp = NULL, it skips over that value. This is useful for scanning through a file extracting only a few fields.

To parse then, one basically just alternates AsnReadId() and AsnReadVal(). The most common error to make in writing a parser that uses these functions is to get out of synchronization alternating between these two routines.

There is only one function to write an identifier/value pair at once:

success = AsnWrite(aip, atp, avp);

Writes the identifier pointed to by atp, and the value in avp, to the stream aip.

AsnLib: A Tutorial

In \ncbi\demo are three small demo applications that process medline entries and require the allpub.h header and the binary form of medline.prt we built in the sections above. The make files for Microsoft C (makedemo.msc) and for all UNIX systems (makedemo.unx) are in \make. Copy the makedemo file appropriate for your system into \ncbi\build and make it.

getmesh.cXE "getmesh.c"
Function: Reads a Medline-entry, extracts the MeSH terms, and prints them.

Type "getmesh -" to see its arguments.

Type "getmesh -i medline.ent -o terms.out". getmesh reads medline.ent, which contains a single Medline-entry in value notation (ASCII). This file is presented at the end of this chapter, somewhat abbreviated, with the #defined names for the nodes in the allpub.h parse tree that will be encountered in the course of reading this file. getmesh parses it, extracts the MeSH terms and prints them in "terms.out".

Look at the source code in getmesh.c.

/***

*

* getmesh.c

*
gets mesh terms from a Medline-entry

*

***/

#include <allpub.h>

#define NUMARGS 3

Args myargs[NUMARGS] = {

{ "Input data", NULL, "Medline-entry", NULL, FALSE, 'i', ARG_DATA_IN, 0.0,0,NULL},

{ "Input data is binary", "F", NULL, NULL, TRUE , 'b', ARG_BOOLEAN, 0.0,0,NULL},

{ "Output list", NULL, NULL, NULL, FALSE, 'o', ARG_FILE_OUT, 0.0,0,NULL}};

Int2 Main()

{

AsnIoPtr aip;

AsnTypePtr atp;

DataVal value;

static CharPtr intypes[2] = { "r", "rb" };

Int2 intype;

FILE *fp;

 if (! AsnLoad())

 Message(MSG_FATAL, "Unable to load allpub parse tree.");

 if (! GetArgs("GetMesh 1.0", NUMARGS, myargs))

return 1;

if (myargs[1].intvalue) /* binary input is TRUE */

intype = 1;

else

intype = 0;

if ((aip = AsnIoOpen(myargs[0].strvalue, intypes[intype])) == NULL)

{

Message(MSG_ERROR, "Couldn't open %s", myargs[0].strvalue);

return 1;

}

if ((fp = FileOpen(myargs[2].strvalue, "w")) == NULL)

{

Message(MSG_ERROR, "Couldn't open %s", myargs[2].strvalue);

return 1;

}

atp = MEDLINE_ENTRY;

fprintf(fp, "MeSH terms =\n\n");

while ((atp = AsnReadId(aip, amp, atp)) != NULL)

{

if (atp == MEDLINE_MESH_term)

{

AsnReadVal(aip, atp, &value);

FilePuts(value.ptrvalue, fp);

FilePuts("\n", fp);

AsnKillValue(atp, &value);

}

else

AsnReadVal(aip, atp, NULL);

}

aip = AsnIoClose(aip);

FileClose(fp);

return 0;

}

Pretty short for doing all this, isn't it? Walking through the code:

0.
AsnLoad() is called to load the ASN.1 parse tree for "allpub" into memory.

1.
GetArgs() is called to display or get the command line arguments.

2.
The appropriate string is selected for opening a value notation ("r") or a binary ("rb") input stream.

3.
The input stream is opened with AsnIoOpen().

4.
The file for printed output is opened.

5.
atp is initialized to MEDLINE_ENTRY, the defined node we expect the input stream to start with. If the input stream were ALWAYS value notation, atp could be set to NULL, and Medline-entry ::= would be read from the input file and atp set correctly. Since getmesh takes binary and value notation, atp must be properly initialized.

6.
The main while loop just reads identifiers with AsnReadId() until it returns NULL, which is EOF. The argument, amp, is the AsnModulePtr declared in allpub.h. It is used to locate the appropriate AsnTypePtr (atp) if it was set to NULL on the first call. After that, atp provides the link to the parse tree.

7.
In the while loop, a check is made to see if atp == MEDLINE_MESH_term, or the VisibleString containing a single MeSH term. If so, we read the value with AsnReadVal(), print it, then call AsnKillValue() which will deallocate any storage used when any data type is read. Since a VisibleString requires storage this is necessary. There is no harm in calling AsnKillValue() even on types that do not allocate storage (e.g.. INTEGER).

8.
 If it's not a MeSH term, we call AsnReadVal() with a NULL argument for the AsnValuePtr, which just skips over the value to the next identifier.

9.
We close the streams.

10.
c'est tout.

indexpub.cXE "indexpub.c"
Function: Builds an index to medline.ent base on Medline Unique Identifier.

Type "indexpub -" to see the arguments.

Type "indexpub -imedline.val". indexpub will read the binary value file, medline.val, note the seek offset of the start of each Medline-entry it contains, identifies the Medline uid for it, and builds an index file, "medline.idx".

Take a look at the source code, indexpub.c.

/***

*

* indexpub.c

* indexes a Pub-set by Medline UID

*

***/

#include <allpub.h>

#define NUMARGS 3

Args myargs[NUMARGS] = {

{ "Input data", "medline.val", "Pub-set", NULL, FALSE, 'i', ARG_DATA_IN, 0.0,0,NULL},

{ "Input data is binary", "T", NULL, NULL, TRUE , 'b', ARG_BOOLEAN, 0.0,0,NULL},

{ "Output index table", "medline.idx", NULL, NULL, FALSE, 't', ARG_FILE_OUT, 0.0,0,NULL}};

Int2 Main()

{

AsnIoPtr aip;

AsnTypePtr atp;

DataVal value;

Int4 seekptr, tempseek, uid;

static CharPtr intypes[2] = { "r", "rb" };

Int2 intype;

FILE *fp;

 if (! AsnLoad())

 Message(MSG_FATAL, "Unable to load allpub parse tree.");

if (! GetArgs("IndexPub 1.0", NUMARGS, myargs))

return 1;

if (myargs[1].intvalue) /* binary input is TRUE */

intype = 1;

else

intype = 0;

if ((aip = AsnIoOpen(myargs[0].strvalue, intypes[intype])) == NULL)

{

Message(MSG_ERROR, "Couldn't open %s", myargs[0].strvalue);

return 1;

}

if ((fp = FileOpen(myargs[2].strvalue, "w")) == NULL)

{

Message(MSG_ERROR, "Couldn't open %s", myargs[2].strvalue);

return 1;

}

atp = PUB_SET;

tempseek = 0L;

while ((atp = AsnReadId(aip, amp, atp)) != NULL)

{

if (atp == PUB_SET_medline_E)

seekptr = tempseek;

if (atp == MEDLINE_ENTRY_uid)

{

AsnReadVal(aip, atp, &value);

uid = value.intvalue;

fprintf(fp, "%ld %ld\n", uid, seekptr);

}

else

AsnReadVal(aip, atp, NULL);

tempseek = AsnIoTell(aip);

}

aip = AsnIoClose(aip);

FileClose(fp);

return 0;

}

It is the same basic structure as getmesh.c. However, the use of the while loop is a little different. Since we are building an index, we want to record the offset in the file of the identifier which starts each medline entry in the Pub-set (PUB_SET_medline_E ‑- a PUB_SET of type medline is a SET OF Medline-entry). So tempseek is set (to 0 to begin with, then with AsnIoTell()) BEFORE each read of an identifier with AsnReadId(). When the return value is PUB_SET_medline_E we know that tempseek contains the seek offset just before the first identifier for the Medline-entry. Then we read through the entry looking for the MEDLINE_ENTRY_uid since we want to index on the MEDLINE Unique Identifier. When we find it, we store the seek offset and the uid in the index file. All other values are skipped.

getpub.cXE "getpub.c"
Function: Uses the index created by indexpub.c to retrieve a Medline-entry from medline.val by Medline uid.

/***

*

* getpub.c

* does an indexed lookup for medline entries by medline uid

*

***/

#include "allpub.h"

#define NUMARGS 5

Args myargs[NUMARGS] = {

{ "Input binary data", "medline.val", "Pub-set", NULL, FALSE, 'i', ARG_DATA_IN, 0.0,0,NULL},

{ "Medline UID to find", "88055872", NULL,NULL,FALSE,'u', ARG_INT, 0.0, 0, NULL },

{ "Input index table", "medline.idx", NULL,NULL,FALSE,'t', ARG_FILE_IN, 0.0,0,NULL },

{ "Output data", "stdout", "Medline-entry",NULL,FALSE,'o',ARG_DATA_OUT, 0.0,0,NULL},

{ "Output data is binary", "F", NULL, NULL, FALSE , 'b', ARG_BOOLEAN, 0.0,0,NULL}};

Int2 Main()

{

AsnIoPtr aip, aipout;

AsnTypePtr atp;

DataVal value;

Int4 seekptr, uid, uid_to_find;

static CharPtr outtypes[2] = { "w", "wb" };

Int2 outtype;

FILE *fp;

Boolean done, first;

int retval;

 if (! AsnLoad())

 Message(MSG_FATAL, "Unable to load allpub parse tree.");

if (! GetArgs("GetPub 1.0", NUMARGS, myargs))

return 1;

if (myargs[4].intvalue) /* binary output is TRUE */

outtype = 1;

else

outtype = 0;

if ((aip = AsnIoOpen(myargs[0].strvalue, "rb")) == NULL)

{

Message(MSG_ERROR, "Couldn't open %s", myargs[0].strvalue);

return 1;

}

if ((aipout = AsnIoOpen(myargs[3].strvalue, outtypes[outtype])) == NULL)

{

Message(MSG_ERROR, "Couldn't open %s", myargs[3].strvalue);

return 1;

}

if ((fp = FileOpen(myargs[2].strvalue, "r")) == NULL)

{

Message(MSG_ERROR, "Couldn't open %s", myargs[2].strvalue);

return 1;

}

uid_to_find = myargs[1].intvalue;

done = FALSE;

first = TRUE;

while (! done)

{

retval = fscanf(fp, "%ld %ld", &uid, &seekptr);

if (retval == EOF)

{

Message(MSG_ERROR, "UID %ld not found", uid_to_find);

return 1;

}

if (uid == uid_to_find)

done = TRUE;

}

FileClose(fp);

atp = MEDLINE_ENTRY;

AsnIoSeek(aip, seekptr);

done = FALSE;

while (! done)

{

atp = AsnReadId(aip, amp, atp);

AsnReadVal(aip, atp, &value);

AsnWrite(aipout, atp, &value);

AsnKillValue(atp, &value);

if (! first)

{

if (atp == MEDLINE_ENTRY)

done = TRUE;

}

else

first = FALSE;

}

AsnIoClose(aip);

AsnIoClose(aipout);

return 0;

}

This is a very simple program. It looks up the seek offset into the file by uid, and seeks to that point with AsnIoSeek(). It then just cycles through the process of reading an identifier then reading a value from medline.val using AsnReadId() and AsnReadVal(). It then writes them both to the output file with AsnWrite(). Any storage used is freed with AsnKillValue(). Depending on the way the output AsnIo stream is opened, ASCII or binary, the program can deliver a binary Medline-entry or an ASCII conversion of it.

One important point to note is that the way the while loop knows when it has finished reading a MEDLINE_ENTRY. Since it is a SEQUENCE which is basically a structure with component parts, AsnReadId() returns atp == MEDLINE_ENTRY twice. Once when it reads the start of the structure, and once when it reads the end. If you imagine the MEDLINE_ENTRY being bounded by braces {} as in the value notation the process is this:

MEDLINE_ENTRY ::= { AsnReadId() gets MEDLINE_ENTRY, AsnReadVal() gets {

 one ,
{ read the internal components)

 two

 } AsnReadId() gets MEDLINE_ENTRY, AsnReadVal() gets }

To produce the same effect on output, there are two extra output functions for AsnLib, in addition to AsnWrite().

AsnOpenStruct(aip, atp, ptr)

Writes the first instance of atp on the output stream aip at the beginning of a structure (SEQUENCE, SET, SEQUENCE OF, SET OF).

AsnCloseStruct(aip, atp, ptr)

Writes the second, closing instance.

The "ptr" argument is a pointer to the internal C structure representing the ASN.1 structure. It is used by functions that piggyback on the AsnWrite functions to explore the internal objects (discussed below).

For this reason a similar function is provided to write a CHOICE.

AsnWriteChoice(aip, atp, choice, value)

Writes a choice of types. The choice argument is an integer to indicate which type will be written at the next AsnWrite(), and value is a DataVal in which can be passed the internal C structure used to represent the choice.

 In the case of getpub.c, it is not necessary to call these functions because getpub is simply reading the data from an ASN.1 stream then writing it again in order, which includes the two instances of MEDLINE_ENTRY.

Another point about this program is that we recognized the Medline entries in the Pub-set in indexpub.c by looking for PUB_SET_medline_E, but we are reading and writing the same entry in getpub.c using MEDLINE_ENTRY. That is because a Pub-set of CHOICE medline is defined as a SET OF Medline-entry. So when reading the whole Pub-set, each Medline-entry is a PUB_SET_medline_E. But when reading one entry it is a MEDLINE_ENTRY.

Data-linksXE "Data-links"
Data-links are described in the NCBI Core Tools document. They are meant to be "ports" in and out of software applications which perform exchange of structured data (in ASN.1). The inputs and outputs for getpub.c and getmesh.c are actually Data-links. If you simply type the command:

getpub -u 88055872 -b -o stdout | getmesh -i stdin -b -o terms.out

you have executed a pair of programs which communicate over a Data-link with structured, binary encoded ASN.1. getpub extracts a Medline-entry with uid = 88055872 from a binary encoded Pub-set by indexed look-up, transfers it out stdout as a Medline-entry in binary, to getmesh which parses the "message" and locates MeSH terms, and prints them to test.out.

This example is just a pipe between two programs, with the enhancement that the stream is binary coded ASN.1, which permits a very much richer "vocabulary" for the exchange than is usual for traditional pipes. Further, since binary coded ASN.1 is a machine independent coding, the exchange could just as easily been between two completely different machines over a network. Finally, this pipe is a single channel of exchange. The principles hold if one expands the system to many channels, by a variety of means.

AsnLib Generated Header Files

Correspondence between ASN.1 and header #defines

Medline-entry ::= SEQUENCE {

MEDLINE_ENTRY

uid INTEGER ,

MEDLINE_ENTRY_uid

em Date ,

MEDLINE_ENTRY_em

cit Cit-art ,

MEDLINE_ENTRY_cit

abstract VisibleString OPTIONAL ,

MEDLINE_ENTRY_abstract

mesh SET OF Medline-mesh OPTIONAL ,

MEDLINE_ENTRY_mesh

substance SET OF Medline-rn OPTIONAL ,

MEDLINE_ENTRY_substance

xref SET OF Medline-si OPTIONAL ,

MEDLINE_ENTRY_xref

idnum SET OF VisibleString OPTIONAL }

MEDLINE_ENTRY_idnum

Medline-mesh ::= SEQUENCE {

MEDLINE_MESH

mp BOOLEAN DEFAULT FALSE ,

MEDLINE_MESH_mp

term VisibleString ,

MEDLINE_MESH_term

qual SET OF Medline-qual OPTIONAL }

MEDLINE_MESH_qual

Returns From AsnLib Parsing

Medline-entry with header #defines as returned when parsing with AsnLib

Medline-entry ::= { /MEDLINE_ENTRY

 uid 88055872 , | MEDLINE_ENTRY_uid

 em | MEDLINE_ENTRY_em

 std { | /DATE_std

 year 1988 , | | DATE_STD_year

 month 3 | | DATE_STD_month

 } , | \DATE_std

 cit { | /MEDLINE_ENTRY_cit

 title { | | /CIT_ART_title

 name "Developmental .. protein."| | | TITLE_name

 } ,
 | | \CIT_ART_title

 authors { | | /CIT_ART_authors

 names | | | AUTH_LIST_names

 ml { | | | /AUTH_LIST_names_ml

 "Giebel LB" , | | | | AUTH_LIST_names_ml_E

 "Dworniczak BP" , | | | | AUTH_LIST_names_ml_E

 "Bautz EK" | | | | AUTH_LIST_names_ml_E

 } , | | | \AUTH_LIST_names_ml

 affil | | | AUTH_LIST_affil

 str "Zentrum ... Germany" | | | AFFIL_str

 } , | | \CIT_ART_authors

 from | | CIT_ART_from

 journal { | | /CIT_ART_from_journal

 title { | | | /CIT_JOUR_title

 ml-jta "Dev Biol" | | | | TITLE_ml_jta

 } , | | | \CIT_JOUR_title

 imp { | | | /CIT_JOUR_imp

 date | | | | IMPRINT_date

 std { | | | | /DATE_std

 year 1988 , | | | | | DATE_STD_year

 month 1 | | | | | DATE_STD_month

 } , | | | | \DATE_std

 volume "125" , | | | | IMPRINT_volume

 issue "1" , | | | | IMPRINT_issue

 pages "200-7" | | | | IMPRINT_pages

 } | | | \CIT_JOUR_imp

 } | | \CIT_ART_from_journal

 }, | \MEDLINE_ENTRY_cit

 abstract "Multiple ... protein." , | MEDLINE_ENTRY_abstract

 mesh { | /MEDLINE_ENTRY_mesh

 { | | /MEDLINE_ENTRY_mesh_E

 term "Amino Acid Sequence" | | | MEDLINE_MESH_term

 } , | | \MEDLINE_ENTRY_mesh_E

 {
 | | /MEDLINE_ENTRY_mesh_E

 term "Clathrin" , | | | MEDLINE_MESH_term

 qual { | | | /MEDLINE_MESH_qual

 { | | | | /MEDLINE_QUAL

 subh "metabolism" | | | | | MEDLINE_QUAL_subh

 } | | | | \MEDLINE_QUAL

 } | | | \MEDLINE_MESH_qual

 } , | | \MEDLINE_ENTRY_mesh_E

 { | | /MEDLINE_ENTRY_mesh_E

 term "Heat-Shock Proteins" , | | | MEDLINE_MESH_term

 qual { | | | /MEDLINE_MESH_qual

 { | | | | /MEDLINE_QUAL

 mp TRUE , | | | | | MEDLINE_QUAL_mp

 subh "genetics" | | | | | MEDLINE_QUAL_subh

 } | | | | \MEDLINE_QUAL

 } | | | \MEDLINE_MESH_qual

 } | | \MEDLINE_ENTRY_mesh_E

 } , | \MEDLINE_ENTRY_mesh

 substance { | /MEDLINE_ENTRY_substance

 { | | /MEDLINE_substance_E

 type cas , | | | MEDLINE_RN_type

 cit "9007-49-2" , | | | MEDLINE_RN_cit

 name "DNA" | | | MEDLINE_RN_name

 } | | \MEDLINE_substance_E

 } , | \MEDLINE_ENTRY_substance

 xref { | /MEDLINE_ENTRY_xref

 { | | /MEDLINE_ENTRY_xref_E

 type genbank , | | | MEDLINE_SI_type

 cit "M19141" | | | MEDLINE_SI_cit

 } | | \MEDLINE_ENTRY_xref_E

 } | \MEDLINE_ENTRY_xref

} \MEDLINE_ENTRY

Finding AsnTypePtrs at Run-time

The #defines described above are statically defined in a header file. But sometimes one must find the parse tree nodes (asntypes) from a module which does not include the parse tree itself. If all parse trees have been loaded using the AsnLoad() functions in the modules that include the parse trees, then they are globally accessible by name through a number of functions. AsnFind() takes a string with the name of an ASN.1 specified entity or a partial path (sub-entities separated by dots) to the entity and returns a pointer to its type node. For example,

AsnTypePtr atp;

atp = AsnFind("Seq‑entry.location");

will return the same pointer #defined as SEQ_ENTRY_location in the parse tree header file.

Other functions will return information about types at run-time. Using the atp obtained above for Seq-entry.location, which is a "Seq-loc", which is itself defined as the primitive type CHOICE:

CharPtr str;

str = AsnFindPrimName(atp); /* returns "CHOICE" */

str = AsnFindBaseName(atp); /* returns "Seq-loc" */

For an ENUMERATED type one can get the values at run-time. For the ASN.1 specification:

Sex ::= ENUMERATED {

male (1) ,

female (2) };

the following code can be used:

AsnTypePtr atp;

CharPtr str;

atp = AsnFind("Sex");

str = AsnEnumTypeStr(atp, 2); /* returns "female" */

str = AsnEnumStr("Sex", 2); /* also returns "female" */

Custom Read and Write Functions

The AsnLib read and write functions can be replaced to provide custom I/O using the AsnIoNew() function. This is how the NCBI network client/servers are implemented, by replacing the read and write functions with socket based routines. We have also used it to write blocks of ASN.1 in memory buffers for transfer in and out of databases. This is not normally something done by a novice, but several functions which read and write to memory are given in the toolkit as models of how to do this sort of thing.

 /*** read and write to memory buffer ***/

extern AsnIoMemPtr AsnIoMemOpen PROTO((CharPtr mode, BytePtr buf, Uint2 size));

extern AsnIoMemPtr AsnIoMemClose PROTO((AsnIoMemPtr aimp));

extern Boolean AsnIoMemReset PROTO((AsnIoMemPtr aimp, Uint2 bytes_to_read));

extern Int2 AsnIoMemRead PROTO((Pointer, CharPtr, Uint2));

extern Int2 AsnIoMemWrite PROTO((Pointer, CharPtr, Uint2));

 /*** read and write to a ByteStore in memory ***/

extern AsnIoBSPtr AsnIoBSOpen PROTO((CharPtr mode, ByteStorePtr bsp));

extern AsnIoBSPtr AsnIoBSClose PROTO((AsnIoBSPtr aibp));

extern Int2 AsnIoBSRead PROTO((Pointer, CharPtr, Uint2));

extern Int2 AsnIoBSWrite PROTO((Pointer, CharPtr, Uint2));

Customizing an AsnIo Stream

Sometimes one wishes to change the details of a series of functions at run-time. This can be accomplished by attaching AsnOption structures to the stream. These form a linked list of structures which carry user defined data and are identified by user defined class and type values. A series of functions allow the options to be added, removed, or located on a stream pointer. These are used to customize the behavior of the object loaders (see below) under different run-time conditions, but have many other uses as well. AsnOptions are not the same as AsnExpOptStructs, or exploration structures used by the generalized iterator described below.

ASN.1 Object Loaders

About the only time it is efficient to read the lower level ASN.1 raw values is when there are just a few types of simple values that one is interested in processing. For example, if one wanted to record the relative occurrence of journal titles in some particular ASN.1 file, one could find those without worrying about the objects. However, most of the time it is much more convenient to load all or a portion of the ASN.1 information into C code structured objects.

In general, when the ASN.1 stream is positioned at the beginning of a structure, one can call the <OBJECT>AsnRead function (replacing "<OBJECT>" with some object name) which returns a pointer of the <OBJECT>'s type to an allocated structure. This structure can then be processed within the C code. To use these objects, it is convenient to know both the ASN.1 definitions and the C structures, as well as any special function names which operate on them. For this reason, these different kinds of format descriptions (ASN.1 definitions, C structure definitions, and function prototypes) all appear together, alphabetized by C code object type (if it exists, else using the ASN.1 definition) following this section. For most objects, there are <OBJECT>New() functions which allocate memory and set any default values, <OBJECT>Free() functions, which release the memory, <OBJECT>AsnRead() and <OBJECT>AsnWrite functions for communication with the ASN.1 I/O stream. These are true objects in that the upper level objects inherit the slots and "knowledge" about the lower level objects, so that when, for example, an <OBJECT>Free() routine is called which is composed of (recursively) other sub-objects, their <SUB-OBJECT>Free() functions are used as needed. The same type of behavior is exhibited on the <OBJECT>AsnRead() and <OBJECT>AsnWrite() functions since they called the appropriate <SUB-OBJECT>AsnRead() and <SUB_OBJECT>AsnWrite() functions as needed.

The <OBJECT>New() functions take no parameters, and return an <OBJECT>Ptr. The <OBJECT>Free() functions take an <OBJECT>Ptr parameter, pointing to the object that is to be returned to the heap, and return a NULL pointer of the same type. The <OBJECT>AsnRead() functions take a pointer to an AsnIo stream (not a FILE *) that was opened with AsnIoOpen() and an AsnTypePtr which points within the parse tree to the type of the Id whose value follows. An example of what is meant by this follows:

if (-- expect seqentry only ---){

atp = SEQ_ENTRY;

while ((atp = AsnReadId(AsnFp, my_amp, atp)) != NULL) {

the_set = SeqEntryAsnRead(AsnFp, atp);

/*--process the SeqEntry --*/

SeqEntryFree(the_set);

}

} else {

/*---Expect a BioseqSet----*/

atp = BIOSEQ_SET;

while ((atp = AsnReadId(AsnFp, my_amp, atp)) != NULL) {

if (atp == BIOSEQ_SET_seq_set_E) {

/*------------

* The "..._E" is the type of the element of the

* seq-set. Generally, when there are repeating elements

* of the same type, the "_E" type holds a place in the parse tree.

--------------/

the_set = SeqEntryAsnRead(AsnFp, atp);

/*--process the SeqEntry --*/

SeqEntryFree(the_set);

} else {

AsnReadVal(AsnFp,atp, &value);

}

}

}

An <OBJECT>Ptr (or NULL on some error conditions) is returned. The <OBJECT>AsnWrite() functions take the same parameters as the <OBJECT>AsnRead() functions, with the addition of an <OBJECT>Ptr to the object to be added to the ASN.1 stream. The return is a Boolean (TRUE on success, FALSE on failure).

In many cases, these standard functions are all that are needed. In some special cases additional functions for comparing, duplicating, or displaying objects are provided as well. The object loaders are discussed in the following chapters which describe the NCBI data objects themselves. Finally there are chapters on utility functions which perform more complex operations on these objects.

AsnLib and Object Loaders As a Generalized Iterator

The ability to scan a stream of data and identify and extract data items in a very general way just using their names as defined in their ASN.1 specification is a very powerful aspect of AsnLib functionality. Since the object loader xxxAsnWrite() functions must exhaustively traverse the internal C structures to write them out, and must "know" both the ASN.1 specified type of every structure and field, one can use these functions to create a generalized iterator for the object loader structures in memory.

One can create a "null" output AsnIoPtr (although this will work on a real AsnWrite as well) by using:

AsnIoPtr aip;

aip = AsnIoNullOpen();

One can then associate a data type from the ASN.1 specification or a partial path in the ASN.1 specification where each element is separated by dots. "Seq-loc" is the Seq-loc object no matter what it's context. "Seq-feat.location" is a Seq-loc ONLY in the "location" slot of a Seq-feat. The Seq-feat itself can be in any context, since that is the top of the partial path. Whenever the object loader AsnWrite routine encounters a data item that satisfies the partial path, it can be made to call a user supplied callback function with arguments of a user defined data object and the data object that would be written. An AsnIoPtr can have as many of these options as desired. More than one callback can be associated with the same data type. More than one datatype can be associated with the same callback. Explore options are associate with a stream like this program which counts the features in a SeqEntry.:

typedef struct mydata {

Int2 counter;

} Mydata, PNTR MydataPtr;

/*** counts features in a SeqEntry ***/

Int2 countfeats(SeqEntryPtr sep)

MydataPtr localptr;

AsnIoPtr aip;

Int2 num;

localptr = (MydataPtr)MemNew(sizeof(Mydata));

localptr->counter = 0;

aip = AsnIoNullOpen();

AsnExpOptNew(aip, "Seq-feat", (Pointer)localptr, mycallback);

SeqEntryAsnWrite(sep, aip, NULL); /* object loader write */

num = localptr->counter;

MemFree(localptr);

AsnIoClose(aip);

return num;

}

void mycallback (AsnExpOptStructPtr aeosp)

{

SeqFeatPtr sfp;

MydataPtr mdp;

/*** this will be called at both the beginning and end of writing */

 /** a structure. Be sure we only act once (at the beginning) */

if (aeosp->dvp->intvalue != START_STRUCT) return;

 /** get the SeqFeatPtr ***/

 /** this step is unnecessary in this application.. it's just here */

 /** to show where to get it */

sfp = (SeqFeatPtr) aeosp->the_struct;

/** get the user supplied data **/

mdp = (MydataPtr) aeosp->data;

/*** do the job of counting ****/

mdp->counter++;

/*** that's it *****/

return;

}

The AsnExpOptStruct, aeosp, is not the same as an AsnOption, described earlier. The aeosp‑>dvp is the DataValPtr which would normally be written out on the AsnWrite(). For primitive types it contains the integer, boolean, real number, CharPtr or ByteStorePtr for the data. For structures like SEQUENCE, SET, etc, it contains the value START_STRUCT or END_STRUCT, and the pointer to the C structure will be in aeosp->the_struct, as above. When the same callback is used for different data types, the data type can be found in aeosp->atp for all types. When writing a CHOICE, a key for the CHOICE is found in aeosp->the_choice, and a value appropriate to the CHOICE is found in aeosp->dvp. What is delivered for a CHOICE type can be problematic, since for a CHOICE itself, nothing but a type is normally written, so it is a judgment call what to supply in dvp. For these types, one should look at the object loader .c file to be certain what will be passed.

Note that for this iterator to work for structures and choices, AsnOpenStruct(), AsnCloseStruct(), and AsnWriteChoice() must be used in the object loaders.

When the stream is closed, the ExpOpt structures are also freed. If a stream is to be reused then an AsnExpOptFree() function is provided to strip ExpOpts off the stream pointer.

The generalized iterator shown here can be used to treat the object loader structures as a random access database with named keys in memory. It is extremely powerful and flexible. Its main drawback is that it must travers the whole structure to find the fields of interest. Since this is normally very fast anyway, this is not a major problem at the moment, although for very large objects it may be.

AsnLib and Object Loaders Provide a Generalized Copy and Compare

Any data of arbitrary complexity can be easily copied or compared using the object loaders. Basically the object loader read and write functions, and a pointer to the object to be copied are passed to a function. The functions are then used first to write the struct as ASN.1, to a file or in memory, and then are used to read it back into a new structure, and then return a pointer to the new structure. The compare is done the same way, except one copy is written, then the other is written and, as part of the second write, compared to the first write (only one copy ever actually exists as an ASN.1 stream). This is a byte by byte compare, so the objects must be completely identical to return TRUE.

extern Pointer AsnIoCopy PROTO((Pointer from, AsnReadFunc readfunc,

AsnWriteFunc writefunc);

extern Pointer AsnIoMemCopy PROTO((Pointer from, AsnReadFunc readfunc,

AsnWriteFunc writefunc));

extern Boolean AsnIoMemComp PROTO((Pointer a, Pointer b,

 AsnWriteFunc writefunc));

AsnLib Interface: asn.h

/* asn.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: asn.h

*

* Author: James Ostell

*

* Version Creation Date: 1/1/91

*

* $Revision: 2.2 $

*

* File Description:

* This header the interface to all the routines in the ASN.1 libraries

* that an application should ever use. It also includes the necessary

* typedefs -- however the application programmer is not meant to use

* the internal structures directly outside of the specified functions,

* as the internal structures may be changed without notice.

*

* Modifications:

* --

* Date Name Description of modification

* ------- ---------- ---

*

*

* ==

*/

#ifndef _ASNTOOL_

#define _ASNTOOL_

 /*** depends on NCBI core routines ***/

#ifndef _NCBI_

#include <ncbi.h>

#endif

#ifdef __cplusplus

extern "C" {

#endif

 /**** ValNode is used for internal representation of values from

**** CHOICE, SET OF, SEQ OF and combinations for many cases.

**** it is provided in ncbimisc for build object routines ****/

/*** The following defines can be used for backward compatibility

#define AsnValue DataVal

#define AsnNode ValNode

***/

/*** In addition, AsnValueNode was changed to AsnValxNode so it would

 not conflict with the AsnValue define above

****/

#ifndef START_STRUCT

#define START_STRUCT
411

/* { found */

#define END_STRUCT

412

/* } found */

#endif

typedef struct asnvaluenode {

Int2 valueisa;

CharPtr name;

/* use for strings and named int */

Int4 intvalue;

 /* use for int and boolean */

FloatHi realvalue;

struct asnvaluenode PNTR next;

}
AsnValxNode, PNTR AsnValxNodePtr;

 /******** AsnType is a node in the AsnTool parse tree *******/

typedef struct asntype {

Int2 isa;

CharPtr name;

Uint1 tagclass;

Int2 tagnumber;

Boolean implicit;

Boolean optional;

Boolean hasdefault;

Boolean exported;

Boolean imported;

Boolean resolved;

AsnValxNodePtr defaultvalue;

 /* used for default value, range, subtypes */

struct asntype PNTR type;

Pointer branch;

 /* used for named ints, enum, set, sequence */

Int2 tmp; /* for temporary ->type link to local tree */

struct asntype PNTR next;

}
AsnType, PNTR AsnTypePtr;

typedef struct asnmodule {

CharPtr modulename;

CharPtr filename; /* if module to be loaded from disk */

AsnTypePtr types;

AsnTypePtr values;

struct asnmodule PNTR next; /* for chain of modules */

Int2 lasttype; /* for isa defined types */

Int2 lastvalue;

/* for isa defined values */

}
AsnModule, PNTR AsnModulePtr;

#define ASNIO_BUFSIZE
1024 /* default size of AsnIo.buf */

 /* AsnIo.type bit[0] = text? bit[1]=binary?*/

 /* bit[2]=input? bit[3]=output? */

#define ASNIO_TEXT 1

#define ASNIO_BIN 2

#define ASNIO_IN 4

#define ASNIO_OUT 8

#define ASNIO_FILE 16

#define ASNIO_CARRIER 32 /* is a pure iterator */

#define ASNIO_TEXT_IN
21 /* AsnIo.type */

#define ASNIO_TEXT_OUT
25

#define ASNIO_BIN_IN
22

#define ASNIO_BIN_OUT
26

typedef struct pstack {

 AsnTypePtr type; /* type at this level of stack */

 Int4 len; /* length of item for binary decode */

 Boolean resolved; /* resolution of type for binary decode */

Boolean tag_indef; /* indefinate tag length on input? */

} Pstack, PNTR PstackPtr;

typedef void (* AsnOptFreeFunc) PROTO ((Pointer));

typedef struct asnopt {

Int2 ao_class; /* class of option. all negative numbers res.*/

Int2 type; /* type within ao_class */

DataVal data; /* data used for setting option */

AsnOptFreeFunc freefunc; /* function to free data.ptrvalue */

struct asnopt PNTR next;

} AsnOption, PNTR AsnOptionPtr;

typedef struct asnexpoptstruct {

struct asnio PNTR aip;

AsnTypePtr atp;

DataValPtr dvp;

Int2 the_choice;

Pointer the_struct;

Pointer data;

} AsnExpOptStruct, PNTR AsnExpOptStructPtr;

typedef void (* AsnExpOptFunc) PROTO ((AsnExpOptStructPtr));

#define NO_CHOICE_SET INT2_MIN /* for AsnExpOptStruct.the_choice */

typedef struct expopt {

Int2 numtypes;

AsnTypePtr PNTR types; /* the type to check */

Pointer user_data; /* user supplied data */

AsnExpOptFunc user_callback; /* user supplied callback function */

struct expopt PNTR next;

} AsnExpOpt, PNTR AsnExpOptPtr;

typedef void (*ErrorRetType) PROTO((Int2, CharPtr));

typedef Int2 (*IoFuncType) PROTO((Pointer, CharPtr, Uint2));

typedef struct asnio {

CharPtr linebuf;

Int1 type; /* type- text-in, text-out, bin-in, bin-out */

Int2 linepos; /* current offset in linebuf */

FILE * fp; /* file to write or read to */

BytePtr buf; /* buffer for I/O */

 Int2 bufsize; /* sizeof this buffer */

Int2 bytes, /* bytes of data available in buf */

offset; /* current offset of processing in buf */

Uint1 tagclass; /* last BER tag-id-len read */

Int2 tagnumber;

Boolean constructed;

Int4 length; /* length of BER encoded data */

Boolean tagsaved; /* TRUE if tag info already here - stops read */

Int4 used; /* if tagsaved, bytes used recorded here */

Int1 tabsize, /* spaces per tab */

indent_level, /* current indent level for print output */

linelength, /* max line length on output */

max_indent, /* current maximum indent levels for first */

state; /* parsing state */

 BoolPtr first; /* for first element on indented line for printing */

Int4 linenumber; /* for reporting errors */

CharPtr word; /* current word in linebuf */

Int2 wordlen, /* length of word in linebuf */

 token; /* current parsing token for word */

 PstackPtr typestack; /* the parsing stack for input and output */

Int1 type_indent, /* used like indent_level and max_indent, but for */

max_type; /* typestack */

ErrorRetType error_ret; /* user error return */

 Pointer iostruct; /* non-FILE io structure */

 IoFuncType readfunc, /* read/write functions for sockets */

 writefunc; /* open and close MUST be done outside AsnIo */

Boolean read_id; /* for checking AsnReadId AsnReadVal alternation */

CharPtr fname; /* name of file in use */

AsnOptionPtr aop; /* head of options chain */

AsnExpOptPtr aeop; /* exploration options chain */

AsnExpOptStructPtr aeosp;

Boolean io_failure; /* set on failed write */

} AsnIo, PNTR AsnIoPtr;

typedef struct asniomem { /* for AsnIo to and from a memory block */

AsnIoPtr aip;

 /* the AsnIoPtr for this */

BytePtr buf;

 /* a buffer for the data */

Uint2 size,

/* size of this buffer (w) or bytes_to_read (r) */

count;

/* count of bytes read from or written to buffer */

} AsnIoMem, PNTR AsnIoMemPtr;

typedef struct asniobs { /* for AsnIo to and from a memory ByteStore */

AsnIoPtr aip;

 /* the AsnIoPtr for this */

ByteStorePtr bsp; /* byte store for this */

} AsnIoBS, PNTR AsnIoBSPtr;

/***** typedefs used often in object loaders **********/

typedef Pointer (* AsnReadFunc) PROTO((AsnIoPtr aip, AsnTypePtr atp));

typedef Boolean (* AsnWriteFunc) PROTO((Pointer object, AsnIoPtr aip, AsnTypePtr atp));

/***

*

* prototypes

*

***/

/*** asngen.c ****/

extern AsnTypePtr AsnReadId PROTO((AsnIoPtr aip, AsnModulePtr amp, AsnTypePtr atp));

extern Int2 AsnReadVal PROTO((AsnIoPtr aip, AsnTypePtr atp, DataValPtr vp));

extern Boolean AsnWrite PROTO((AsnIoPtr aip, AsnTypePtr atp, DataValPtr dvp));

extern Boolean AsnSkipValue PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean AsnOpenStruct PROTO((AsnIoPtr aip, AsnTypePtr atp,

Pointer the_struct));

extern Boolean AsnCloseStruct PROTO((AsnIoPtr aip, AsnTypePtr atp,

Pointer the_struct));

extern Boolean AsnWriteChoice PROTO((AsnIoPtr aip, AsnTypePtr atp, Int2 choice,

DataValPtr the_value));

extern void AsnCheckExpOpt PROTO((AsnIoPtr aip, AsnTypePtr atp, DataValPtr dvp));

extern AsnExpOptPtr AsnExpOptNew PROTO((AsnIoPtr aip, CharPtr path,

Pointer user_data, AsnExpOptFunc user_func));

extern AsnExpOptPtr AsnExpOptFree PROTO((AsnIoPtr aip, AsnExpOptPtr aeop));

extern Int2 AsnGetLevel PROTO((AsnIoPtr aip));

extern void AsnNullValueMsg PROTO((AsnIoPtr aip, AsnTypePtr node));

/*** asntypes.c ***/

extern void AsnKillValue PROTO((AsnTypePtr atp, DataValPtr dvp));

extern AsnTypePtr PNTR AsnTypePathFind PROTO((AsnModulePtr amp, CharPtr str, Int2Ptr numtypes));

extern AsnTypePtr AsnTypeFind PROTO((AsnModulePtr amp, CharPtr str));

#define AsnFind(x) AsnTypeFind(NULL,x) /* find type (all) */

extern CharPtr AsnFindPrimName PROTO((AsnTypePtr atp));

extern CharPtr AsnFindBaseName PROTO((AsnTypePtr atp));

extern AsnTypePtr AsnLinkType PROTO((AsnTypePtr type, AsnTypePtr localtype));

extern void AsnUnlinkType PROTO((AsnTypePtr type));

extern CharPtr AsnTypeDumpStack PROTO((CharPtr str, AsnIoPtr aip));

extern Boolean AsnTreeLoad PROTO((char * file, AsnValxNodePtr * avnptr, AsnTypePtr * atptr, AsnModulePtr * ampptr));

#define AsnLoad() AsnTreeLoad(asnfilename, &avn, &at, &) /* simple loader */

extern void AsnModuleLink PROTO((AsnModulePtr amp));

extern CharPtr AsnEnumStr PROTO((CharPtr str, Int2 val));

extern CharPtr AsnEnumTypeStr PROTO((AsnTypePtr atp, Int2 val));

extern AsnModulePtr AsnAllModPtr PROTO((void));

/*** asnio.c ****/

extern AsnIoPtr AsnIoOpen PROTO((CharPtr file_name, CharPtr mode));

extern AsnIoPtr AsnIoClose PROTO((AsnIoPtr aip));

extern void AsnIoReset PROTO((AsnIoPtr aip));

extern void AsnIoSetErrorMsg PROTO((AsnIoPtr aip, ErrorRetType error_ret));

extern Int4 AsnIoSeek PROTO((AsnIoPtr aip, Int4 pos));

extern Int4 AsnIoTell PROTO((AsnIoPtr aip));

extern void AsnIoFlush PROTO((AsnIoPtr aip));

extern AsnIoPtr AsnIoNew PROTO((Int1 type, FILE * fp, Pointer iostruct, IoFuncType readfunc, IoFuncType writefunc));

extern Boolean AsnIoSetBufsize PROTO((AsnIoPtr aip, Int2 size));

extern AsnOptionPtr AsnIoOptionNew PROTO((AsnIoPtr aip, Int2 ao_class, Int2 type, DataVal av, AsnOptFreeFunc freefunc));

extern void AsnIoOptionFree PROTO((AsnIoPtr aip, Int2 ao_class, Int2 type));

extern Boolean AsnClassTypeMatch PROTO((Int2 ao_class, Int2 type, Int2 this_class, Int2 this_type));

extern AsnOptionPtr AsnIoOptionGet PROTO((AsnIoPtr aip, Int2 ao_class, Int2 type,

AsnOptionPtr last));

extern AsnOptionPtr AsnOptionNew PROTO((AsnOptionPtr PNTR aopp, Int2 ao_class, Int2 type, DataVal av, AsnOptFreeFunc freefunc));

extern void AsnOptionFree PROTO((AsnOptionPtr PNTR aopp, Int2 ao_class, Int2 type));

extern AsnOptionPtr AsnOptionGet PROTO((AsnOptionPtr head, Int2 ao_class, Int2 type,

AsnOptionPtr last));

 /*** read and write to memory buffer ***/

extern AsnIoMemPtr AsnIoMemOpen PROTO((CharPtr mode, BytePtr buf, Uint2 size));

extern AsnIoMemPtr AsnIoMemClose PROTO((AsnIoMemPtr aimp));

extern Boolean AsnIoMemReset PROTO((AsnIoMemPtr aimp, Uint2 bytes_to_read));

extern Int2 AsnIoMemRead PROTO((Pointer, CharPtr, Uint2));

extern Int2 AsnIoMemWrite PROTO((Pointer, CharPtr, Uint2));

 /*** read and write to a ByteStore in memory ***/

extern AsnIoBSPtr AsnIoBSOpen PROTO((CharPtr mode, ByteStorePtr bsp));

extern AsnIoBSPtr AsnIoBSClose PROTO((AsnIoBSPtr aibp));

extern Int2 AsnIoBSRead PROTO((Pointer, CharPtr, Uint2));

extern Int2 AsnIoBSWrite PROTO((Pointer, CharPtr, Uint2));

 /** Copy and Compare functions ***/

extern Pointer AsnIoCopy PROTO((Pointer from, AsnReadFunc readfunc, AsnWriteFunc writefunc));

extern Pointer AsnIoMemCopy PROTO((Pointer from, AsnReadFunc readfunc, AsnWriteFunc writefunc));

extern Boolean AsnIoMemComp PROTO((Pointer a, Pointer b, AsnWriteFunc writefunc));

#define AsnIoNullOpen() AsnIoNew((ASNIO_OUT | ASNIO_TEXT | ASNIO_CARRIER), NULL, NULL, NULL, NULL)

/*** asndebin.c ***/

extern AsnTypePtr AsnBinReadId PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Int2 AsnBinReadVal PROTO((AsnIoPtr aip, AsnTypePtr atp, DataValPtr vp));

/*** asnenbin.c ***/

extern Boolean AsnBinWrite PROTO((AsnIoPtr aip, AsnTypePtr atp, DataValPtr dvp));

 /** expert use only ***/

extern void AsnEnBinBytes PROTO((Pointer ptr, Uint4 len, AsnIoPtr aip));

/*** asnlex.c ***/

extern AsnTypePtr AsnTxtReadId PROTO((AsnIoPtr aip, AsnModulePtr amp, AsnTypePtr atp));

extern Int2 AsnTxtReadVal PROTO((AsnIoPtr aip, AsnTypePtr atp, DataValPtr vp));

/*** asnprint.c ***/

extern Boolean AsnTxtWrite PROTO((AsnIoPtr aip, AsnTypePtr atp, DataValPtr dvp));

/*** asnlext.c ***/

extern AsnModulePtr AsnLoadModules PROTO((AsnIoPtr aip));

/******** temporary defines for older code *************/

#define AsnStartStruct(x,y) AsnOpenStruct(x, y, NULL)

#define AsnEndStruct(x,y) AsnCloseStruct(x, y, NULL)

/***** AsnOption ao_class values - do not reuse ***************/

/***** all positive numbers > 0 are available to non-NCBI applications ***/

#define OP_ANY 0

#define OP_TOGENBNK -1

#define OP_BB2ASN -2

#define OP_NCBIOBJSSET -3

#define OP_NCBIOBJSEQ -4

#define OP_GET_MUID -5

#ifdef __cplusplus

}

#endif

#endif

General Use Objects

Introduction
Large Text Blocks: StringStore
The Date
Identifying Things: Object-id
Identifying Things: Dbtag
Identifying People: Person-id
Expressing Uncertainty with Fuzzy Integers: Int-fuzz
Creating Your Own Objects: User-object
ASN.1 Specification: general.asn
C Structures and Functions: objgen.h

 Introduction

This section presents the data objects defined in general.asn and objgen.[ch]. They are a miscellaneous collection of generally useful types.

Large Text Blocks: StringStore

A StringStore is defined as a VisibleString for ASN.1 encoding. This type is used to hold very long strings. It is simply a hint to the AsnLib functions to store the incoming data in a ByteStore (see CoreLib chapter) rather than an array to avoid overrunning allocation limits of some computers. OCTET STRINGs (a sequence of opaque bytes) are always kept in ByteStore structures since the length of the object must be stored as well (no terminating '\0' is possible). ByteStores have the advantage of segmenting the long strings, which for nucleic acid data can get very long. The ByteStore will allow us to add data buffering to disk for these large objects as it becomes necessary even on large computers.

The Date

ASN.1 has primitive types for recording dates but which require the time in seconds as well. For scientific and bibliographic data, it is common that only the date, or even just a part of the date (e.g. month and year) are available. Rather than use artificial zero values for the more precise ASN.1 form, we have created a specialized Date type. Date is a CHOICE of a simple, unparsed string or a structured Date-std. The string form is a fall-back for when the input data is so poorly structured that it is impossible to reliably parse the date fields from it. It should only be used as a last resort to accommodate old data, as it is impossible to compute or index on.

When possible, the "std" form of the Date should be used. In this case year is an integer (e.g. 1992), month is an integer from 1-12 (where January is 1), and day is an integer from 1-31. A string called "season" can be used, particularly for bibliographic citations (e.g. the "spring" issue). When a range of months is given for an issue (e.g. "June‑July") it cannot be represented directly. However, one would like to be able to index on integer months but still not lose the range. This is accomplished by putting 6 in the "month" slot and "‑July" in the "season" slot. The DatePrint() function will put them back together for display, but the issue can still be indexed by month. Year is the only required field in a Date-std.

The "C" structure used for Date can accommodate both the representation of the CHOICE itself (which kind of Date is this?) and the data from either CHOICE. It has a four byte array and a CharPtr. The byte[0] indicates what kind of Date it is. If a "str" type, then the CharPtr points to the string and the other three bytes in the array have no meaning. If a "std" type, then the byte[1] is the year (minus 1900 to save space - the object loaders will add the 1900 back when encoding into ASN.1), byte[2] is the month (or 0 if not given), and byte[3] is the day (or 0 if not given). If the CharPtr is NULL, then the season is not given.

The object loaders contain a number of handy functions for working with Dates in addition to the usual New(), Free(), AsnRead() and AsnWrite() functions. DateWrite() will fill a Date.std with the function arguments. DateRead() will fill pointer arguments with the values from a Date. DateCurr() will create and return a Date.std filled with the current date by accessing the computer system. DateDup() will create a copy of a Date. DatePrint() will format a Date into a display format into a buffer supplied by the caller. This buffer should normally be at least 30 bytes long. The format is e.g. "Jun 30, 1992".

DateMatch(a, b, all) will return 0 if Date a is the same as Date b, 1 if b is after a, -1 if b is before a. It will return a 2 or -2 (for sorting) if they are different Date types (str and std) that could not be compared. If all is equal to TRUE, then all fields that are set in one Date must be set and must match in the other Date. If all is equal to FALSE, then only the fields set in both are matched. Note that this function can only measure if one date is before another chronologically if both are Date-std types. The string Date types can only be compared lexically (like strcmp()).

Identifying Things: Object-id

An Object-id is a simple structure used to identify a data object. It is just a CHOICE of an INTEGER or a VisibleString. It must always be used within some defining context (e.g. see Dbtag below) in order to have some global meaning. It allows flexibility in a host system's preference for identifying things by integers or strings.

The ObjectId "C" structure has a 4 byte integer slot and a CharPtr slot. If the CharPtr is NULL, then the integer value is the identifier and the type is "int". If the CharPtr is not NULL, then the Object-id is type "str" and the CharPtr is considered to point at the identifier.

There is an ObjectIdDup() function to make a copy of an ObjectId and an ObjectIdMatch() function which returns TRUE if two ObjectIds are identical, FALSE if they are not.

Identifying Things: Dbtag

A Dbtag is an Object-id within the context of a database. The database is just defined by a VisibleString. The strings identifying the database are not centrally controlled, so it is possible that a conflict could occur. If there is a proliferation of Dbtags, then a registry might be considered at NCBI. Dbtags provide a simple, general way for small database providers to supply their own internal identifiers in a way which will, usually, be globally unique as well, yet requires no official sanction. So, for example, identifiers for features on sequences are not widely available at the present time. However, the Eukaryotic Promotor Database (EPD) can be provided as a set of features on sequences. The internal key to each EPD entry can be propagated as the Feature-id by using a Dbtag where "EPD" is the "db" field and an integer is used in the Object-id, which is the same integer identifying the entry in the normal EPD release.

As for ObjectIds, there are DbtagMatch() and DbtagDup() functions in the object loaders.

Identifying People: Person-id

Person-id provides an extremely flexible way to identify people. There are four CHOICES from very explicit to completely unstructured. When one is building a database, one should select the most structured form possible. However, when one is processing data from other sources, one can only pick the most structured form possible, given the input data.

The first Person-id CHOICE is a Dbtag. It would allow people to be identified by some formal registry. For example, in the USA, it might be possible to identify people by Social Security Number. Theoretically, one could then maintain a link to a person in database, even if they changed their name. Dbtag would allow other registries, such as professional societies, to be used as well. Frankly, this may be wishful thinking and possibly even socially inadvisable, though from a database standpoint, it would be very useful to have some stable identifier for people.

A Name-std Choice is the next most explicit form. It allows a structured, fielded name, making indexing by last name, but disambiguation (of say, "Jones") by first name possible. This is the best choice when the data is available and its use should be encouraged by those building new databases wherever reasonable.

The last two choices are string types. MEDLINE stores names in strings in a structured way (e.g. Jones JM). This means one can usually, but not always, parse out last names and can generally build indexes on the assumption that the last name is first. Thus, it is worth distinguishing this case from the pure string form, the last CHOICE. In a pure string, there are no guarantees of any kind made about the structure of the name. It could be last name first, first name first, comma after last name, periods between initials, etc. The string form should be the CHOICE of last resort.

In the "C" structure, the first element indicates the type of the Person-id. The generic Pointer then must be cast to the correct type given that knowledge. So, for a Person-id.dbtag the Pointer is a DbtagPtr. For Person-id.name it is a NameStdPtr. For Person-id.ml or Person-id.str it is a CharPtr.

Expressing Uncertainty with Fuzzy Integers: Int-fuzz

Lengths of biological sequences and locations on them are expressed with integers. However, sometimes it is desirable to be able to indicate some uncertainty about that length or location. Unfortunately, most software cannot make good use of such uncertainties, though in most cases this is fine. In order to provide both a simple, single integer view, as well as a more complex fuzzy view when appropriate, we have adopted the following strategy. In the NCBI specifications, all lengths and locations are always given by simple integers. If information about fuzziness is appropriate, then an Int-fuzz is ADDED to the data. In this case, the simple integer can be considered a "best guess" of the length or location. Thus simple software can ignore fuzziness, while it is not lost to more sophisticated uses.

Fuzziness can take a variety of forms. It can be plus or minus some fixed value. It can be somewhere in a range of values. It can be plus or minus a percentage of the best guess value. It may also be certain boundary conditions (greater than the value, less than the value) or refer to the bond BETWEEN residues of the biological sequence (bond to the right of this residue, bond to the left of that residue).

Creating Your Own Objects: User-object

One of the strengths of ASN.1 is that it requires a formal specification of data down to very detailed levels. This enforces clear definitions of data which greatly facilitates exchange of information in useful ways between different databases, software tools, and scientific enterprises. The problem with this approach is that it makes it very difficult for end users to add their own objects to the specification or enhance objects already in the specification. Certainly custom modules can be added to accommodate specific groups needs, but the data from such custom modules cannot be exchanged or passed through tools which adhere only to the common specification.

We have defined an object called a User-object, which can represent any class of simple, structured, or tabular data in a completely structured way, but which can be defined in any way that meets a user's needs. The User-object itself has a "class" tag which is a string used like the "db" string in Dbtag, to set the context in which this User-object is meaningful. The "class" strings are not centrally controlled, so again it is possible to have a conflict, but unlikely unless activity in this area becomes very great. Within a "class" one can define an object "type" by either a string or an integer. Thus any particular endeavor can define a wide variety of different types for their own use. The combination of "class" and "type" identifies the object to databases and software that may understand and make use this particular User-object's structure and properties. Yet, the generic definition means software that does not understand the purpose or use of any User-object can still parse it, pass it though, or even print it out for a user to peruse.

The attributes of the User-object are contained in one or more User-fields. Each User-field has a field label, which is either a string or an integer. It may contain any kind of data, strings, real numbers, integers, arrays of anything, or even sub-fields or complete sub-objects. When arrays and repeating fields are supplied, the optional "num" attribute of the User-field is used to tell software how many elements to prepare to receive. Virtually any structured data type from the simplest to the most complex can be built up from these elements.

The User-object is provided in a number of places in the public ASN.1 specifications to allow users to added their own structured features to Feature-tables or their own custom extensions to existing features. This allows new ideas to be tried out publicly, and allows software tools to be written to accommodate them, without requiring consensus among scientists or constant revisions to specifications. Those new ideas which time and experience indicate have become important concepts in molecular biology can be "graduated" to real ASN.1 specifications in the public scheme. A large body of structured data would presumably already exist in User-objects of this type, and these could all be back fitted into the new specified type, allowing data to "catch up" to the present specification. Those User-objects which do not turn out to be generally useful or important remain as harmless historical artifacts. User-objects could also be used for custom software to attach data only required for use by a particular tool to an existing standard object without harming it for use by standard tools.

ASN.1 Specification: general.asn

--$Revision: 2.0 $

--**

--

-- NCBI General Data elements

-- by James Ostell, 1990

--

--**

NCBI-General DEFINITIONS ::=

BEGIN

EXPORTS Date, Person-id, Object-id, Dbtag, Int-fuzz, User-object;

-- StringStore is really a VisibleString. It is used to define very

-- long strings which may need to be stored by the receiving program

-- in special structures, such as a ByteStore, but it's just a hint.

-- AsnTool stores StringStores in ByteStore structures.

-- OCTET STRINGs are also stored in ByteStores by AsnTool

--

-- typedef struct bsunit { /* for building multiline strings */

 -- Nlm_Handle str; /* the string piece */

 -- Nlm_Int2 len_avail,

 -- len;

 -- struct bsunit PNTR next; } /* the next one */

-- Nlm_BSUnit, PNTR Nlm_BSUnitPtr;

--

-- typedef struct bytestore {

 -- Nlm_Int4 seekptr, /* current position */

 -- totlen, /* total stored data length in bytes */

-- chain_offset; /* offset in ByteStore of first byte in curchain */

 -- Nlm_BSUnitPtr chain, /* chain of elements */

 -- curchain; /* the BSUnit containing seekptr */

-- } Nlm_ByteStore, PNTR Nlm_ByteStorePtr;

--

-- AsnTool incorporates this as a primitive type, so the definition

-- is here just for completness

--

-- StringStore ::= [APPLICATION 1] IMPLICIT OCTET STRING

--

-- Date is used to replace the (overly complex) UTCTtime, GeneralizedTime

-- of ASN.1

-- It stores only a date

--

Date ::= CHOICE {

 str VisibleString , -- for those unparsed dates

 std Date-std } -- use this if you can

Date-std ::= SEQUENCE { -- NOTE: this is NOT a unix tm struct

 year INTEGER , -- full year (including 1900)

 month INTEGER OPTIONAL , -- month (1-12)

 day INTEGER OPTIONAL , -- day of month (1-31)

 season VisibleString OPTIONAL } -- for "spring", "may-june", etc

-- Dbtag is generalized for tagging

-- eg. { "Social Security", str "023-79-8841" }

-- or { "member", id 8882224 }

Dbtag ::= SEQUENCE {

 db VisibleString , -- name of database or system

 tag Object-id } -- appropriate tag

-- Object-id can tag or name anything

--

Object-id ::= CHOICE {

 id INTEGER ,

 str VisibleString }

-- Person-id is to define a std element for people

--

Person-id ::= CHOICE {

 dbtag Dbtag , -- any defined database tag

 name Name-std , -- structured name

 ml VisibleString , -- MEDLINE name (semi-structured)

 -- eg. "Jones RM"

 str VisibleString } -- unstructured name

Name-std ::= SEQUENCE { -- Structured names

 last VisibleString ,

 first VisibleString OPTIONAL ,

 middle VisibleString OPTIONAL ,

 full VisibleString OPTIONAL , -- full name eg. "J. John Poop, Esq"

 initials VisibleString OPTIONAL, -- first + middle initials

 suffix VisibleString OPTIONAL , -- Jr, Sr, III

 title VisibleString OPTIONAL } -- Dr., Sister, etc

--**** Int-fuzz **

--*

--* uncertainties in integer values

Int-fuzz ::= CHOICE {

 p-m INTEGER , -- plus or minus fixed amount

 range SEQUENCE { -- max to min

 max INTEGER ,

 min INTEGER } ,

 pct INTEGER , -- % plus or minus (x10) 0-1000

 lim ENUMERATED { -- some limit value

 unk (0) , -- unknown

 gt (1) , -- greater than

 lt (2) , -- less than

 tr (3) , -- space to right of position

 tl (4) , -- space to left of position

 other (255) } } -- something else

--**** User-object **

--*

--* a general object for a user defined structured data item

--* used by Seq-feat and Seq-descr

User-object ::= SEQUENCE {

 class VisibleString OPTIONAL , -- endeavor which designed this object

 type Object-id , -- type of object within class

 data SEQUENCE OF User-field } -- the object itself

User-field ::= SEQUENCE {

 label Object-id , -- field label

 num INTEGER OPTIONAL , -- required for strs, ints, reals, oss

 data CHOICE { -- field contents

 str VisibleString ,

 int INTEGER ,

 real REAL ,

 bool BOOLEAN ,

 os OCTET STRING ,

 object User-object , -- for using other definitions

 strs SEQUENCE OF VisibleString ,

 ints SEQUENCE OF INTEGER ,

 reals SEQUENCE OF REAL ,

 oss SEQUENCE OF OCTET STRING ,

 fields SEQUENCE OF User-field ,

 objects SEQUENCE OF User-object } }

END

C Structures and Functions: objgen.h

/* objgen.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: objgen.h

*

* Author: James Ostell

*

* Version Creation Date: 1/1/91

*

* $Revision: 2.1 $

*

* File Description: Object manager interface for module NCBI-General

*

* Modifications:

* --

* Date
 Name Description of modification

* ------- ---------- ---

*

*

* ==

*/

#ifndef _NCBI_General_

#define _NCBI_General_

#ifndef _ASNTOOL_

#include <asn.h>

#endif

#ifdef __cplusplus

extern "C" {

#endif

/***

*

* loader

*

***/

extern Boolean GeneralAsnLoad PROTO((void));

/***

*

* internal structures for NCBI-General objects

*

***/

/***

*

* Date, Date-std share the same structure

* any data[2] or data[3] values = 0 means not set or not present

* data [0] - CHOICE of date ,0=str, 1=std

* [1] - year (- 1900)

* [2] - month (1-12) optional

*
 [3] - day (1-31)
 optional

*

***/

typedef struct date {

Uint1 data[4]; /* see box above */

CharPtr str;

/* str or season or NULL */

} NCBI_Date, PNTR NCBI_DatePtr;

#define DatePtr NCBI_DatePtr

NCBI_DatePtr DateNew PROTO((void));

NCBI_DatePtr DateFree PROTO((NCBI_DatePtr dp));

Boolean DateWrite PROTO((NCBI_DatePtr dp, Int2 year, Int2 month, Int2 day, CharPtr season));

Boolean DateRead PROTO((NCBI_DatePtr dp, Int2Ptr year, Int2Ptr month, Int2Ptr day, CharPtr season));

Boolean DatePrint PROTO((NCBI_DatePtr dp, CharPtr buf));

NCBI_DatePtr DateCurr PROTO((void));

NCBI_DatePtr DateDup PROTO((NCBI_DatePtr dp));

Boolean DateAsnWrite PROTO((NCBI_DatePtr dp, AsnIoPtr aip, AsnTypePtr atp));

NCBI_DatePtr DateAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

Int2 DateMatch PROTO((DatePtr a, DatePtr b, Boolean all));

/***

*

* Object-id stuff

*

***/

typedef struct objid {

Int4 id;

CharPtr str;

} ObjectId, PNTR ObjectIdPtr;

extern ObjectIdPtr ObjectIdNew PROTO((void));

extern ObjectIdPtr ObjectIdFree PROTO((ObjectIdPtr oid));

extern ObjectIdPtr ObjectIdAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean ObjectIdAsnWrite PROTO((ObjectIdPtr oid, AsnIoPtr aip, AsnTypePtr atp));

extern Boolean ObjectIdMatch PROTO((ObjectIdPtr a, ObjectIdPtr b));

extern ObjectIdPtr ObjectIdDup PROTO((ObjectIdPtr oldid));

/***

*

* DBtag stuff

*

***/

typedef struct dbtag {

CharPtr db;

ObjectIdPtr tag;

} Dbtag, PNTR DbtagPtr;

extern DbtagPtr DbtagNew PROTO((void));

extern DbtagPtr DbtagFree PROTO((DbtagPtr dbt));

extern DbtagPtr DbtagAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean DbtagAsnWrite PROTO((DbtagPtr dbt, AsnIoPtr aip, AsnTypePtr atp));

extern Boolean DbtagMatch PROTO((DbtagPtr a, DbtagPtr b));

extern DbtagPtr DbtagDup PROTO((DbtagPtr oldtag));

/***

*

* Name-std

* names[0] = last

* [1] = first

* [2] = middle

* [3] = full

* [4] = initials

* [5] = suffix

* [6] = title

*

***/

typedef struct namestd {

CharPtr names[7];

} NameStd, PNTR NameStdPtr;

extern NameStdPtr NameStdNew PROTO((void));

extern NameStdPtr NameStdFree PROTO((NameStdPtr nsp));

extern NameStdPtr NameStdAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean NameStdAsnWrite PROTO((NameStdPtr nsp, AsnIoPtr aip, AsnTypePtr atp));

/***

*

* Person-id

* choice = 0 = not set

* 1 = dbtag

* 2 = name

* 3 = ml

* 4 = str

*

***/

typedef struct personid {

Uint1 choice; /* which CHOICE, see above */

Pointer data; /* points to appropriate data structure */

} PersonId, PNTR PersonIdPtr;

extern PersonIdPtr PersonIdNew PROTO((void));

extern PersonIdPtr PersonIdFree PROTO((PersonIdPtr pid));

extern PersonIdPtr PersonIdAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean PersonIdAsnWrite PROTO((PersonIdPtr pid, AsnIoPtr aip, AsnTypePtr atp));

/***

*

* Int-fuzz

*

***/

typedef struct intfuzz {

Uint1 choice; /* 1=p-m, 2=range, 3=pct, 4=lim */

Int4 a, b; /* a=p-m,max,pct,orlim, b=min */

} IntFuzz, PNTR IntFuzzPtr;

extern IntFuzzPtr IntFuzzNew PROTO((void));

extern IntFuzzPtr IntFuzzFree PROTO((IntFuzzPtr ifp));

extern IntFuzzPtr IntFuzzAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean IntFuzzAsnWrite PROTO((IntFuzzPtr ifp, AsnIoPtr aip, AsnTypePtr atp));

/***

*

* User-field

* data is an DataVal where:

* choice asn1 data. =

 1 = str VisibleString , ptrvalue = CharPtr

 2 = int INTEGER , intvalue

 3 = real REAL , realvalue

 4 = bool BOOLEAN , boolvalue

 5 = os OCTET STRING , ptrvalue = ByteStorePtr

 6 = object User-object , ptrvalue = UserObjectPtr

 7 = strs SEQUENCE OF VisibleString , ptrvalue = CharPtr PNTR

 8 = ints SEQUENCE OF INTEGER , ptrvalue = Int4Ptr

 9 = reals SEQUENCE OF REAL , ptrvalue = FloatHiPtr

 10 = oss SEQUENCE OF OCTET STRING , ptrvalue = ByteStorePtr PNTR

 11 = fields SEQUENCE OF User-field , ptrvalue = UserFieldPtr

 12 = objects SEQUENCE OF User-object } } ptrvalue = UserObjectPtr

* User-object

*

***/

typedef struct userfield {

 ObjectIdPtr label;

 Int4 num;

 Uint1 choice;

 DataVal data;

 struct userfield PNTR next;

} UserField, PNTR UserFieldPtr;

extern UserFieldPtr UserFieldNew PROTO((void));

extern UserFieldPtr UserFieldFree PROTO((UserFieldPtr ufp));

extern UserFieldPtr UserFieldAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean UserFieldAsnWrite PROTO((UserFieldPtr ufp, AsnIoPtr aip, AsnTypePtr atp));

typedef struct userobj {

 CharPtr _class;

 ObjectIdPtr type;

 UserFieldPtr data;

 struct userobj PNTR next; /* for SEQUENCE OF User-object */

} UserObject, PNTR UserObjectPtr;

extern UserObjectPtr UserObjectNew PROTO((void));

extern UserObjectPtr UserObjectFree PROTO((UserObjectPtr uop));

extern UserObjectPtr UserObjectAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean UserObjectAsnWrite PROTO((UserObjectPtr uop, AsnIoPtr aip, AsnTypePtr atp));

#ifdef __cplusplus

}

#endif

#endif

Bibliographic References

Introduction
Citation Components: Affiliation
Citation Components: Authors
Citation Components: Imprint
Citation Components: Title
Citing an Article
Citing a Journal
Citing a Book
Citing a Proceedings
Citing a Letter, Manuscript, or Thesis
Citing Directly Submitted Data
Citing a Patent
Identifying a Patent
Citing an Article or Book which is In Press
Special Cases: Unpublished, Unparsed, or Unusual
Accommodating Any Publication Type
Grouping Different Forms of Citation for a Single Work
Sets of Citations
Comparing Citations
ASN.1 Specification: biblio.asn
C Structures and Functions: objbibli.h
ASN.1 Specification: pub.asn
C Structures and Functions: objpub.h

 Introduction

The published literature is an essential component of any scientific endeavor, not just in molecular biology. The bibliographic component of the specification and the tools which go with it may find wide use then, permitting reuse of software and databases in many contexts. In addition, the fact that bibliographic citations appear in data from many sources, makes this data extremely valuable in linking data items from different databases to each other (i.e. indirectly through a shared literature citation) to build integrated views of complex data. For this reason, it is also important that database builders ensure that their literature component contain sufficient information to permit this mapping. By conforming to the specification below one can be assured that this will be the case.

Much of the following bibliographic specification was derived from the components recommended in the American National Standard for Bibliographic References (ANSI Z39.29-1977), and in interviews with professional librarians at the National Library of Medicine. The recommendations were then relaxed somewhat (by making certain fields OPTIONAL) to accommodate the less complete citation information available in current biomedical databases. Thus, although a field may be OPTIONAL, a database builder should still attempt to fill it, if it can reasonably be done.

In this chapter we also present a specification for the base class Pub, publications of any sort and collections of publications. The MEDLINE specification has enough unique components that it is discussed separately in another chapter.

Citation Components: Affiliation

Affiliation is effectively the institutional affiliation of an author. Since it has the same fields needed to cite a publisher (of a book) it is reused in that context as well, although in that case it is not precisely an "affiliation". Affil is a CHOICE of two forms, a structured form which is preferred, or an unstructured string when that is all that is available.

The structured form has a number of fields taken from the ANSI guidelines. "affil" is institutional affiliation, such as "Harvard University". "div" is division within institution, such as "Department of Molecular Biology". "city" is obvious. "sub" is a subdivision of a country. In the United States, this would be the state. "country" is obvious. "street" has been added to the specification (it is not included in ANSI) so that it is possible to produce a valid mailing address.

Citation Components: Authors

Auth-list is the list of authors for the citation. It is a SEQUENCE, not a SET, since the order of author names matters. The names can be unstructured strings (the least desirable), semi-structured strings following the MEDLINE rules (e.g. "Jones JM"), or fully structured Authors (most desirable). An Affil can be associated with the whole list (typical of a scientific article). A more detailed discussion on the use of different types of names can be found in the "Identifying People" section of the "General Use Objects" chapter.

If fully structured Authors are used, each Author can have an individual Affil. The Author uses Person-id (defined in general.asn) which can be an unstructured string or MEDLINE string, as above, or a fielded name with the components broken out separately. The Author form also allows specification of the role of individual authors in producing the citation. The primary author(s) does not mean the "first" author, but rather that this author had a role in the original writing or experimental work. A secondary author is a reviewer or editor of the article. It is rare in a scientific work that a secondary author is ever mentioned by name. Authors may play different roles in the work, compiling, editing, translating. Again, in a scientific work, the authors mentioned did none of these things, but were involved in the actual writing of the paper, although it would not be unusual anymore for one author to be the patent assignee. For scientific work, then, the main advantages of using the Author form is the use of fielded names and of individual Affils. For a book, being able to indicate the editors vs. the authors is useful also.

Citation Components: Imprint

Imprint provides information about the physical form in which the citation appeared, such as what volume and issue of a journal it was in. For the "date" a structured Date is preferred. While "volume", "issue", and "pages" are commonly integers, there are many cases where they are not pure integers (e.g. pages xvi-xvii or issue 10A). Pages is given as a single string to simplify input from different sources. The convention is first page (hyphen) last page, or just page if it is on a single page. "section" may be relevant to a book or proceedings. "pub" is an Affil used to give the publisher of a book. The Affil.affil field is used to give the name of the publisher. "cprt" is the copyright date for a book. "part-sup" is for part or supplement and is not part of ANSI, but is used by MEDLINE. "language" is for the original language of the publication, which is also used by MEDLINE, but is not part of the ANSI standard. "prepub" is not part of the ANSI standard, but was added by NCBI to accommodate citations for as yet unpublished papers that can accompany data directly submitted by authors to the database.

Citation Components: Title

A published work may have a number of Titles, each playing a particular role in specifying the work. There is the title of a paper, the title of a book it appears in, or the title of the journal, in which case it may come from a controlled list of serials. There may also be an original title and a translated title. For these reasons, Title is a defined entity rather than just a string, to allow the roles to be specified explicitly. Certain types of Title are legal for an Article, but not for a Journal or a Book. Rather than make three overlapping definitions, one for Article Titles, one for Journal Titles, and one for Book Titles, we have made one Title type and just indicated in the comments of the specification whether a particular form of Title is legal for an Article, Journal, or Book. Title is a SET OF because a work may have more than one title (e.g. an original and a translated title, or an ISO journal title abbreviation and an ISSN).

Title can be of a number of types. "name" is the full title of an article, or the full name of a book or journal. "tsub" is a subordinate title (e.g. "Hemoglobin Binds Oxygen" might be a primary title, while "Heme Groups in Biology: Part II" might be a subordinate title). "trans" is the translated title. So for an English language database like MEDLINE which contains an article originally published in French, the French title is "name" and the English version of it is "trans".

"jta" is a journal title abbreviation. It is only valid for a journal name, obviously. "jta" does not specify what kind of abbreviation it is, so it is the least useful of the journal designations available and should only be used as a last resort. "iso-jta" is an International Standards Organization (ISO) journal title abbreviation. This is the preferred form. A list of valid iso-jta's is available from NCBI or the National Library of Medicine. "ml-jta" is a MEDLINE journal title abbreviation. MEDLINE pre-dates the ISO effort, so it does not use iso-jta's. "coden" is a six letter code for journals which is used by a number of groups, particularly in Europe. "issn" is a code used by publishers to identify journals. To facilitate the use of controlled vocabularies for journal titles, NCBI maintains a file of mappings between "name", "iso-jta", "ml-jta", "coden", and "issn" where it is possible, and this file is available upon request.

"abr" is strictly the abbreviated title of a book. "isbn" is similar to "issn" in that it is a publishers abbreviation for a book. "isbn" is very useful, but one must be careful since it is used by publishers to list books, and to a publisher a hard cover book is different from a paperback (and get different "isbn"s) even if they are the same title.

Citing an Article

An article always occurs within some other published medium. It can be an article in a journal or a chapter or section in a book or proceedings. Thus there are two components to an article citation; a citation for the work it was published in and a citation for the article within that work. Cit-art.title is the Title of the article and Cit-art.authors are the authors of the article. The "from" field is used to indicate the medium the article was published in, and reuses the standard definitions for citing a journal, book, or proceedings.

In the C structure, CitArt.from gives the type of medium published in, and CitArt.fromptr must be cast appropriately to CitJourPtr or CitBookPtr (proceedings uses the same structure as book).

Citing a Journal

Cit-jour is used to cite an issue of a journal, not an article within a journal (see Cit-art, above). Cit-jour.title is the title of the journal, and Cit-jour.imp gives the date, volume, issue of the journal. Cit-jour.imp also gives the pages of an article within the issue when used as part of a Cit-art. This is not the purest possible split between article and journal, book, or proceedings, but does have the practical advantage of putting all such physical medium information together in a single common data structure. A controlled list of journal titles is maintained by NCBI, and database builders are encouraged to use this list to facilitate exchange and linking of data between databases.

Citing a Book

Cit-book is used to cite a whole book, not an article within a book (see Cit-art, above). Cit-book.title is the title of this particular book. Cit-book.coll is used if the book if part of a collection, or muti-volume set (e.g. "The Complete Works of Charles Darwin"). Cit-book.authors is for the authors or editors of the book itself (not necessarily of any particular chapter). Cit-book.imp contains the publication information about the book. As with a Cit-art, if the Cit-book is being used to cite a chapter in a book, the pages in given in Cit-book.imp.

In the C structure, CitBook is used for Cit-book, Cit-proc, and Cit-let, since they have most fields in common. If CitBook.othertype is 0, it is just a Cit-book.

Citing a Proceedings

A Proceedings is a book published as a result or byproduct of a meeting. As such it contains all the same fields as a Cit-book and an additional block of information describing the meeting. These extra fields are the meeting number (as a string to accommodate things like "10A"), the date the meeting occurred, and an OPTIONAL Affil to record the place of the meeting. The name of the organization or meeting is normally the book title. Don't be confused by things like the Proceedings of the National Academy of Sciences, USA, which is really a journal.

In the C structure, a CitBook is used, with CitBook.othertype set to 1. CitBook.otherdata contains a ValNodePtr. The proceedings can have up to 3 ValNodes where the ValNode.choice indicates the component of the Meeting information, and ValNode.data.ptrvalue contains a pointer to the appropriate data as below:

* choice ASN.1 field Pointer type

* 1 number CharPtr

* 2 date DatePtr

* 3 place AffilPtr

There are separate CitProcAsnRead() and CitProcAsnWrite() functions. A proceedings reuses the parent class CitBookNew() and CitBookFree() functions.

Citing a Letter, Manuscript, or Thesis

A letter, manuscript, or a thesis share most components and so are grouped together under Cit‑let. They all require most of the attributes of a book, and thus Cit‑let incorporates the Cit‑book structure. Unlike a normal book, they will not have a copyright date. A letter or manuscript will not have a publisher, although a thesis may. In addition, a manuscript may have a manuscript identifier (e.g. "Technical Report X1134").​

The CitBook C structure is reused for Cit‑let. The CitBook.othertype is 2. CitBook.let_type is used to indicate if it is a letter, manuscript, or thesis. If it is a manuscript, then CitBook.otherdata is a CharPtr which may be NULL, or point to a string with the manuscript-id.

Citing Directly Submitted Data

This form is used to cite the submission of data directly to a database, independent of any publication(s) which may be associated with the data as well. Authors (of the submission) and Date (in an Imprint) are required. The Affiliation of the Authors should be filled in the Author-list. Optionally one may also record the medium in which the submission was made.

Citing a Patent

A full patent citation, Cit-pat conveys not only enough information to identify a patent (see below) but to characterize it somewhat as well. A patent has a title and authors, the country in which the patent was issued, a document type and number, and the date the patent was issued. Patents are grouped into classes based on the patent subject, and this may be useful to know. In addition, when a patent is first filed it is issued an application number (different from the document number assigned to the issued patent). For tracking purposes, or issues of precedence, it is also helpful to know the application number and filing date.

The C structure, CitPat, is a straightforward mapping of the Cit-pat fields.

Identifying a Patent

When citing a patent, it may be sufficient to merely unambiguously identify it, on the assumption that more extensive information will be available from some other source, given the identifier. Id-pat thus contains fields only for the country in which the patent was applied for, or issued in, then a CHOICE of the patent document number (if issued) or the application number (if pending).

The C structure, IdPat, is a straightforward mapping the Id-pat fields.

Citing an Article or Book which is In Press

A number of the fields in Cit-art and Cit-book are OPTIONAL, not only to allow incorporation of older, incomplete databases, but also to allow partial information for works submitted, or in press. One simply fills in as many of the fields in Cit-art or Cit-book as possible. One must also set the "pre-pub" flag in Imprint to the appropriate status. That's it. Once the work is published, the remaining information is filled in and the "pre-pub" flag is removed. NOTE: this does NOT apply to work which is "unpublished" or "personal communication", or even "in preparation" because one knows nothing about where or when (or if) it will ever be published. One must use a Cit-gen for this (below).

Special Cases: Unpublished, Unparsed, or Unusual

A generic citation, Cit-gen, is used to hold anything not fitting into the more usual bibliographic entities described above. Cit-gen.cit is a string which can hold an unparsable citation (if you can parse it into a structured type, you should). Sometimes it is possible to parse some things but not everything. In this case, a number of fields, such as authors, journal, etc., which are similar to those in the structured types, can be populated as much as possible, and the remainder of the unparsed string can go in "cit".

Less standard citation types, such as a MEDLINE unique identifier, or the serial numbers used in the GenBank flatfile can be accommodated by Cit-gen. An unpublished citation normally has authors and date filled into the structured fields. Often a title is available as well (e.g. for a talk or for a manuscript in preparation). The string "unpublished" can then appear in the "cit" field.

Software developed to display or print a Cit-gen must be opportunistic about using whatever information is available. Obviously it is not possible to assume that all Cit-gens can be displayed in a uniform manner, but in practice at NCBI we have found they can generally be made fairly regular.

Accommodating Any Publication Type

A Pub is the bibliographic object base class. It can accommodate a citation of any kind defined in the bibliographic specification, the MEDLINE specification, and more. It is very useful when one wishes to be able to associate a bibliographic reference in a very general way with a software tool or data item, yet still preserve the attributes specific for each class of citation. Pub is widely used for this purpose in the NCBI specifications.

The C structures implement a Pub as a ValNode, where the choice gives the publication type and, in most cases, data.ptrvalue is a pointer to the appropriate data structure (and must be cast to the appropriate type for further use). The exception is for MEDLINE uid, which uses the data.intvalue field. The values are listed in objpub.h.

Grouping Different Forms of Citation for a Single Work

In some cases a database builder may wish to present more than one form of citation for the same bibliographic work. For example, in a sequence entry from the NCBI Backbone database, it is useful to provide the MEDLINE uid (for use as a link by other software tools), the Cit-art (for display to the user), and a Cit-gen containing the internal NCBI Backbone identifier for this publication as the string "pub_id = 188824" (for use in checking the database by in-house staff) for the same article. The Pub-equiv provides this capacity. It is a SET OF Pub. Each element in the SET is an equivalent citation for the same bibliographic work. Software can examine the SET and select the form most appropriate to the job at hand.

A Pub-equiv is implemented as a linked list of ValNodes, where each ValNode is a Pub as described above. NOTE: a Pub of type Pub-equiv is a ValNode whose choice indicates pub-equiv and whose data.ptrvalue is the head of the linked list of ValNodes.

Sets of Citations

One often needs to collect a set of citations together. Unlike the Pub-equiv (above), a Pub-set is a set of citations for DIFFERENT bibliographic works. It is a CHOICE of types for a mixture of publication classes, or for a collection of the same publication class.

A Pub-set is implemented as a ValNode, where the choice gives the type of the Pub-set and data.ptrvalue points to a linked list of ValNodes. The ValNodes are necessary to create the linked list. For convenience then, the choice of each ValNode is set appropriately for the type of bibliographic object it holds. This is only technically necessary for Pub-set of type "pub", but since it costs nothing all classes of Pub-set are done the same way.

Comparing Citations

Common question is whether two citations refer to same the publication. Note that this does not necessarily mean they are identical. For example a Medline-entry may refer to the same article as a Cit-art or a simple MEDLINE uid type of Pub. A series of xxxMatch() functions make this determination. Like strcmp() they return 0 if the two arguments refer to the same publication, 1 if the second argument comes after the first, or -1 if the first argument comes after the second. When possible, the ordering is based on some rational attribute of that Pub type, such as MEDLINE uid order. However, particularly when comparing different types of Pubs, the ordering is arbitrary, but unique. Thus the xxxMatch() functions can be used to sort various kinds of Pubs in the same list, or to locate Pubs in such an ordered list by binary search.

The most general function is PubMatch(a,b), which compares two Pubs of any type. PubEquivMatch(a,b) compares two PubEquivs only, CitArtMatch(a,b) compares two CitArts only, and so on.

ASN.1 Specification: biblio.asn

--$Revision: 2.0 $

--**

--

-- NCBI Bibliographic data elements

-- by James Ostell, 1990

--

-- Taken from the American National Standard for

-- Bibliographic References

-- ANSI Z39.29-1977

--

--**

NCBI-Biblio DEFINITIONS ::=

BEGIN

EXPORTS Cit-art, Cit-jour, Cit-book, Cit-pat, Cit-let, Id-pat, Cit-gen,

Cit-proc, Cit-sub;

IMPORTS Person-id, Date FROM NCBI-General;

 -- Citation Types

Cit-art ::= SEQUENCE { -- article in journal or book

 title Title OPTIONAL , -- title of paper (ANSI requires)

 authors Auth-list OPTIONAL , -- authors (ANSI requires)

 from CHOICE { -- journal or book

 journal Cit-jour ,

 book Cit-book ,

 proc Cit-proc } }

Cit-jour ::= SEQUENCE { -- Journal citation

 title Title , -- title of journal

 imp Imprint }

Cit-book ::= SEQUENCE { -- Book citation

 title Title , -- Title of book

 coll Title OPTIONAL , -- part of a collection

 authors Auth-list, -- authors

 imp Imprint }

Cit-proc ::= SEQUENCE { -- Meeting proceedings

 book Cit-book , -- citation to meeting

 meet Meeting } -- time and location of meeting

Cit-pat ::= SEQUENCE { -- patent citation

 title VisibleString ,

 authors Auth-list, -- authors

 country VisibleString , -- Patent Document Country

 doc-type VisibleString , -- Patent Document Type

 number VisibleString , -- Patent Document Number

 date-issue Date , -- Patent-Issue Date

 class VisibleString OPTIONAL , -- Patent Doc Class Code

 app-number VisibleString OPTIONAL , -- Patent Doc Appl Number

 app-date Date OPTIONAL } -- Patent Appl File Date

Id-pat ::= SEQUENCE { -- just to identify a patent

 country VisibleString , -- Patent Document Country

 id CHOICE {

 number VisibleString , -- Patent Document Number

 app-number VisibleString } } -- Patent Doc Appl Number

Cit-let ::= SEQUENCE { -- letter, thesis, or manuscript

 cit Cit-book , -- same fields as a book

 man-id VisibleString OPTIONAL , -- Manuscript identifier

 type ENUMERATED {

 manuscript (1) ,

 letter (2) ,

 thesis (3) } OPTIONAL }

 -- NOTE: this is just to cite a

 -- direct data submission, see NCBI-Submit

 -- for the form of a sequence submission

Cit-sub ::= SEQUENCE { -- citation for a direct submission

 authors Auth-list , -- not necessarily authors of the paper

 imp Imprint ,

 medium ENUMERATED { -- medium of submission

 paper (1) ,

 tape (2) ,

 floppy (3) ,

 email (4) ,

 other (255) } OPTIONAL }

Cit-gen ::= SEQUENCE { -- NOT from ANSI, this is a catchall

 cit VisibleString OPTIONAL , -- anything, not parsable

 authors Auth-list OPTIONAL ,

 muid INTEGER OPTIONAL , -- medline uid

 journal Title OPTIONAL ,

 volume VisibleString OPTIONAL ,

 issue VisibleString OPTIONAL ,

 pages VisibleString OPTIONAL ,

 date Date OPTIONAL ,

 serial-number INTEGER OPTIONAL , -- for GenBank style references

title VisibleString OPTIONAL } -- eg. cit="unpublished",title="title"

 -- Authorship Group

Auth-list ::= SEQUENCE {

 names CHOICE {

 std SEQUENCE OF Author , -- full citations

 ml SEQUENCE OF VisibleString , -- MEDLINE, semi-structured

 str SEQUENCE OF VisibleString } , -- free for all

 affil Affil OPTIONAL } -- author affiliation

Author ::= SEQUENCE {

 name Person-id , -- Author, Primary or Secondary

 level ENUMERATED {

 primary (1),

 secondary (2) } OPTIONAL ,

 role ENUMERATED { -- Author Role Indicator

 compiler (1),

 editor (2),

 patent-assignee (3),

 translator (4) } OPTIONAL ,

 affil Affil OPTIONAL ,

is-corr BOOLEAN OPTIONAL } -- TRUE if corressponding author

Affil ::= CHOICE {

 str VisibleString , -- unparsed string

 std SEQUENCE { -- std representation

 affil VisibleString OPTIONAL , -- Author Affiliation, Name

 div VisibleString OPTIONAL , -- Author Affiliation, Division

 city VisibleString OPTIONAL , -- Author Affiliation, City

 sub VisibleString OPTIONAL , -- Author Affiliation, County Sub

 country VisibleString OPTIONAL , -- Author Affiliation, Country

street VisibleString OPTIONAL }} -- street address, not ANSI

 -- Title Group

 -- Valid for = A = Analytic (Cit-art)

 -- J = Journals (Cit-jour)

 -- B = Book (Cit-book)

 -- Valid for:

Title ::= SET OF CHOICE {

 name VisibleString , -- Title, Anal,Coll,Mono AJB

 tsub VisibleString , -- Title, Subordinate A B

 trans VisibleString , -- Title, Translated AJB

 jta VisibleString , -- Title, Abbreviated J

 iso-jta VisibleString , -- specifically ISO jta J

 ml-jta VisibleString , -- specifically MEDLINE jta J

 coden VisibleString , -- a coden J

 issn VisibleString , -- ISSN J

 abr VisibleString , -- Title, Abbreviated B

 isbn VisibleString } -- ISBN B

Imprint ::= SEQUENCE { -- Imprint group

 date Date , -- date of publication

 volume VisibleString OPTIONAL ,

 issue VisibleString OPTIONAL ,

 pages VisibleString OPTIONAL ,

 section VisibleString OPTIONAL ,

 pub Affil OPTIONAL, -- publisher, required for book

 cprt Date OPTIONAL, -- copyright date, " " "

 part-sup VisibleString OPTIONAL , -- used in MEDLINE

 language VisibleString DEFAULT "ENG" , -- put here for simplicity

prepub ENUMERATED { -- for prepublication citaions

submitted (1) , -- submitted, not accepted

in-press (2) ,

-- accepted, not published

other (255) } OPTIONAL }

Meeting ::= SEQUENCE {

 number VisibleString ,

 date Date ,

 place Affil OPTIONAL }

END

C Structures and Functions: objbibli.h

/* objbibli.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: objbibli.h

*

* Author: James Ostell

*

* Version Creation Date: 1/1/91

*

* $Revision: 2.1 $

*

* File Description: Object manager interface for module NCBI-Biblio

*

* Modifications:

* --

* Date
 Name Description of modification

* ------- ---------- ---

*

*

* ==

*/

#ifndef _NCBI_Biblio_

#define _NCBI_Biblio_

#ifndef _ASNTOOL_

#include <asn.h>

#endif

#ifndef _NCBI_General_

#include <objgen.h>

#endif

#ifdef __cplusplus

extern "C" {

#endif

/***

*

* loader

*

***/

extern Boolean BiblioAsnLoad PROTO((void));

/***

*

* Affil

*

***/

typedef struct affil {

Uint1 choice; /* [1]=str,[2]=std */

CharPtr affil, /* also used for str */

div,

city,

sub,

country,

street;

} Affil, PNTR AffilPtr;

extern AffilPtr AffilNew PROTO((void));

extern AffilPtr AffilFree PROTO((AffilPtr afp));

extern AffilPtr AffilAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean AffilAsnWrite PROTO((AffilPtr afp, AsnIoPtr aip, AsnTypePtr atp));

/***

*

* AuthList

*

***/

typedef struct authors {

Uint1 choice; /* [1]=std, [2]=ml, [3]=str (only on Cit-art,gen) */

ValNodePtr names; /* the SEQUENCE OF */

AffilPtr affil;

} AuthList, PNTR AuthListPtr;

extern AuthListPtr AuthListNew PROTO((void));

extern AuthListPtr AuthListFree PROTO((AuthListPtr asp));

extern AuthListPtr AuthListAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean AuthListAsnWrite PROTO((AuthListPtr afp, AsnIoPtr aip, AsnTypePtr atp));

Int2 AuthListMatch PROTO((AuthListPtr a, AuthListPtr b, Boolean all));

/***

*

* Author

*

***/

typedef struct author {

PersonIdPtr name;

Uint1 lr[2]; /* level[0], role[1] as in spec. 0=not used */

Uint1 is_corr; /* corresponding author? 255=not set, 0=false, 1=true */

AffilPtr affil;

} Author, PNTR AuthorPtr;

extern AuthorPtr AuthorNew PROTO((void));

extern AuthorPtr AuthorFree PROTO((AuthorPtr ap));

extern AuthorPtr AuthorAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean AuthorAsnWrite PROTO((AuthorPtr ap, AsnIoPtr aip, AsnTypePtr atp));

/***

*

* Cit-art

*

***/

typedef struct citart {

ValNodePtr title; /* choice[1]=name,[2]=tsub,[3]=trans */

AuthListPtr authors;

Uint1 from; /* [1]=journal,[2]=book,[3]=proc */

Pointer fromptr;

} CitArt, PNTR CitArtPtr;

extern CitArtPtr CitArtNew PROTO((void));

extern CitArtPtr CitArtFree PROTO((CitArtPtr cap));

extern CitArtPtr CitArtAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean CitArtAsnWrite PROTO((CitArtPtr cap, AsnIoPtr aip, AsnTypePtr atp));

Int2 CitArtMatch PROTO((CitArtPtr a, CitArtPtr b));

/***

*

* Imprint

*

***/

typedef struct imprint {

DatePtr date;

 CharPtr volume,

 issue,

 pages,

 section,

 part_sup,

 language;

 DatePtr cprt; /* copy right date (for books) */

 AffilPtr pub; /* publisher (for books) */

Uint1 prepub; /* 0=not set 1=submitted 2=in-press 255=other */

} Imprint, PNTR ImprintPtr;

extern ImprintPtr ImprintNew PROTO((void));

extern ImprintPtr ImprintFree PROTO((ImprintPtr cap));

extern ImprintPtr ImprintAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean ImprintAsnWrite PROTO((ImprintPtr cap, AsnIoPtr aip, AsnTypePtr atp));

Int2 ImprintMatch PROTO((ImprintPtr a, ImprintPtr b, Boolean all));

/***

*

* Cit-jour

*

***/

typedef struct citjour {

ValNodePtr title; /* choice in order of spec, 1=name,2=trans,etc */

ImprintPtr imp;

} CitJour, PNTR CitJourPtr;

extern CitJourPtr CitJourNew PROTO((void));

extern CitJourPtr CitJourFree PROTO((CitJourPtr cjp));

extern CitJourPtr CitJourAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean CitJourAsnWrite PROTO((CitJourPtr cjp, AsnIoPtr aip, AsnTypePtr atp));

Int2 CitJourMatch PROTO((CitJourPtr a, CitJourPtr b));

/***

*

* Cit-book

*

***/

typedef struct citbook {

ValNodePtr title, /* choice in order of spec, 1=name, 2=tsub, etc */

 coll; /* ditto */

AuthListPtr authors;

ImprintPtr imp;

Uint1 othertype, /* 0=Cit-book, 1=Cit-proc, 2=Cit-let */

let_type; /* if Cit-let, 1=manuscript,2=letter,3=thesis */

Pointer otherdata; /* NULL, ValNodes, CharPtr man-id */

} CitBook, PNTR CitBookPtr;

extern CitBookPtr CitBookNew PROTO((void));

extern CitBookPtr CitBookFree PROTO((CitBookPtr cbp));

extern CitBookPtr CitBookAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean CitBookAsnWrite PROTO((CitBookPtr cbp, AsnIoPtr aip, AsnTypePtr atp));

Int2 CitBookMatch PROTO((CitBookPtr a, CitBookPtr b));

/***

*

* Cit-sub

*
Direct submission of data

*

***/

typedef struct citsub {

AuthListPtr authors;

ImprintPtr imp;

Uint1 medium;

} CitSub, PNTR CitSubPtr;

extern CitSubPtr CitSubNew PROTO((void));

extern CitSubPtr CitSubFree PROTO((CitSubPtr cbp));

extern CitSubPtr CitSubAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean CitSubAsnWrite PROTO((CitSubPtr cbp, AsnIoPtr aip, AsnTypePtr atp));

Int2 CitSubMatch PROTO((CitSubPtr a, CitSubPtr b));

/***

*

* Cit-proc

* uses otherdata in Cit-book

* chain of ValNodes

* choice ident Pointer type

* 1 number CharPtr

* 2 date DatePtr

* 3 place AffilPtr

*

***/

extern CitBookPtr CitProcAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean CitProcAsnWrite PROTO((CitBookPtr cpp, AsnIoPtr aip, AsnTypePtr atp));

/***

*

* Cit-let

* uses otherdata in Cit-book as CharPtr for man-id

*

***/

extern CitBookPtr CitLetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean CitLetAsnWrite PROTO((CitBookPtr cpp, AsnIoPtr aip, AsnTypePtr atp));

/***

*

* Cit-pat

*

***/

typedef struct citpat {

CharPtr title;

AuthListPtr authors;

CharPtr country,

doc_type,

number;

DatePtr date_issue;

CharPtr _class,

app_number;

DatePtr app_date;

} CitPat, PNTR CitPatPtr;

extern CitPatPtr CitPatNew PROTO((void));

extern CitPatPtr CitPatFree PROTO((CitPatPtr cpp));

extern CitPatPtr CitPatAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean CitPatAsnWrite PROTO((CitPatPtr cpp, AsnIoPtr aip, AsnTypePtr atp));

/***

*

* Id-pat

*

***/

typedef struct idpat {

CharPtr country,

number,

 /** actually CHOICE of number or app_number */

app_number;

} IdPat, PNTR IdPatPtr;

extern IdPatPtr IdPatNew PROTO((void));

extern IdPatPtr IdPatFree PROTO((IdPatPtr ipp));

extern IdPatPtr IdPatAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean IdPatAsnWrite PROTO((IdPatPtr ipp, AsnIoPtr aip, AsnTypePtr atp));

extern Boolean IdPatMatch PROTO((IdPatPtr a, IdPatPtr b));

/***

*

* Cit-gen

*

***/

typedef struct cit_gen {

CharPtr cit;

AuthListPtr authors;

 Int4 muid; /* medline uid, -1 if not set */

 ValNodePtr journal; /* journal/book Title */

 CharPtr volume,

 issue,

 pages;

DatePtr date;

 Int2 serial_number; /* for GenBank style references (-1 = not used)*/

CharPtr title; /* a specific title (in addition to cit or journal) */

} CitGen, PNTR CitGenPtr;

extern CitGenPtr CitGenNew PROTO((void));

extern CitGenPtr CitGenFree PROTO((CitGenPtr cgp));

extern CitGenPtr CitGenAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean CitGenAsnWrite PROTO((CitGenPtr cgp, AsnIoPtr aip, AsnTypePtr atp));

Int2 CitGenMatch PROTO((CitGenPtr a, CitGenPtr b, Boolean all));

/***

*

* Title

*

***/

extern ValNodePtr TitleFree PROTO((ValNodePtr anp));

extern ValNodePtr TitleAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean TitleAsnWrite PROTO((ValNodePtr anp, AsnIoPtr aip, AsnTypePtr atp));

Int2 TitleMatch PROTO((ValNodePtr a, ValNodePtr b, Uint1 type));

#define Cit_title_name ((Uint1) 1)

#define Cit_title_tsub ((Uint1) 2)

#define Cit_title_trans ((Uint1) 3)

#define Cit_title_jta ((Uint1) 4)

#define Cit_title_iso_jta ((Uint1) 5)

#define Cit_title_ml_jta ((Uint1) 6)

#define Cit_title_coden ((Uint1) 7)

#define Cit_title_issn ((Uint1) 8)

#define Cit_title_abr ((Uint1) 9)

#define Cit_title_isbn ((Uint1) 10)

#ifdef __cplusplus

}

#endif

#endif

ASN.1 Specification: pub.asn

--$Revision: 2.0 $

--**

--

-- Publication common set

-- James Ostell, 1990

--

-- This is the base class definitions for Publications of all sorts

--

--**

NCBI-Pub DEFINITIONS ::=

BEGIN

EXPORTS Pub, Pub-set, Pub-equiv;

IMPORTS Medline-entry FROM NCBI-Medline

 Cit-art, Cit-jour, Cit-book, Cit-proc, Cit-pat, Id-pat, Cit-gen,

 Cit-let, Cit-sub FROM NCBI-Biblio;

Pub ::= CHOICE {

 gen Cit-gen , -- general or generic unparsed

 sub Cit-sub , -- submission

 medline Medline-entry ,

 muid INTEGER , -- medline uid

 article Cit-art ,

 journal Cit-jour ,

 book Cit-book ,

 proc Cit-proc , -- proceedings of a meeting

 patent Cit-pat ,

 pat-id Id-pat , -- identify a patent

 man Cit-let , -- manuscript, thesis, or letter

 equiv Pub-equiv } -- to cite a variety of ways

Pub-equiv ::= SET OF Pub -- equivalent identifiers for same citation

Pub-set ::= CHOICE {

 pub SET OF Pub ,

 medline SET OF Medline-entry ,

 article SET OF Cit-art ,

 journal SET OF Cit-jour ,

 book SET OF Cit-book ,

 proc SET OF Cit-proc , -- proceedings of a meeting

 patent SET OF Cit-pat }

END

C Structures and Functions: objpub.h

/* objpub.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: objpub.h

*

* Author: James Ostell

*

* Version Creation Date: 4/1/91

*

* $Revision: 2.1 $

*

* File Description: Object manager interface for module NCBI-Pub

*

* Modifications:

* --

* Date
 Name Description of modification

* ------- ---------- ---

*

*

* ==

*/

#ifndef _NCBI_Pub_

#define _NCBI_Pub_

#ifndef _ASNTOOL_

#include <asn.h>

#endif

#ifndef _NCBI_Biblio_

#include <objbibli.h>

#endif

#ifndef _NCBI_Medline_

#include <objmedli.h>

#endif

#ifdef __cplusplus

extern "C" {

#endif

/***

*

* loader

*

***/

extern Boolean PubAsnLoad PROTO((void));

/***

*

* internal structures for NCBI-Pub objects

*

***/

/***

*

* Pub is a choice using an ValNode, most types in data.ptrvalue

* choice:

* 0 = not set

 1 = gen Cit-gen , -- general or generic unparsed

 2 = sub Cit-sub , -- submission

 3 = medline Medline-entry ,

 4 = muid INTEGER , -- medline uid (stored in data.intvalue)

 5 = article Cit-art ,

 6 = journal Cit-jour ,

 7 = book Cit-book ,

 8 = proc Cit-proc , -- proceedings of a meeting

 9 = patent Cit-pat ,

 10 = pat-id Id-pat , -- identify a patent

 11 = man Cit-let -- manuscript or letter

 12 = equiv Pub-equiv -- set of equivalent citation forms for 1 pub

*

***/

Boolean PubAsnWrite PROTO((ValNodePtr anp, AsnIoPtr aip, AsnTypePtr atp));

ValNodePtr PubAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

ValNodePtr PubFree PROTO((ValNodePtr anp));

#define PUB_Gen 1

#define PUB_Sub 2

#define PUB_Medline 3

#define PUB_Muid 4

#define PUB_Article 5

#define PUB_Journal 6

#define PUB_Book 7

#define PUB_Proc 8

#define PUB_Patent 9

#define PUB_Pat_id 10

#define PUB_Man 11

#define PUB_Equiv 12

/****

* Pub and PubEquiv Matching functions (same citation, not same form)

* PubMatch() returns

*
0 = point to same citation

* 1,-1 = same pub type, but different

* 2,-2 = different put types, don't match

* PubEquivMatch() returns

*
0 = point to same citation

*
1,-1 = point to different citations

*****/

Int2 PubMatch PROTO((ValNodePtr a, ValNodePtr b));

Int2 PubEquivMatch PROTO((ValNodePtr a, ValNodePtr b));

/***

*

* PubSet is a choice using an ValNode, PubSet->data.ptrvalue is chain of

* Pubs (ValNodes) holding data for set for all types.

* PubSet->choice:

* 0 = not set

 1 = pub Pub -- set of real Pubs

 -- the rest are implemented as Pubs anyway

 3 = medline Medline-entry ,

 5 = article Cit-art ,

 6 = journal Cit-jour ,

 7 = book Cit-book ,

 8 = proc Cit-proc , -- proceedings of a meeting

 9 = patent Cit-pat ,

*

***/

Boolean PubSetAsnWrite PROTO((ValNodePtr anp, AsnIoPtr aip, AsnTypePtr atp));

ValNodePtr PubSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

ValNodePtr PubSetFree PROTO((ValNodePtr anp));

/***

*

* PubEquiv is just a chain of Pubs (ValNodes)

*

***/

Boolean PubEquivAsnWrite PROTO((ValNodePtr anp, AsnIoPtr aip, AsnTypePtr atp));

ValNodePtr PubEquivAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

ValNodePtr PubEquivFree PROTO((ValNodePtr anp));

#ifdef __cplusplus

}

#endif

#endif

MEDLINE Data

Introduction
Structure of a MEDLINE Entry
MeSH Index Terms
Substance Records
Database Cross Reference Records
Funding Identifiers
Gene Symbols
ASN.1 Specification: medline.asn
C Structures and Functions: objmedli.h

 Introduction

MEDLINE is the largest and oldest biomedical database in the world. It is built at the National Library of Medicine (NLM), a part of NIH. At this writing it contains over seven million citations from the scientific literature from over 3500 different journals. MEDLINE is a bibliographic database. It contains citation information (e.g. title, authors, journal, etc.). Many entries contain the abstract from the article. All articles are carefully indexed by professionals according to formal guidelines in a variety of ways. All entries can be uniquely identified by an integer key, the MEDLINE unique identifier (MEDLINE uid).

MEDLINE is a valuable resource in its own right. In addition, the MEDLINE uid can serve as a valuable link between entries in factual databases. When NCBI processes a new molecular biology factual database into the standardized format, we also normalize the bibliographic citations and attempt to map them to MEDLINE. For the biomedical databases we have tried thus far, we have succeeding in mapping most or all of the citations this way. From then on, linkage to other data objects can be made simply and easily through the share MEDLINE uid. The MEDLINE uid also allows movement from the data item to the world of scientific literature in general and back.

Structure of a MEDLINE Entry

Each Medline-entry represents a single article from the scientific literature. The MEDLINE uid is an INTEGER which uniquely identifies the entry. If corrections are made to the contents of the entry, the uid is not changed. The MEDLINE uid is the simplest and most reliable way to identify the entry.

The entry-month is the month and year in which the entry became part of the public view of MEDLINE. It is not the same as the date the article was published. It is mostly useful for tracking what is new since a previous query of MEDLINE.

The article citation itself is contained in a standard Cit-art, imported from the bibliographic module, so will not be discussed further here. The entry often contains the abstract from the article. The rest of the entry consists of various index terms, which will be discussed below.

The C implementation of a MedlineEntry is straightforward.

MeSH Index Terms

Medical Subject Heading (MeSH) terms are a tree of controlled vocabulary maintained by the Library Operations division of NLM. The tree is arranged with parent terms above more specialized terms within the same concept. An entry in MEDLINE is indexed by the most specific MeSH term(s) available. Since the MeSH vocabulary is a tree, one may then query on specific terms directly, or on general terms by including all the child terms in the query as well.

A MeSH term may be qualified by one or more sub-headings. For example, the MeSH term "insulin" may carry quite a different meaning if qualified by "clinical trials" versus being qualified by "genetics".

A MeSH term or a sub-heading may be flagged as indicating the "main point" of the article. Again the most specific form is used. If the main point of the article was about insulin and they also discuss genetics, then the insulin MeSH term will be flagged but the genetics sub-heading will not be. However, if the main point of the article was the genetics of insulin, then the sub-heading genetics under the MeSH term insulin will be flagged but the MeSH term itself will not be.

Substance Records

If an article has substantial discussion of recognizable chemical compounds, they are indexed in the substance records. The record may contain only the name of the compound, or it may contain the name and a Chemical Abstracts Service (CAS) registry number or a Enzyme Commission (EC) number as appropriate.

Database Cross Reference Records

If an article cites an identifier recognized to be from a known list of biomedical databases, the cross reference is given in this field and the key for which database it was from. A typical example would be a GenBank accession number citing in an article.

Funding Identifiers

If an id number from a grant or contract is cited in the article (usually acknowledging support) it will appear in this field.

In the C structure, ValNodes are used to make a linked list of the CharPtrs to the strings.

Gene Symbols

As an experiment, Library Operations at the NLM is putting in mnemonic symbols from articles, if they appear by form and usage to be gene symbols. Obviously such symbols vary and are not always properly used, so this field must be approached with caution. Nonetheless it can provide a route to a rich source of potentially relevant citations.

ASN.1 Specification: medline.asn

--$Revision: 2.0 $

--**

--

-- MEDLINE data definitions

-- James Ostell, 1990

--

--**

NCBI-Medline DEFINITIONS ::=

BEGIN

EXPORTS Medline-entry;

IMPORTS Cit-art FROM NCBI-Biblio

 Date FROM NCBI-General;

 -- a MEDLINE entry

Medline-entry ::= SEQUENCE {

 uid INTEGER , -- MEDLINE UID

 em Date , -- Entry Month

 cit Cit-art , -- article citation

 abstract VisibleString OPTIONAL ,

 mesh SET OF Medline-mesh OPTIONAL ,

 substance SET OF Medline-rn OPTIONAL ,

 xref SET OF Medline-si OPTIONAL ,

 idnum SET OF VisibleString OPTIONAL , -- ID Number (grants, contracts)

 gene SET OF VisibleString OPTIONAL }

Medline-mesh ::= SEQUENCE {

 mp BOOLEAN DEFAULT FALSE , -- TRUE if main point (*)

 term VisibleString , -- the MeSH term

 qual SET OF Medline-qual OPTIONAL } -- qualifiers

Medline-qual ::= SEQUENCE {

 mp BOOLEAN DEFAULT FALSE , -- TRUE if main point

 subh VisibleString } -- the subheading

Medline-rn ::= SEQUENCE { -- medline substance records

 type ENUMERATED { -- type of record

 nameonly (0) ,

 cas (1) , -- CAS number

 ec (2) } , -- EC number

 cit VisibleString OPTIONAL , -- CAS or EC number if present

 name VisibleString } -- name (always present)

Medline-si ::= SEQUENCE { -- medline cross reference records

 type ENUMERATED { -- type of xref

 ddbj (1) , -- DNA Data Bank of Japan

 carbbank (2) , -- Carbohydrate Structure Database

 embl (3) , -- EMBL Data Library

 hdb (4) , -- Hybridoma Data Bank

 genbank (5) , -- GenBank

 hgml (6) , -- Human Gene Map Library

 mim (7) , -- Mendelian Inheritance in Man

 msd (8) , -- Microbial Strains Database

 pdb (9) , -- Protein Data Bank (Brookhaven)

 pir (10) , -- Protein Identification Resource

 prfseqdb (11) , -- Protein Research Foundation (Japan)

 psd (12) , -- Protein Sequence Database (Japan)

 swissprot (13) } , -- SwissProt

 cit VisibleString OPTIONAL } -- the citation/accession number

END

C Structures and Functions: objmedli.h

/* objmedli.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: objmedli.h

*

* Author: James Ostell

*

* Version Creation Date: 1/1/91

*

* $Revision: 2.0 $

*

* File Description: Object manager interface for module NCBI-Medline

*

* Modifications:

* --

* Date
 Name Description of modification

* ------- ---------- ---

*

*

* ==

*/

#ifndef _NCBI_Medline_

#define _NCBI_Medline_

#ifndef _ASNTOOL_

#include <asn.h>

#endif

#ifndef _NCBI_General_

#include <objgen.h>

#endif

#ifndef _NCBI_Biblio_

#include <objbibli.h>

#endif

#ifdef __cplusplus

extern "C" {

#endif

/***

*

* loader

*

***/

extern Boolean MedlineAsnLoad PROTO((void));

/***

*

* Medline-mesh

*

***/

typedef struct mesh {

 Boolean mp; /* main point */

 CharPtr term;

 ValNodePtr qual;

 struct mesh PNTR next;

 } MedlineMesh, PNTR MedlineMeshPtr;

extern MedlineMeshPtr MedlineMeshNew PROTO((void));

extern MedlineMeshPtr MedlineMeshFree PROTO((MedlineMeshPtr mmp));

extern MedlineMeshPtr MedlineMeshAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean MedlineMeshAsnWrite PROTO((MedlineMeshPtr mmp, AsnIoPtr aip, AsnTypePtr atp));

/***

*

* Medline-rn

*

***/

typedef struct rn {

 Uint1 type;

 CharPtr cit,

 name;

 struct rn PNTR next;

 } MedlineRn, PNTR MedlineRnPtr;

extern MedlineRnPtr MedlineRnNew PROTO((void));

extern MedlineRnPtr MedlineRnFree PROTO((MedlineRnPtr mrp));

extern MedlineRnPtr MedlineRnAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean MedlineRnAsnWrite PROTO((MedlineRnPtr mrp, AsnIoPtr aip, AsnTypePtr atp));

/***

*

* Medline-si

* ValNode used for structure

*

***/

extern ValNodePtr MedlineSiAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean MedlineSiAsnWrite PROTO((ValNodePtr msp, AsnIoPtr aip, AsnTypePtr atp));

/***

*

* Medline-entry

*

***/

typedef struct medline {

 Int4 uid;

 DatePtr em;

 CitArtPtr cit;

 CharPtr abstract;

 MedlineMeshPtr mesh;

 MedlineRnPtr substance;

 ValNodePtr xref;

 ValNodePtr idnum;

 ValNodePtr gene;

} MedlineEntry, PNTR MedlineEntryPtr;

extern MedlineEntryPtr MedlineEntryNew PROTO((void));

extern MedlineEntryPtr MedlineEntryFree PROTO((MedlineEntryPtr mep));

extern MedlineEntryPtr MedlineEntryAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

extern Boolean MedlineEntryAsnWrite PROTO((MedlineEntryPtr mep, AsnIoPtr aip, AsnTypePtr atp));

#ifdef __cplusplus

}

#endif

Biological Sequences

Introduction
Bioseq: the Biological Sequence
Seq-id: Identifying the Bioseq
Seq-annot: Annotating the Bioseq
Seq-descr: Describing the Bioseq and Placing It In Context
Seq-inst: Instantiating the Bioseq
Seq-hist: History of a Seq-inst
Seq-data: Encoding the Sequence Data Itself
Tables of Sequence Codes
Mapping Between Different Sequence Alphabets
Data and Tools for Sequence Alphabets
Pubdesc: Publication Describing a Bioseq
Numbering: Applying a Numbering System to a Bioseq
ASN.1 Specification: seq.asn
ASN.1 Specification: seqblock.asn
ASN.1 Specification: seqcode.asn
C Structures and Functions: objseq.h
C Structures and Functions: objpubd.h
C Structures and Functions: objblock.h
C Structures and Functions: objcode.h

 Introduction

A biological sequence is a single, continuous molecule of nucleic acid or protein. It can be thought of as a multiple inheritance class hierarchy. One hierarchy is that of the underlying molecule type: DNA, RNA, or protein. The other hierarchy is the way the underlying biological sequence is represented by the data structure. It could be a physical or genetic map, an actual sequence of amino acids or nucleic acids, or some more complicated data structure building a composite view from other entries. An overview of this data model has been presented previously, in the Data Model chapter. The overview will not be repeated here so if you have not read that chapter, do so now. This chapter will concern itself with the details of the specification and representation of biological sequence data.

Bioseq: the Biological Sequence

A Bioseq represents a single, continuous molecule of nucleic acid or protein. It can be anything from a band on a gel to a complete chromosome. It can be a genetic or physical map. All Bioseqs have more common properties than differences. All Bioseqs must have at least one identifier, a Seq-id (i.e. Bioseqs must be citable). Seq-ids are discussed in detail in the chapter Sequence Ids and Locations. All Bioseqs represent an integer coordinate system (even maps). All positions on Bioseqs are given by offsets from the first residue, and thus fall in the range from zero to (length - 1). All Bioseqs may have specific descriptive data elements (descriptors) and/or annotations such as feature tables, alignments, or graphs associated with them.

The differences in Bioseqs arise primarily from the way they are instantiated (represented). Different data elements are required to represent a map than are required to represent a sequence of residues.

The C structure for a Bioseq has pointers for a linked list of Seq-ids, a linked list of Seq-descr, and a linked list of Seq-annot, mapping quite directly from the ASN.1. However, since a Seq-inst is always required for a Bioseq, those fields have been incorporated into the Bioseq itself. There are SeqInstAsnRead() and SeqInstAsnWrite() as separate functions, but they take a pointer to a Bioseq.

A number of #defines are provided in objseq.h for the representation classes, molecule types, and types of sequence encoding used in the Bioseq C structure. Also the macros ISA_na() and ISA_aa() are provided to split Bioseqs into the two major molecule classes. A Bioseq.length equal to -1 means the length is unknown and will not appear in the ASN.1. When actual sequence data is present, Bioseq.seq_data holds the pointer to it. Bioseq.seq_data_type contains a value indicating the type of sequence encoding used (and thus the pointer type to cast Bioseq.seq_data to). Sequence encoding is discussed in more detail below.

Seq-id: Identifying the Bioseq

Every Bioseq MUST have at least one Seq-id, or sequence identifier. This means a Bioseq is always citable. You can refer to it by a label of some sort. This is a crucial property for different software tools or different scientists to be able to talk about the same thing. There is a wide range of Seq-ids and they are used in different ways. They are discussed in more detail in the Sequence Ids and Locations chapter.

Seq-annot: Annotating the Bioseq

A Seq-annot is a self-contained package of sequence annotations, or information that refers to specific locations on specific Bioseqs. Every Seq-annot can have an Object-id for local use by software, a Dbtag for globally identifying the source of the Seq-annot, and/or a name and description for display and use by a human. These describe the whole package of annotations and make it attributable to a source, independent of the source of the Bioseq.

A Seq-annot may contain a feature table, a set of sequence alignments, or a set of graphs of attributes along the sequence. These are described in detail in the Sequence Annotation chapter.

A Bioseq may have many Seq-annots. This means it is possible for one Bioseq to have feature tables from several different sources, or a feature table and set of alignments. A collection of sequences (see Sets Of Bioseqs) can have Seq-annots as well. Finally, a Seq-annot can stand alone, not directly attached to anything. This is because each element in the Seq-annot has specific references to locations on Bioseqs so the information is very explicitly associated with Bioseqs, not implicitly associated by attachment. This property makes possible the exchange of information about Bioseqs as naturally as the exchange of the Bioseqs themselves, be it among software tools or between scientists or as contributions to public databases.

Seq-descr: Describing the Bioseq and Placing It In Context

A Seq-descr is meant to describe a Bioseq (or set of Bioseqs.. see Sets Of Bioseqs) and place it in a biological and/or bibliographic context. Seq-descrs apply to the whole Bioseq. Some Seq-descr classes appear also as features, when used to describe a specific part of a Bioseq. But anything appearing at the Seq-descr level applies to the whole thing.

The C implementation uses a linked list of ValNodes, where the ValNode.choice indicates what kind of Seq-descr this is, and ValNode.data contains either an integer or pointer depending on the type of descriptor. The file objseq.h lists the choices and data types and is summarize in the following table. Under Value is the value of ValNode.choice. Type gives an indication of the data stored in ValNode.data. If "i", then an integer is stored in valnode->data.intvalue. Otherwise a pointer is stored in valnode->data.ptrvalue and the datatype of the pointer is given. The file objseq.h also has a series of #defines for Value below constructed by prefixing "Seq_descr_" to the Name below and replacing any hyphens (-) in the ASN.1 name with underline (_) to make it legal C (e.g. #define Seq_descr_mol_type 1).

Seq-descr

	Value
	Name
	Type
	Explanation

	1
	mol-type
	i
	role of molecule in life

	2
	modif
	ValNodePtr
	modifying keywords of mol-type

	3
	method
	i
	protein sequencing method used

	4
	name
	CharPtr
	a commonly used name (e.g. "SV40")

	5
	title
	CharPtr
	a descriptive title or definition

	6
	org
	OrgRefPtr
	(single) organism from which mol comes

	7
	comment
	CharPtr
	descriptive comment (may have many)

	8
	num
	NumberingPtr
	a numbering system for whole Bioseq

	9
	maploc
	DbtagPtr
	a map location from a mapping database

	10
	pir
	PirBlockPtr
	PIR specific data

	11
	genbank
	GBBlockPtr
	GenBank flatfile specific data

	12
	pub
	PubdescPtr
	Publication citation and descriptive info from pub

	13
	region
	CharPtr
	name of genome region (e.g. B-globin cluster)

	14
	user
	UserObjectPtr
	user defined data object for any purpose

	15
	sp
	SPBlockPtr
	SWISSPROT specific data

	16
	neighbors
	LinkSetPtr
	ids of pre-calculated similar sequences

	17
	embl
	EMBLBlockPtr
	EMBL specific data

	18
	create-date
	DatePtr
	date entry was created by source database

	19
	update-date
	DatePtr
	date entry last updated by source database

	20
	prf
	PrfBlockPtr
	PRF specific data

	21
	pdb
	PdbBlockPtr
	PDB specific data

	22
	het
	CharPtr
	heterogen: non-Bioseq atom/molecule

mol-type: The Molecule Type

A Seq-descr.mol-type is of type GIBB-mol. It is derived from the molecule information used in the GenInfo BackBone database. It indicates the biological role of the Bioseq in life. It can be genomic (including organelle genomes). It can be a transcription product such as pre-mRNA, mRNA, rRNA, tRNA, snRNA (small nuclear RNA), or scRNA (small cytoplasmic RNA). All amino acid sequences are peptides. No distinction is made at this level about the level of processing of the peptide (but see Prot-ref in the Sequence Annotations chapter). The type other-genetic is provided for "other genetic material" such a B chromosomes or F factors that are not normal genomic material but are also not transcription products. The type genomic-mRNA is provided to describe sequences presented in figures in papers in which the author has combined genomic flanking sequence with cDNA sequence. Since such a figure often does not accurately reflect either the sequence of the mRNA or the sequence of genome, this practice should be discouraged.

Since GIBB-mol is an ENUMERATED type, the ValNode for the Seq-descr simply places the enumerated value in ValNode.data.intvalue.

modif: Modifying Our Assumptions About a Bioseq

A GIBB-mod began as a GenInfo BackBone component and was found to be of general utility. A GIBB-mod is meant to modify the assumptions one might make about a Bioseq. If a GIBB-mod is not present, it does not mean it does not apply, only that it is part of a reasonable assumption already. For example, a Bioseq with GIBB-mol = genomic would be assumed to be DNA, to be chromosomal, and to be partial (complete genome sequences are still rare). If GIBB-mod = mitochondrial and GIBB-mod = complete are both present in Seq-descr, then we know this is a complete mitochondrial genome. Even though GIBB-mod = DNA is not present we can still assume it is DNA.

The modifier concept permits a lot of flexibility. So a peptide with GIBB-mod = mitochondrial is a mitochondrial protein. There is no implication that it is from a mitochondrial gene only that it functions in the mitochondrion. The assumption is that peptide sequences are complete, so GIBB-mod = complete is not necessary for most proteins, but GIBB-mod = partial is important information for some. A list of brief explanations of GIBB-mod values follows:

GIBB-mod

	Value
	Name
	Explanation

	0
	dna
	molecule is DNA in life

	1
	rna
	molecule is RNA in life

	2
	extrachrom
	molecule is extrachromosomal

	3
	plasmid
	molecule is or is from a plasmid

	4
	mitochondrial
	molecule is from mitochondrion

	5
	chloroplast
	molecule is from chloroplast

	6
	kinetoplast
	molecule is from kinetoplast

	7
	cyanelle
	molecule is from cyanelle

	8
	synthetic
	molecule was synthesized artificially

	9
	recombinant
	molecule was formed by recombination

	10
	partial
	not a complete sequence for molecule

	11
	complete
	sequence covers complete molecule

	12
	mutagen
	molecule subjected to mutagenesis

	13
	natmut
	molecule is a naturally occurring mutant

	14
	transposon
	molecule is a transposon

	15
	insertion-seq
	molecule is an insertion sequence

	16
	no-left
	partial molecule is missing left end

5' end for nucleic acid, NH3 end for peptide

	17
	no-right
	partial molecule is missing right end

3' end for nucleic acid, COOH end for peptide

	18
	macronuclear
	molecule is from macronucleus

	19
	proviral
	molecule is an integrated provirus

	20
	est
	molecule is an expressed sequence tag

Seq-descr.modif is defined as a SET OF GIBB-mod, so it must be implemented as a chain, not as a single value. The ValNode representing a Seq-descr.modif then has ValNode.choice = Seq_descr_modif and a ValNode.data.ptrvalue is the head of a chain of ValNodes. Each member of that chain has a ValNode.data.intvalue set to represent a single GIBB-mod according to the table above.

method: Protein Sequencing Method

The method Seq-descr gives the method used to obtain a protein sequence. The values for a GIBB-method are also stored in the C structure as integer values mapping directly from the ASN.1 ENUMERATED type. They are:

GIBB-method

	Value
	Name
	Explanation

	1
	concept-trans
	conceptual translation

	2
	seq-pept
	peptide itself was sequenced

	3
	both
	conceptual translation with partial peptide sequencing

	4
	seq-pept-overlap
	peptides sequenced, fragments ordered by overlap

	5
	seq-pept-homol
	peptides sequenced, fragments ordered by homology

	6
	concept-trans-a
	conceptual translation, provided by author of sequence

name: A Descriptive Name

A sequence name is very different from a sequence identifier. A Seq-id uniquely identifies a specific Bioseq. A Seq-id may be no more than an integer and will not necessarily convey any biological or descriptive information in itself. A name is not guaranteed to uniquely identify a single Bioseq, but if used with caution, can be a very useful tool to identify the best current entry for a biological entity. For example, we may wish to associate the name "SV40" with a single Bioseq for the complete genome of SV40. Let us suppose this Bioseq has the Seq-id 10. Then it is discovered that there were errors in the original Bioseq designated 10, and it is replaced by a new Bioseq from a curator with Seq-id 15. The name "SV40" can be moved to Seq-id 15 now. If a biologist wishes to see the "best" or "most typical" sequence of the SV40 genome, she would retrieve on the name "SV40". At an earlier point in time she would get Bioseq 10. At a later point she would get Bioseq 15. Note that her query is always answered in the context of best current data. On the other hand, if she had done a sequence analysis on Bioseq 10 and wanted to compare results, she would cite Seq-id 10, not the name "SV40", since her results apply to the specific Bioseq, 10, not necessarily to the "best" or "most typical" entry for the virus at the moment.

title: A Descriptive Title

A title is a brief, generally one line, description of an entry. It is extremely useful when presenting lists of Bioseqs returned from a query or search. This is the same as the familiar GenBank flatfile DEFINITION line.

 Because of the utility of such terse summaries, NCBI has been experimenting with algorithmically generated titles which try to pack as much information as possible into a single line in a regular and readable format. You will see titles of this form appearing on entries produced by the NCBI journal scanning component of GenBank.

DEFINITION atp6=F0-ATPase subunit 6 {RNA edited} [Brassica napus=rapeseed,

 mRNA Mitochondrial, 905 nt]

DEFINITION mprA=metalloprotease, mprR=regulatory protein [Streptomyces

 coelicolor, Muller DSM3030, Genomic, 3 genes, 2040 nt]

DEFINITION pelBC gene cluster: pelB=pectate lyase isozyme B, pelC=pectate

 lyase isozyme C [Erwinia chrysanthemi, 3937, Genomic, 2481 nt]

DEFINITION glycoprotein J...glycoprotein I [simian herpes B virus SHBV,

 prototypic B virus, Genomic, 3 genes, 2652 nt]

DEFINITION glycoprotein B, gB [human herpesvirus-6 HHV6, GS, Peptide, 830

 aa]

DEFINITION {pseudogene} RESA-2=ring-infected erythrocyte surface antigen 2

 [Plasmodium falciparum, FCR3, Genomic, 3195 nt]

DEFINITION microtubule-binding protein tau {exons 4A, 6, 8 and 13/14} [human,

 Genomic, 954 nt, segment 1 of 4]

DEFINITION CAD protein carbamylphosphate synthetase domain {5' end} [Syrian

 hamsters, cell line 165-28, mRNA Partial, 553 nt]

DEFINITION HLA-DPB1 (SSK1)=MHC class II antigen [human, Genomic, 288 nt]

Gene and protein names come first. If both gene name and protein name are know they are linked with "=". If more than two genes are on a Bioseq then the first and last gene are given, separated by "...". A region name, if available, will precede the gene names. Extra comments will appear in {}. Organism, strain names, and molecule type and modifier appear in [] at the end. Note that the whole definition is constructed from structured information in the ASN.1 data structure by software. It is not composed by hand, but is instead a brief, machine generated summary of the entry based on data within the entry. We therefore discourage attempts to machine parse this line. It may change, but the underlying structured data will not. Software should always be designed to process the structured data.

org: What Organism Did this Come From?

If the whole Bioseq comes from a single organism (the usual case). See the Feature Table chapter for a detailed description of the Org-ref (organism reference) data structure.

comment: Commentary Text

A comment that applies to the whole Bioseq may go here. A comment may contain many sentences or paragraphs. A Bioseq may have many comments.

num: Applying a Numbering System to a Bioseq

One may apply a custom numbering system over the full length of the Bioseq with this Seq‑descr. See the section on Numbering later in this chapter for a detailed description of the possible forms this can take. To report the numbering system used in a particular publication, the Pubdesc Seq-descr has its own Numbering slot.

maploc: Map Location

The map location given here is a Dbtag, to be able to cite a map location given by a map database to this Bioseq (e.g. "GDB", "4q21"). It is not necessarily the map location published by the author of the Bioseq. A map location published by the author would be part of a Pubdesc Seq-descr.

pir: PIR Specific Data

sp: SWISSPROT Data

embl: EMBL Data

prf: PRF Data

pdb: PDB Data

NCBI produces ASN.1 encoded entries from data provided by many different sources. Almost all of the data items from these widely differing sources are mapped into the common ASN.1 specifications described in this document. However, in all cases a small number of elements are unique to a particular data source, or cannot be unambiguously mapped into the common ASN.1 specification. Rather than lose such elements, they are carried in small data structures unique to each data source. These are specified in seqblock.asn and objblock.h.

genbank: GenBank Flatfile Specific Data

A number of data items unique to the GenBank flatfile format do not map readily to the common ASN.1 specification. These fields are partially populated by NCBI for Bioseqs derived from other sources than GenBank to permit the production of valid GenBank flatfile entries from those Bioseqs. Other fields are populated to preserve information coming from older GenBank entries.

pub: Description of a Publication

This Seq-descr is used both to cite a particular bibliographic source and to carry additional information about the Bioseq as it appeared in that publication, such as the numbering system to use, the figure it appeared in, a map location given by the author in that paper, and so. See the section on the Pubdesc later in this chapter for a more detailed description of this data type.

region: Name of a Genomic Region

A region of genome often has a name which is a commonly understood description for the Bioseq, such as "B-globin cluster".

user: A User-defined Structured Object

This is a place holder for software or databases to add their own structured datatypes to Bioseqs without corrupting the common specification or disabling the automatic ASN.1 syntax checking. A User-object can also be used as a feature. See the chapter on General User Objects for a detailed explanation of User-objects.

neighbors: Bioseqs Related by Sequence Similarity

NCBI computes a list of "neighbors", or closely related Bioseqs based on sequence similarity for use in the Entrez service. This descriptor is so that such context setting information could be included in a Bioseq itself, if desired.

create-date:

This is the date a Bioseq was created for the first time. It is normally supplied by the source database. It may not be present when not normally distributed by the source database.

update-date:

This is the date of the last update to a Bioseq by the source database. For several source databases this is the only date provided with an entry. The nature of the last update done is generally not available in computer readable (or any) form.

het: Heterogen

A "heterogen" is a non-biopolymer atom or molecule associated with Bioseqs from PDB. When a heterogen appears at the Seq-descr level, it means it was resolved in the crystal structure but is not associated with specific residues of the Bioseq. Heterogens which are associated with specific residues of the Bioseq are attached as features.

Seq-inst: Instantiating the Bioseq

Seq-inst.mol gives the physical type of the Bioseq in the living organism. If it is not certain if the Bioseq is DNA (dna) or RNA (rna), then (na) can be used to indicate just "nucleic acid". A protein is always (aa) or "amino acid". The values "not-set" or "other" are provided for internal use by editing and authoring tools, but should not be found on a finished Bioseq being sent to an analytical tool or database.

The representation class to which the Bioseq belongs is encoded in Seq-inst.repr. The values "not-set" or "other" are provided for internal use by editing and authoring tools, but should not be found on a finished Bioseq being sent to an analytical tool or database. The Data Model chapter discusses the representation class hierarchy in general. Specific details follow below.

Seq-inst: Virtual Bioseq

A "virtual" Bioseq is one in which we know the type of molecule, and possibly it's length, topology, and/or strandedness, but for which we do not have sequence data. It is not unusual to have some uncertainty about the length of a virtual Bioseq, so Seq-inst.fuzz may be used. The fields Seq-inst.seq-data and Seq-inst.ext are not appropriate for a virtual Bioseq.

Seq-inst: Raw Bioseq

A "raw" Bioseq does have sequence data, so Seq-inst.length must be set and there should be no Seq-inst.fuzz associated with it. Seq-inst.seq-data must be filled in with the sequence itself and a Seq-data encoding must be selected which is appropriate to Seq-inst.mol. The topology and strandedness may or may not be available. Seq-inst.ext is not appropriate.

Seq-inst: Segmented Bioseq

A segmented ("seg") Bioseq has all the properties of a virtual Bioseq, except that Seq-hist.ext of type Seq-ext.seg must be used to indicate the pieces of other Bioseqs to assemble to make the segmented Bioseq. A Seq-ext.seg is defined as a SEQUENCE OF Seq-loc, or a series of locations on other Bioseqs, taken in order.

For example, a segmented Bioseq (called "X") has a SEQUENCE OF Seq-loc which are an interval from position 11 to 20 on Bioseq "A" followed by an interval from position 6 to 15 on Bioseq "B". So "X" is a Bioseq with no internal gaps which is 20 residues long (no Seq-inst.fuzz). The first residue of "X" is the residue found at position 11 in "A". To obtain this residue, software must retrieve Bioseq "A" and examine the residue at "A" position 11. The segmented Bioseq contains no sequence data itself, only pointers to where to get the sequence data and what pieces to assemble in what order.

The type of segmented Bioseq described above might be used to represent the putative mRNA by simply pointing to the exons on two pieces of genomic sequence. Suppose however, that we had only sequenced around the exons on the genomic sequence, but wanted to represent the putative complete genomic sequence. Let us assume that Bioseq "A" is the genomic sequence of the first exon and some small amount of flanking DNA, and that Bioseq "B" is the genomic sequence around the second exon. Further, we may know from mapping that the exons are separated by about two kilobases of DNA. We can represent the genomic region by creating a segmented sequence in which the first location is all of Bioseq "A". The second location will be all of a virtual Bioseq (call it "C") whose length is two thousand and which has a Seq-inst.fuzz representing whatever uncertainty we may have about the exact length of the intervening genomic sequence. The third location will be all of Bioseq "B". If "A" is 100 base pairs long and "B" is 200 base pairs, then the segmented entry is 2300 base pairs long ("A"+"C"+"B") and has the same Seq-inst.fuzz as "C" to express the uncertainty of the overall length.

A variation of the case above is when one has no idea at all what the length of the intervening genomic region is. A segmented Bioseq can also represent this case. The Seq-inst.ext location chain would be first all of "A", then a Seq-loc of type "null", then all of "B". The "null" indicates that there is no available information here. The length of the segmented Bioseq is just the sum of the length of "A" and the length of "B", and Seq-inst.fuzz is set to indicate the real length is greater-than the length given. The "null" location does not add to the overall length of the segmented Bioseq and is ignored in determining the integer value of a location on the segmented Bioseq itself. If "A" is 100 base pairs long and "B" is 50 base pairs long, then position 0 on the segmented Bioseq is equivalent to the first residue of "A" and position 100 on the segmented Bioseq is equivalent to the first residue of "B", despite the intervening "null" location indicating the gap of unknown length. Utility functions such as the SeqPort (described in the Sequence Utilities chapter) can be configured to signal when crossing such boundaries, or to ignore them.

The Bioseqs referenced by a segmented Bioseq should always be from the same Seq-inst.mol class as the segmented Bioseq, but may well come from a mixture of Seq-inst.repr classes (as for example the mixture of virtual and raw Bioseq references used to describe sequenced and unsequenced genomic regions above). Other reasonable mixtures might be raw and map (see below) Bioseqs to describe a region which is fully mapped and partially sequenced, or even a mixture of virtual, raw, and map Bioseqs for a partially mapped and partially sequenced region. The "character" of any region of a segmented Bioseq is always taken from the underlying Bioseq to which it points in that region. However, a segmented Bioseq can have its own annotations. Things like feature tables are not automatically propagated to the segmented Bioseq.

Seq-inst: Reference Bioseq

A reference Bioseq is effectively a segmented Bioseq with only one pointer location. It behaves exactly like a segmented Bioseq in taking its data and "character" from the Bioseq to which it points. Its purpose is not to construct a new Bioseq from others like a segmented Bioseq, but to refer to an existing Bioseq. It could be used to provide a convenient handle to a frequently used region of a larger Bioseq. Or it could be used to develop a customized, personally annotated view of a Bioseq in a public database without losing the "live" link to the public sequence.

In the first example, software would want to be able to use the Seq-loc to gather up annotations and descriptors for the region and display them to user with corrections to align them appropriately to the sub region. In this form, a scientist my refer to the "lac region" by name, and analyze or annotate it as if it were a separate Bioseq, but each retrieve starts with a fresh copy of the underlying Bioseq and annotations, so corrections or additions made to the underlying Bioseq in the public database will be immediately visible to the scientist, without either having to always look at the whole Bioseq or losing any additional annotations the scientist may have made on the region themselves.

In the second example, software would not propagate annotations or descriptors from the underlying Bioseq by default (because presumably the scientist prefers his own view to the public one) but the connection to the underlying Bioseq is not lost. Thus the public annotations are available on demand and any new annotations added by the scientist share the public coordinate system and can be compared with those done by others.

Seq-inst: Constructed Bioseq

A constructed (const) Bioseq inherits all the attributes of a raw Bioseq. It is used to represent a Bioseq which has been constructed by assembling other Bioseqs. In this case the component Bioseqs normally overlap each other and there may be considerable redundancy of component Bioseqs. A constructed Bioseq is often also called a "contig" or a "merge".

Most raw Bioseqs in the public databases were constructed by merging overlapping gel or sequencer readings of a few hundred base pairs each. While the const Bioseq data structure can easily accommodate this information, the const Bioseq data type was not really intended for this purpose. It was intended to represent higher level merges of public sequence data and private data, such as when a number of sequence entries from different authors are found to overlap or be contained in each other. In this case a view of the larger sequence region can be constructed by merging the components. The relationship of the merge to the component Bioseqs is preserved in the constructed Bioseq, but it is clear that the constructed Bioseq is a "better" or "more complete" view of the overall region, and could replace the component Bioseqs in some views of the sequence database. In this way an author can submit a data structure to the database which in this author's opinion supersedes his own or other scientist's database entries, without the database actually dropping the other author's entries (who may not necessarily agree with the author submitting the constructed Bioseq).

The constructed Bioseq is like a raw, rather than a segmented, Bioseq because Seq-inst.seq-data must be present. The sequence itself is part of the constructed Bioseq. This is because the component Bioseqs may overlap in a number of ways, and expert knowledge or voting rules may have been applied to determine the "correct" or "best" residue from the overlapping regions. The Seq-inst.seq-data contains the sequence which is the final result of such a process.

Seq-inst.ext is not used for the constructed Bioseq. The relationship of the merged sequence to its component Bioseqs is stored in Seq-inst.hist, the history of the Bioseq (described in more detail below). Seq-hist.assembly contains alignments of the constructed Bioseq with its component Bioseqs. Any Bioseq can have a Seq-hist.assembly. A raw Bioseq may use this to show its relationship to its gel readings. The constructed Bioseq is special in that its Seq-hist.assembly shows how a high level view was constructed from other pieces. The sequence in a constructed Bioseq is only posited to exist. However, since it is constructed from data by possibly many different laboratories, it may never have been sequenced in its entirety from a single biological source.

Seq-inst: Typical or Consensus Bioseq

A consensus (consen) Bioseq is used to represent a pattern typical of a sequence region or family of sequences. There is no assertion that even one sequence exists that is exactly like this one, or even that the Bioseq is a best guess at what a real sequence region looks like. Instead it summarizes attributes of an aligned collection of real sequences. It could be a "typical" ferredoxin made by aligning ferredoxin sequences from many organisms and producing a protein sequence which is by some measure "central" to the group. By using the NCBIpaa encoding for the protein, which permits a probability to be assigned to each position that any of the standard amino acids occurs there, one can create a "weight matrix" or "profile" to define the sequence.

While a consensus Bioseq can represent a frequency profile (including the probability that any amino acid can occur at a position, a type of gap penalty), it cannot represent a regular expression per se. That is because all Bioseqs represent fixed integer coordinate systems. This property is essential for attaching feature tables or expressing alignments. There is no clear way to attach a fixed coordinate system to a regular expression, while one can approximate allowing weighted gaps in specific regions with a frequency profile. Since the consensus Bioseq is like any other, information can be attached to it through a feature table and alignments of the consensus pattern to other Bioseqs can be represented like any other alignment (although it may be computed a special way). Through the alignment, annotated features on the pattern can be related to matched regions of the aligned sequence in a straightforward way.

Seq-hist.assembly can be used in a consensus Bioseq to record the sequence regions used to construct the pattern and their relationships with it. While Seq-hist.assembly for a constructed Bioseq indicates the relationship with Bioseqs which are meant to be superseded by the constructed Bioseq, the consensus Bioseq does not in any way replace the Bioseqs in its Seq-hist.assembly. Rather it is a summary of common features among them, not a "better" or "more complete" version of them.

Seq-inst: Map Bioseqs

A map Bioseq inherits all the properties of a virtual Bioseq. For a consensus genetic map of E.coli, we can posit that the chromosome is DNA, circular, double-stranded, and about 5 million base pairs long. Given this coordinate system, we estimate the positions of genes on it based on genetic evidence. That is, we build a feature table with Gene-ref features on it (explained in more detail in the Feature Table chapter). Thus, a map Bioseq is a virtual Bioseq with a Seq-inst.ext which is a feature table. In this case the feature table is an essential part of instantiating the Bioseq, not simply an annotation on the Bioseq. This is not to say a map Bioseq cannot have a feature table in the usual sense as well. It can. It can also be used in alignments, displays, or by any software that can process or store Bioseqs. This is the great strength of this approach. A genetic or physical map is just another Bioseq and can be stored or analyzed right along with other more typical Bioseqs.

It is understood that within a particular physical or genetic mapping research project more data will have to be present than the map Bioseq can represent. But the same is true for a big sequencing project. The Bioseq is an object for reporting the result of such projects to others in a way that preserves most or all the information of use to workers outside the particular research group. It also preserves enough information to be useful to software tools within the project, such as display tools or analysis tools which were written by others.

A number of attributes of Bioseqs can make such a generic representation more "natural" to a particular research community. For the E.coli map example, above, no E.coli geneticist thinks of the positions of genes in base pairs (yet). So a Num-ref annotation (see Seq-descr, below) can be attached to the Bioseq, which provides information to convert the internal integer coordinate system of the map Bioseq to "minutes", the floating point numbers from 0.0 to 100.0 that E.coli gene positions are traditionally given in. Seq-loc objects which the Gene-ref features use to indicate their position can represent uncertainty, and thus give some idea of the accuracy of the mapping in a simple way. This representation cannot store order information directly (e.g. B and C are after A and before D, but we don't know the absolute distance and we don't know the relative order of B and C), which would need to be stored in a genetic mapping research database. However, a reasonable enough presentation can be made of this situation using locations and uncertainties to be very useful for a wide variety of purposes. As more sequence and physical map information become available, such uncertainties in gene position, at least for the "typical" chromosome, will gradually be resolved and will then map very will to such a generic model.

A physical map Bioseq has similar strengths and weaknesses as the genetic map Bioseq. It can represent an ordered map (such as an ordered restriction map) very well and easily. For some contig building approaches, ordering information is essential to the process of building the physical map and would have to be stored and processed separately by the map building research group. However, the map Bioseq serves very well as a vehicle for periodic reports of the group's best view of the physical map for consumption by the scientific public. The map Bioseq data structure maps quite well to the figures such groups publish to summarize their work. The map Bioseq is an electronic summary that can be integrated with other data and software tools.

Seq-hist: History of a Seq-inst

Seq-hist is literally the history of the Seq-inst part of a Bioseq. It does not track changes in annotation at all. However, since the coordinate system provided by the Seq-inst is the critical element for tying annotations and alignments done at various times by various people into a single consistent database, this is the most important element to track.

While Seq-hist can use any valid Seq-id, in practice NCBI will use the best available Seq-id in the Seq-hist. For this purpose, the Seq-id most tightly linked to the exact sequence itself is best. See the Seq-id discussion.

Seq-hist.assembly has been mentioned above. It is a SET OF Seq-align which show the relationship of this Bioseq to any older components that might be merged into it. The Bioseqs included in the assembly are those from which this Bioseq was made or is meant to supersede. The Bioseqs in the assembly need not all be from the author, but could come from anywhere. Assembly just sets the Bioseq in context.

Seq-hist.replaces makes an editorial statement using a Seq-hist-rec. As of a certain date, this Bioseq should replace the following Bioseqs. Databases at NCBI interpret this in a very specific way. Seq-ids in Seq-hist.replaces, which are owned by the owner of the Bioseq, are taken from the public view of the database. The author has told us to replace them with this one. If the author does not own some of them, it is taken as advice that the older entries may be obsolete, but they are not removed from the public view.

Seq-hist.replaced-by is a forward pointer. It means this Bioseq was replaced by the following Seq-id(s) on a certain date. In the case described above, that an author tells NCBI that a new Bioseq replaces some of his old ones, not only is the backward pointer (Seq-hist.replaces) provided by the author in the database, but NCBI will update the Seq-hist.replaced-by forward pointer when the old Bioseq is removed from public view. Since such old entries are still available for specific retrieval by the public, if a scientist does have annotation pointing to the old entry, the new entry can be explicitly located. Conversely, the older versions of a Bioseq can easily be located as well. Note that Seq-hist.replaced-by points only one generation forward and Seq-hist.replaces points only one generation back. This makes Bioseqs with a Seq-hist a doubly linked list over its revision history. This is very different from GenBank/EMBL/DDBJ secondary accession numbers, which only indicate "some relationship" between entries. When that relationship happens to be the replacement relationship, they still carry all accession numbers in the secondary accessions, not just the last ones, so reconstructing the entry history is impossible, even in a very general way.

Another fate which may await a Bioseq is that it is completely withdrawn. This is relatively rare but does happen. Seq-hist.deleted can either be set to just TRUE, or the date of the deletion event can be entered (preferred). In the SeqHist C structure, slots for both the deleted boolean and deleted date are present. If the deleted date is present, the ASN.1 will have the Date CHOICE for Seq-hist.deleted, else if the deleted boolean is TRUE the ASN.1 will have the BOOLEAN form.

Seq-data: Encoding the Sequence Data Itself

In the case of a raw or constructed Bioseq, the sequence data itself is stored in Seq-inst.seq-data, which is the data type Seq-data. Seq-data is a CHOICE of different ways of encoding the data, allowing selection of the optimal type for the case in hand. Both nucleic acid and amino acid encoding are given as CHOICEs of Seq-data rather than further subclassing first. But it is still not reasonable to encode a Bioseq of Seq-inst.mol of "aa" using a nucleic acid Seq-data type.

In the C structures all types of Seq-data are stored in ByteStores in Bioseq.seq_data. The encoding is given by the value of Bioseq.seq_data_type. The file objseq.h contains a series of #defines for the values of Bioseq.seq_data_type. These #defines map exactly to the ASN.1 Seq-code-type described below.

The ASN.1 module seqcode.asn and C header objcode.h define tables for recording the allowed values for the various sequence encoding and the ways to display or map between codes. This permits useful information about the allowed encoding to be stored as ASN.1 data and read into a program at runtime. NCBI uses the text file seqcode.prt and the binary version of that, seqcode.val, with its software tools. Some of the data from this file is presented in tables in the following discussion of the different sequence encoding. The "value" is the internal numerical value of a residue in the C code. The "symbol" is a one letter or multi-letter symbol to be used in display to a human. The "name" is a descriptive name for the residue. Other data in seqcode.prt will be discussed in the section on seqcode.asn itself.

IUPACaa: The IUPAC-IUB Encoding of Amino Acids

A set of one letter abbreviations for amino acids were suggested by the IUPAC-IUB Commission on Biochemical Nomenclature, published in J. Biol. Chem. (1968) 243: 3557-3559. It is very widely used in both printed and electronic forms of protein sequence, and many computer programs have been written to analyze data in this form internally (that is the actual ASCII value of the one letter code is used internally). To support such approaches, the IUPACaa encoding represents each amino acid internally as the ASCII value of its external one letter symbol. Note that this symbol is UPPER CASE. One may choose to display the value as lower case to a user for readability, but the data itself must be the UPPER CASE value.

In the NCBI C code implementation, the values are stored one value per byte.

IUPACaa

	Value
	Symbol
	Name

	65
	A
	Alanine

	66
	B
	Asp or Asn

	67
	C
	Cysteine

	68
	D
	Aspartic Acid

	69
	E
	Glutamic Acid

	70
	F
	Phenylalanine

	71
	G
	Glycine

	72
	H
	Histidine

	73
	I
	Isoleucine

	74
	J
	Leu or Ile

	75
	K
	Lysine

	76
	L
	Leucine

	77
	M
	Methionine

	78
	N
	Asparagine

	79
	O
	Pyrrolysine

	80
	P
	Proline

	81
	Q
	Glutamine

	82
	R
	Arginine

	83
	S
	Serine

	84
	T
	Threoine

	86
	V
	Valine

	87
	W
	Tryptophan

	88
	X
	Undetermined or atypical

	89
	Y
	Tyrosine

	90
	Z
	Glu or Gln

NCBIeaa: Extended IUPAC Encoding of Amino Acids

The official IUPAC amino acid code has some limitations. One is the lack of symbols for termination, gap, or selenocysteine. Such extensions to the IUPAC codes are also commonly used by sequence analysis software. NCBI has created such a code which is simply the IUPACaa code above extended with the additional symbols.

In the NCBI C code implementation, the values are stored one value per byte.

NCBIeaa

	Value
	Symbol
	Name

	42
	*
	Termination

	45
	-
	Gap

	65
	A
	Alanine

	66
	B
	Asp or Asn

	67
	C
	Cysteine

	68
	D
	Aspartic Acid

	69
	E
	Glutamic Acid

	70
	F
	Phenylalanine

	71
	G
	Glycine

	72
	H
	Histidine

	73
	I
	Isoleucine

	74
	J
	Leu or Ile

	75
	K
	Lysine

	76
	L
	Leucine

	77
	M
	Methionine

	78
	N
	Asparagine

	79
	O
	Pyrrolysine

	80
	P
	Proline

	81
	Q
	Glutamine

	82
	R
	Arginine

	83
	S
	Serine

	84
	T
	Threoine

	85
	U
	Selenocysteine

	86
	V
	Valine

	87
	W
	Tryptophan

	88
	X
	Undetermined or atypical

	89
	Y
	Tyrosine

	90
	Z
	Glu or Gln

NCBIstdaa: A Simple Sequential Code for Amino Acids

It is often very useful to separate the external symbol for a residue from its internal representation as a data value. For amino acids NCBI has devised a simple continuous set of values that encompasses the set of "standard" amino acids also represented by the NCBIeaa code above. A continuous set of values means that compact arrays can be used in computer software to look up attributes for residues simply and easily by using the value as an index into the array. The only significance of any particular mapping of a value to an amino acid is that zero is used for gap and the official IUPAC amino acids come first in the list. In general, we recommend the use of this encoding for standard amino acid sequences.

In the NCBI C code implementation, the values are stored one value per byte.

NCBIstdaa

	Value
	Symbol
	Name

	0
	-
	Gap

	1
	A
	Alanine

	2
	B
	Asp or Asn

	3
	C
	Cysteine

	4
	D
	Aspartic Acid

	5
	E
	Glutamic Acid

	6
	F
	Phenylalanine

	7
	G
	Glycine

	8
	H
	Histidine

	9
	I
	Isoleucine

	10
	K
	Lysine

	11
	L
	Leucine

	12
	M
	Methionine

	13
	N
	Asparagine

	14
	P
	Proline

	15
	Q
	Glutamine

	16
	R
	Arginine

	17
	S
	Serine

	18
	T
	Threoine

	19
	V
	Valine

	20
	W
	Tryptophan

	21
	X
	Undetermined or atypical

	22
	Y
	Tyrosine

	23
	Z
	Glu or Gln

	24
	U
	Selenocysteine

	25
	*
	Termination

	26
	O
	Pyrrolysine

	27
	J
	Leu or Ile

NCBI8aa: An Encoding for Modified Amino Acids

Post-translational modifications can introduce a number of non-standard or modified amino acids into biological molecules. The NCBI8aa code will be used to represent up to 250 possible amino acids by using the remaining coding space in the NCBIstdaa code. That is, for the first 26 values, NCBI8aa will be identical to NCBIstdaa. The remaining 224 values will be used for the most commonly encountered modified amino acids. Only the first 250 values will be used to signify amino acids, leaving values in the range of 250-255 to be used for software control codes. Obviously there are a very large number of possible modified amino acids, especially if one takes protein engineering into account. However, the intent here is to only represent commonly found biological forms. This encoding is not yet available since decisions about what amino acids to include have not all been made yet.

IUPAC3aa: A 3 Letter Display Code for Amino Acids

The IUPAC3aa code uses exactly the same values as NCBIstdaa. The only difference is the symbol is the three letters instead of the one letter code. This code is purely for display. As such it does not appear as a valid CHOICE in Seq-data for encoding actual sequence data. However, it does appear in the seqcode.asn specification and is stored in seqcode.val. The symbols follow the IUPAC-IUB recommendations for three letter codes where possible.

IUPAC3aa

	Value
	Symbol
	Name

	0

	Gap

	1
	Ala
	Alanine

	2
	Asx
	Asp or Asn

	3
	Cys
	Cysteine

	4
	Asp
	Aspartic Acid

	5
	Glu
	Glutamic Acid

	6
	Phe
	Phenylalanine

	7
	Gly
	Glycine

	8
	His
	Histidine

	9
	Ile
	Isoleucine

	10
	Lys
	Lysine

	11
	Leu
	Leucine

	12
	Met
	Methionine

	13
	Asn
	Asparagine

	14
	Pro
	Proline

	15
	Gln
	Glutamine

	16
	Arg
	Arginine

	17
	Ser
	Serine

	18
	Thr
	Threoine

	19
	Val
	Valine

	20
	Trp
	Tryptophan

	21
	Xxx
	Undetermined or atypical

	22
	Tyr
	Tyrosine

	23
	Glx
	Glu or Gln

	24
	Sec
	Selenocysteine

	25
	Ter
	Termination

	26
	Pyl
	Pyrrolysine

	27
	Xle
	Leu or Ile

NCBIpaa: A Profile Style Encoding for Amino Acids

The NCBIpaa encoding is designed to accommodate a frequency profile describing a protein motif or family in a form which is consistent with the sequences in a Bioseq. Each position in the sequence is defined by 30 values. Each of the 30 values represents the probability that a particular amino acid (or gap, termination, etc.) will occur at that position. One can consider each set of 30 values an array. The amino acid for each cell of the 30 value array corresponds to the NCBIstdaa index scheme. This means that currently only the first 26 array elements will ever have a meaningful value. The remaining 4 cells are available for possible future additions to NCBIstdaa. Each cell represents the probability that the amino acid defined by the NCBIstdaa index to that cell will appear at that position in the motif or protein. The probability is encoded as an 8-bit value from 0-255 corresponding to a probability from 0.0 to 1.0 by interpolation.

This type of encoding would presumably never appear except in a Bioseq of type "consensus". In the C code implementation these amino acids are encoded at 30 bytes per amino acid in a simple linear order. That is, the first 30 bytes are the first amino acid, the second 30 the next amino acid, and so on.

IUPACna: The IUPAC-IUB Encoding for Nucleic Acids

Like the IUPACaa codes the IUPACna codes are single letters for nucleic acids and the value is the same as the ASCII value of the recommended IUPAC letter. The IUPAC recommendations for nucleic acid codes also include letters to represent all possible ambiguities at a single position in the sequence except a gap. To make the values non-redundant, U is considered the same as T. Whether a sequence actually contains U or T is easily determined from Seq-inst.mol. Since some software tools are designed to work directly on the ASCII representation of the IUPAC letters, this representation is provided. Note that the ASCII values correspond to the UPPER CASE letters. Using values corresponding to lower case letters in Seq-data is an error. For display to a user, any readable case or font is appropriate.

The C implementation encodes one value for a nucleic acid residue per byte.

IUPACna

	Value
	Symbol
	Name

	65
	A
	Adenine

	66
	B
	G or T or C

	67
	C
	Cytosine

	68
	D
	G or A or T

	71
	G
	Guanine

	72
	H
	A or C or T

	75
	K
	G or T

	77
	M
	A or C

	78
	N
	A or G or C or T

	82
	R
	G or A

	83
	S
	G or C

	84
	T
	Thymine

	86
	V
	G or C or A

	87
	W
	A or T

	89
	Y
	T or C

NCBI4na: A Four Bit Encoding of Nucleic Acids

It is possible to represent the same set of nucleic acid and ambiguities with a four bit code, where one bit corresponds to each possible base and where more than one bit is set to represent ambiguity. The particular encoding used for NCBI4na is the same as that used on the GenBank Floppy Disk Format. A four bit encoding has several advantages over the direct mapping of the ASCII IUPAC codes. One can represent "no base" as 0000. One can match various ambiguous or unambiguous bases by a simple AND. For example, in NCBI4na 0001=A, 0010=C, 0100=G, 1000=T/U. Adenine (0001) then matches Purine (0101) by the AND method. Finally, it is possible to store the sequence in half the space by storing two bases per byte. This is done both in the ASN.1 encoding and in the NCBI C software implementation. Utility functions (see SeqPort()) allow the developer to ignore the complexities of storage while taking advantage of the greater packing. Since nucleic acid sequences can be very long, this is a real savings.

NCBI4na

	Value
	Symbol
	Name

	0
	-
	Gap

	1
	A
	Adenine

	2
	C
	Cytosine

	3
	M
	A or C

	4
	G
	Guanine

	5
	R
	G or A

	6
	S
	G or C

	7
	V
	G or C or A

	8
	T
	Thymine/Uracil

	9
	W
	A or T

	10
	Y
	T or C

	11
	H
	A or C or T

	12
	K
	G or T

	13
	D
	G or A or T

	14
	B
	G or T or C

	15
	N
	A or G or C or T

NCBI2na: A Two Bit Encoding for Nucleic Acids

If no ambiguous bases are present in a nucleic acid sequence it can be completely encoded using only two bits per base. This allows encoding into ASN.1 or storage in the NCBI C implementation with a four fold savings in space. As with the four bit packing, the NCBI C utility SeqPort() allows the programmer to ignore the complexities introduced by the packing. The two bit encoding selected is the same as that proposed for the GenBank CDROM.

NCBI2na

	Value
	Symbol
	Name

	0
	A
	Adenine

	1
	C
	Cytosine

	2
	G
	Guanine

	3
	T
	Thymine/Uracil

NCBI8na: An Eight Bit Sequential Encoding for Modified Nucleic Acids

The first 16 values of NCBI8na are identical with those of NCBI4na. The remaining possible 234 values will be used for common, biologically occurring modified bases such as those found in tRNAs. This full encoding is still being determined at the time of this writing. Only the first 250 values will be used, leaving values in the range of 250-255 to be used as control codes in software.

NCBIpna: A Frequency Profile Encoding for Nucleic Acids

Frequency profiles have been used to describe motifs and signals in nucleic acids. This can be encoded by using five bytes per sequence position. The first four bytes are used to express the probability that particular bases occur at that position, in the order A, C, G, T as in the NCBI2na encoding. The fifth position encodes the probability that a base occurs there at all. Each byte has a value from 0-255 corresponding to a probability from 0.0-1.0.

The sequence is encoded as a simple linear sequence of bytes where the first five bytes code for the first position, the next five for the second position, and so on. Typically the NCBIpna notation would only be found on a Bioseq of type consensus. However, one can imagine other uses for such an encoding, for example to represent knowledge about low resolution sequence data in an easily computable form.

Tables of Sequence Codes

Various sequence alphabets can be stored in tables of type Seq-code-table, defined in seqcode.asn. An enumerated type, Seq-code-type is used as a key to each table. Each code can be thought of as a square table essentially like those presented above in describing each alphabet. Each "residue" of the code has a numerical one-byte value used to represent that residue both in ASN.1 data and in internal C structures. The information necessary to display the value is given by the "symbol". A symbol can be in a one-letter series (e.g. A,G,C,T) or more than one letter (e.g. Met, Leu, etc.). The symbol gives a human readable representation the corresponds to each numerical residue value. A name, or explanatory string, is also associated with each.

So, the NCBI2na code above would be coded into a Seq-code-table very simply as:

 { -- NCBI2na

 code ncbi2na ,

 num 4 , -- continuous 0-3

 one-letter TRUE , -- all one letter codes

 table {

 { symbol "A", name "Adenine" },

 { symbol "C", name "Cytosine" },

 { symbol "G", name "Guanine" },

 { symbol "T", name "Thymine/Uracil"}

 } , -- end of table

 comps { -- complements

 3,

 2,

 1,

 0

 }

 } ,

The table has 4 rows (with values 0-3) with one letter symbols. If we wished to represent a code with values which do not start at 0 (such as the IUPAC codes) then we would set the OPTIONAL "start-at" element to the value for the first row in the table.

In the case of nucleic acid codes, the Seq-code-table also has rows for indexes to complement the values represented in the table. In the example above, the complement of 0 ("A") is 3 ("T").

Mapping Between Different Sequence Alphabets

A Seq-map-table provides a mapping from the values of one alphabet to the values of another, very like the way complements are mapped above. A Seq-map-table has two Seq-code-types, one giving the alphabet to map from and the other the alphabet to map to. The Seq-map-table has the same number of rows and the same "start-at" value as the Seq-code-table for the alphabet it maps FROM. This makes the mapping a simple array lookup using the value of a residue of the FROM alphabet and subtracting "start-at". Remember that alphabets are not created equal and mapping from a bigger alphabet to a smaller may result in loss of information.

Data and Tools for Sequence Alphabets

NCBI provides a collection of Seq-code-tables and Seq-map-tables together in a Seq-code-set as part of the software toolbox. The file is called seqcode.prt (text form) or seqcode.val (binary ASN.1 used by the software). The function SeqCodeSetLoad() will check your NCBI configuration file looking for the path to "DATA", then read seqcode.val into memory using SeqCodeSetAsnRead(). A local static pointer to the loaded SeqCodes is kept in the SeqCode module, and thus need not be kept by the caller. Additional functions use the static pointer to provide access to the codes. SeqCodeTableFind() will return the appropriate SeqCodeTablePtr given a valid sequence code, and SeqMapTableFind() will return the appropriate SeqMapTablePtr given a code to map from and a code to map to. The SeqPort functions use these functions to provide a view of a sequence in any requested alphabet by mapping residues on demand. See the chapter on Writing Sequence Software.

Pubdesc: Publication Describing a Bioseq

A Pubdesc is a data structure used to record how a particular publication described a Bioseq. It contains the citation itself as a Pub-equiv (see the Bibliographic References chapter) so that equivalent forms of the citation (e.g. a MEDLINE uid and a Cit-Art) can all be accommodated in a single data structure. Then a number of additional fields allow a more complete description of what was presented in the publication. These extra fields are generally only filled in for entries produced by the NCBI journal scanning component of GenBank, also known as the Backbone database. This information is not generally available in data from any other database yet.

Pubdesc.name is the name given the sequence in the publication, usually in the figure. Pubdesc.fig gives the figure the Bioseq appeared in so a scientist can locate it in the paper. Pubdesc.num preserves the numbering system used by the author (see Numbering below). Pubdesc.numexc, if TRUE, indicates that a "numbering exception" was found (i.e. the author's numbering did not agree with the number of residues in the sequence). This usually indicates an error in the preparation of the figure. If Pubdesc.poly-a is TRUE, then a poly-A tract was indicated for the Bioseq in the figure, but was not explicitly preserved in the sequence itself (e.g. ...AGAATTTCT (Poly-A)). Pubdesc.maploc is the map location for this sequence as given by the author in this paper. Pubdesc.seq-raw allows the presentation of the sequence exactly as typed from the figure. This is never used now. Pubdesc.align-group, if present, indicates the Bioseq was presented in a group aligned with other Bioseqs. The align-group value is an arbitrary integer. Other Bioseqs from the same publication which are part of the same alignment will have the same align-group number.

Pubdesc.comment is simply a free text comment associated with this publication. SWISSPROT entries may also have this field filled.

Numbering: Applying a Numbering System to a Bioseq

Internally, locations on Bioseqs are ALWAYS integer offsets in the range 0 to (length - 1). However, it is often helpful to display some other numbering system. The Numbering data structure supports a variety of numbering styles and conventions. In the ASN.1 specification, it is simply a CHOICE of the four possible types. When a Numbering object is supplied as a Seq-descr, then it applies to the complete length of the Bioseq. A Numbering object can also be a feature, in which case it only applies to the interval defined by the feature's location.

Num-cont: A Continuous Integer Numbering System

The most widely used numbering system for sequences is some form of a continuous integer numbering. Num-cont.refnum is the number to assign to the first residue in the Bioseq. If Num-cont.has-zero is TRUE, the numbering system uses zero. When biologists start numbering with a negative number, it is quite common for them to skip zero, going directly from -1 to +1, so the DEFAULT for has-zero is FALSE. This only reflects common usage, not any recommendation in terms of convention. Any useful software tool should support both conventions, since they are both used in the literature. Finally, the most common numbering systems are ascending; however descending numbering systems are encountered from time to time, so Num-cont.ascending would then be set to FALSE.

Num-real: A Real Number Numbering Scheme

Genetic maps may use real numbers as "map units" since they treat the chromosome as a continuous coordinate system, instead of a discrete, integer coordinate system of base pairs. Thus a Bioseq of type "map" which may use an underlying integer coordinate system from 0 to 5 million may be best presented to user in the familiar 0.0 to 100.0 map units. Num-real supports a simply linear equation specifying the relationship:

map units = (Num-real.a + base_pair_position) + Num-real.b

in this example. Since such numbering systems generally have their own units (e.g. "map units", "centisomes", "centimorgans", etc), Num-real.units provides a string for labeling the display.

Num-enum: An Enumerated Numbering Scheme

Occasionally biologists do not use a continuous numbering system at all. Crystallographers and immunologists, for example, who do extensive studies on one or a few sequences, may name the individual residues in the sequence as they fit them into a theoretical framework. So one might see residues numbered ... "10" "11" "12" "12A" "12B" "12C" "13" "14" ... To accommodate this sort of scheme the "name" of each residue must be explicitly given by a string, since there is no anticipating any convention that may be used. The Num-enum.num gives the number of residue names (which should agree with the number of residues in the Bioseq, in the case of use as a Seq-descr), followed by the names as strings.

Num-ref: Numbering by Reference to Another Bioseq

Two types of references are allowed. The "sources" references are meant to apply the numbering system of constituent Bioseqs to a segmented Bioseq. This is useful for seeing the mapping from the parts to the whole.

The "aligns" reference requires that the Num-ref-aligns alignment be filled in with an alignment of the target Bioseq with one or more pieces of other Bioseqs. The numbering will come from the aligned pieces.

Numbering: C Structures and Utility Functions

A Numbering object is implemented in C simply as a ValNode, where ValNode.choice is given by a series of #defines in objpubd.h and ValNode.ptrvalue is a pointer to the appropriate data structure for the Numbering type.

In sequtil.h (see the Sequence Utilities chapter) a number of functions are defined which convert from internal to display numbering systems and vice versa. These functions make the use of fairly complex numbering systems fairly straightforward.

ASN.1 Specification: seq.asn

--$Revision: 2.1 $

--**

--

-- NCBI Sequence elements

-- by James Ostell, 1990

--

--**

NCBI-Sequence DEFINITIONS ::=

BEGIN

EXPORTS Bioseq, Seq-annot, Pubdesc, Seq-descr, Numbering, Heterogen;

IMPORTS Date, Int-fuzz, Dbtag, Object-id, User-object FROM NCBI-General

 Seq-align FROM NCBI-Seqalign

 Seq-feat FROM NCBI-Seqfeat

 Seq-graph FROM NCBI-Seqres

 Pub-equiv FROM NCBI-Pub

 Org-ref FROM NCBI-Organism

 Seq-id, Seq-loc FROM NCBI-Seqloc

 Link-set FROM NCBI-Access

GB-block FROM GenBank-General

PIR-block FROM PIR-General

 EMBL-block FROM EMBL-General

SP-block FROM SP-General

PRF-block FROM PRF-General

PDB-block FROM PDB-General;

--*** Sequence ********************************

--*

Bioseq ::= SEQUENCE {

 id SET OF Seq-id , -- equivalent identifiers

 descr Seq-descr OPTIONAL , -- descriptors

 inst Seq-inst , -- the sequence data

 annot SET OF Seq-annot OPTIONAL }

--*** Descriptors *****************************

--*

Seq-descr ::= SET OF CHOICE {

 mol-type GIBB-mol , -- type of molecule

 modif SET OF GIBB-mod , -- modifiers

 method GIBB-method , -- sequencing method

 name VisibleString , -- a name for this sequence

 title VisibleString , -- a title for this sequence

 org Org-ref , -- if all from one organism

 comment VisibleString , -- a more extensive comment

 num Numbering , -- a numbering system

 maploc Dbtag , -- map location of this sequence

 pir PIR-block , -- PIR specific info

 genbank GB-block , -- GenBank specific info

 pub Pubdesc , -- a reference to the publication

 region VisibleString , -- overall region (globin locus)

 user User-object , -- user defined object

sp SP-block , -- SWISSPROT specific info

 neighbors Link-set , -- neighboring information

 embl EMBL-block , -- EMBL specific information

create-date Date , -- date entry first created/released

update-date Date , -- date of last update

prf PRF-block ,

 -- PRF specific information

pdb PDB-block , -- PDB specific information

het Heterogen } -- cofactor, etc associated but not bound

GIBB-mol ::= ENUMERATED { -- type of molecule represented

 unknown (0) ,

 genomic (1) ,

 pre-mRNA (2) ,

 mRNA (3) ,

 rRNA (4) ,

 tRNA (5) ,

 snRNA (6) ,

 scRNA (7) ,

 peptide (8) ,

other-genetic (9) , -- other genetic material

genomic-mRNA (10) , -- reported a mix of genomic and cdna sequence

 other (255) }

GIBB-mod ::= ENUMERATED { -- GenInfo Backbone modifiers

 dna (0) ,

 rna (1) ,

 extrachrom (2) ,

 plasmid (3) ,

 mitochondrial (4) ,

 chloroplast (5) ,

 kinetoplast (6) ,

 cyanelle (7) ,

 synthetic (8) ,

 recombinant (9) ,

 partial (10) ,

 complete (11) ,

 mutagen (12) , -- subject of mutagenesis ?

 natmut (13) , -- natural mutant ?

 transposon (14) ,

 insertion-seq (15) ,

no-left (16) , -- missing left end (5' for na, NH2 for aa)

no-right (17) , -- missing right end (3' or COOH)

macronuclear (18) ,

proviral (19) ,

est (20) , -- expressed sequence tag

 other (255) }

GIBB-method ::= ENUMERATED { -- sequencing methods

 concept-trans (1) , -- conceptual translation

 seq-pept (2) , -- peptide was sequenced

 both (3) , -- concept transl. w/ partial pept. seq.

seq-pept-overlap (4) , -- sequenced peptide, ordered by overlap

seq-pept-homol (5) , -- sequenced peptide, ordered by homology

concept-trans-a (6) , -- conceptual transl. supplied by author

 other (255) }

Numbering ::= CHOICE { -- any display numbering system

 cont Num-cont , -- continuous numbering

 enum Num-enum , -- enumerated names for residues

 ref Num-ref , -- by reference to another sequence

 real Num-real } -- supports mapping to a float system

Num-cont ::= SEQUENCE { -- continuous display numbering system

 refnum INTEGER DEFAULT 1, -- number assigned to first residue

 has-zero BOOLEAN DEFAULT FALSE , -- 0 used?

 ascending BOOLEAN DEFAULT TRUE } -- ascending numbers?

Num-enum ::= SEQUENCE { -- any tags to residues

 num INTEGER , -- number of tags to follow

 names SEQUENCE OF VisibleString } -- the tags

Num-ref ::= SEQUENCE { -- by reference to other sequences

 type ENUMERATED { -- type of reference

 not-set (0) ,

 sources (1) , -- by segmented or const seq sources

 aligns (2) } , -- by alignments given below

 aligns Seq-align OPTIONAL }

Num-real ::= SEQUENCE { -- mapping to floating point system

 a REAL , -- from an integer system used by Bioseq

 b REAL , -- position = (a * int_position) + b

 units VisibleString OPTIONAL }

Pubdesc ::= SEQUENCE { -- how sequence presented in pub

 pub Pub-equiv , -- the citation(s)

 name VisibleString OPTIONAL , -- name used in paper

 fig VisibleString OPTIONAL , -- figure in paper

 num Numbering OPTIONAL , -- numbering from paper

 numexc BOOLEAN OPTIONAL , -- numbering problem with paper

 poly-a BOOLEAN OPTIONAL , -- poly A tail indicated in figure?

 maploc VisibleString OPTIONAL , -- map location reported in paper

 seq-raw StringStore OPTIONAL , -- original sequence from paper

 align-group INTEGER OPTIONAL , -- this seq aligned with others in paper

comment VisibleString OPTIONAL }-- any comment on this pub in context

Heterogen ::= VisibleString -- cofactor, prosthetic group, inibitor, etc

--*** Instances of sequences *******************************

--*

Seq-inst ::= SEQUENCE { -- the sequence data itself

 repr ENUMERATED { -- representation class

 not-set (0) , -- empty

 virtual (1) , -- no seq data

 raw (2) , -- continuous sequence

 seg (3) , -- segmented sequence

 const (4) , -- constructed sequence

 ref (5) , -- reference to another sequence

 consen (6) , -- consensus sequence or pattern

 map (7) , -- ordered map (genetic, restriction)

 other (255) } ,

 mol ENUMERATED { -- molecule class in living organism

 not-set (0) , -- > cdna = rna

 dna (1) ,

 rna (2) ,

 aa (3) ,

 na (4) , -- just a nucleic acid

 other (255) } ,

 length INTEGER OPTIONAL , -- length of sequence in residues

 fuzz Int-fuzz OPTIONAL , -- length uncertainty

 topology ENUMERATED { -- topology of molecule

 not-set (0) ,

 linear (1) ,

 circular (2) ,

 tandem (3) , -- some part of tandem repeat

 other (255) } DEFAULT linear ,

 strand ENUMERATED { -- strandedness in living organism

 not-set (0) ,

 ss (1) , -- single strand

 ds (2) , -- double strand

 mixed (3) ,

 other (255) } OPTIONAL , -- default ds for DNA, ss for RNA, pept

 seq-data Seq-data OPTIONAL , -- the sequence

 ext Seq-ext OPTIONAL , -- extensions for special types

hist Seq-hist OPTIONAL } -- sequence history

--*** Sequence Extensions **********************************

--* for representing more complex types

--* const type uses Seq-hist.assembly

Seq-ext ::= CHOICE {

 seg Seg-ext , -- segmented sequences

 ref Ref-ext , -- hot link to another sequence (a view)

 map Map-ext } -- ordered map of markers

Seg-ext ::= SEQUENCE OF Seq-loc

Ref-ext ::= Seq-loc

Map-ext ::= SEQUENCE OF Seq-feat

--*** Sequence History Record ***********************************

--** assembly = records how seq was assembled from others

--** replaces = records sequences made obsolete by this one

--** replaced-by = this seq is made obsolete by another(s)

Seq-hist ::= SEQUENCE {

assembly SET OF Seq-align OPTIONAL ,-- how was this assembled?

replaces Seq-hist-rec OPTIONAL , -- seq makes these seqs obsolete

replaced-by Seq-hist-rec OPTIONAL , -- these seqs make this one obsolete

deleted CHOICE {

bool BOOLEAN ,

date Date } OPTIONAL }

Seq-hist-rec ::= SEQUENCE {

date Date OPTIONAL ,

ids SET OF Seq-id }

--*** Various internal sequence representations ************

--* all are controlled, fixed length forms

Seq-data ::= CHOICE { -- sequence representations

 iupacna IUPACna , -- IUPAC 1 letter nuc acid code

 iupacaa IUPACaa , -- IUPAC 1 letter amino acid code

 ncbi2na NCBI2na , -- 2 bit nucleic acid code

 ncbi4na NCBI4na , -- 4 bit nucleic acid code

 ncbi8na NCBI8na , -- 8 bit extended nucleic acid code

 ncbipna NCBIpna , -- nucleic acid probabilities

 ncbi8aa NCBI8aa , -- 8 bit extended amino acid codes

 ncbieaa NCBIeaa , -- extended ASCII 1 letter aa codes

 ncbipaa NCBIpaa , -- amino acid probabilities

 ncbistdaa NCBIstdaa } -- consecutive codes for std aas

IUPACna ::= StringStore -- IUPAC 1 letter codes, no spaces

IUPACaa ::= StringStore -- IUPAC 1 letter codes, no spaces

NCBI2na ::= OCTET STRING -- 00=A, 01=C, 10=G, 11=T

NCBI4na ::= OCTET STRING -- 1 bit each for agct

 -- 0001=A, 0010=C, 0100=G, 1000=T/U

 -- 0101=Purine, 1010=Pyrimidine, etc

NCBI8na ::= OCTET STRING -- for modified nucleic acids

NCBIpna ::= OCTET STRING -- 5 octets/base, prob for a,c,g,t,n

 -- probabilities are coded 0-255 = 0.0-1.0

NCBI8aa ::= OCTET STRING -- for modified amino acids

NCBIeaa ::= StringStore -- ASCII extended 1 letter aa codes

 -- IUPAC codes + U=selenocysteine

NCBIpaa ::= OCTET STRING -- 25 octets/aa, prob for IUPAC aas in order:

 -- A-Y,B,Z,X,(ter),anything

 -- probabilities are coded 0-255 = 0.0-1.0

NCBIstdaa ::= OCTET STRING -- codes 0-25, 1 per byte

--*** Sequence Annotation *************************************

--*

Seq-annot ::= SEQUENCE {

 id Object-id OPTIONAL ,

 db Dbtag OPTIONAL ,

 name VisibleString OPTIONAL ,

 desc VisibleString OPTIONAL ,

 data CHOICE {

 ftable SET OF Seq-feat ,

 align SET OF Seq-align ,

 graph SET OF Seq-graph } }

END

ASN.1 Specification: seqblock.asn

--$Revision: 2.0 $

--***

--

-- EMBL specific data

-- This block of specifications was developed by Reiner Fuchs of EMBL

--

--***

EMBL-General DEFINITIONS ::=

BEGIN

EXPORTS EMBL-dbname, EMBL-xref, EMBL-block;

IMPORTS Date, Object-id FROM NCBI-General;

EMBL-dbname ::= CHOICE {

code ENUMERATED {

embl(0),

genbank(1),

ddbj(2),

geninfo(3),

medline(4),

swissprot(5),

pir(6),

pdb(7),

epd(8),

ecd(9),

tfd(10),

flybase(11),

prosite(12),

enzyme(13),

mim(14),

ecoseq(15),

hiv(16) },

name
VisibleString }

EMBL-xref ::= SEQUENCE {

dbname EMBL-dbname,

id SEQUENCE OF Object-id }

EMBL-block ::= SEQUENCE {

class ENUMERATED {

not-set(0),

standard(1),

unannotated(2),

other(255) } DEFAULT standard,

div ENUMERATED {

fun(0),

inv(1),

mam(2),

org(3),

phg(4),

pln(5),

pri(6),

pro(7),

rod(8),

syn(9),

una(10),

vrl(11),

vrt(12) } OPTIONAL,

creation-date Date,

update-date Date,

extra-acc SEQUENCE OF VisibleString OPTIONAL,

keywords SEQUENCE OF VisibleString OPTIONAL,

xref SEQUENCE OF EMBL-xref OPTIONAL }

END

--***

--

-- SWISSPROT specific data

-- This block of specifications was developed by Mark Cavanaugh of

--

NCBI working with Amos Bairoch of SWISSPROT

--

--***

SP-General DEFINITIONS ::=

BEGIN

EXPORTS SP-block;

IMPORTS Date, Dbtag FROM NCBI-General

Seq-id FROM NCBI-SeqLoc;

SP-block ::= SEQUENCE { -- SWISSPROT specific descriptions

class ENUMERATED {

not-set (0) ,

standard (1) , -- conforms to all SWISSPROT checks

prelim (2) , -- only seq and biblio checked

other (255) } ,

extra-acc SET OF VisibleString OPTIONAL , -- old SWISSPROT ids

imeth BOOLEAN DEFAULT FALSE , -- seq known to start with Met

plasnm SET OF VisibleString OPTIONAL, -- plasmid names carrying gene

seqref SET OF Seq-id OPTIONAL, -- xref to other sequences

dbref SET OF Dbtag OPTIONAL , -- xref to non-sequence dbases

keywords SET OF VisibleString OPTIONAL , -- keywords

created Date OPTIONAL ,

-- creation date

sequpd Date OPTIONAL ,

-- sequence update

annotupd Date OPTIONAL }

-- annotation update

END

--***

--

-- PIR specific data

-- This block of specifications was developed by Jim Ostell of

--

NCBI

--

--***

PIR-General DEFINITIONS ::=

BEGIN

EXPORTS PIR-block;

IMPORTS Seq-id FROM NCBI-SeqLoc;

PIR-block ::= SEQUENCE { -- PIR specific descriptions

 had-punct BOOLEAN OPTIONAL , -- had punctuation in sequence ?

 host VisibleString OPTIONAL ,

 source VisibleString OPTIONAL , -- source line

 summary VisibleString OPTIONAL ,

 genetic VisibleString OPTIONAL ,

 includes VisibleString OPTIONAL ,

 placement VisibleString OPTIONAL ,

 superfamily VisibleString OPTIONAL ,

 keywords SEQUENCE OF VisibleString OPTIONAL ,

 cross-reference VisibleString OPTIONAL ,

 date VisibleString OPTIONAL ,

seq-raw VisibleString OPTIONAL , -- seq with punctuation

seqref SET OF Seq-id OPTIONAL } -- xref to other sequences

END

--***

--

-- GenBank specific data

-- This block of specifications was developed by Jim Ostell of

--

NCBI

--

--***

GenBank-General DEFINITIONS ::=

BEGIN

EXPORTS GB-block;

IMPORTS Date FROM NCBI-General;

GB-block ::= SEQUENCE { -- GenBank specific descriptions

 extra-accessions SEQUENCE OF VisibleString OPTIONAL ,

 source VisibleString OPTIONAL , -- source line

 keywords SEQUENCE OF VisibleString OPTIONAL ,

 origin VisibleString OPTIONAL,

 date VisibleString OPTIONAL , -- old form Entry Date

 entry-date Date OPTIONAL , -- replaces date

 div VisibleString OPTIONAL , -- GenBank division

 taxonomy VisibleString OPTIONAL } -- continuation line of organism

END

--**

-- PRF specific definition

-- PRF is a protein sequence database crated and maintained by

-- Protein Research Foundation, Minoo-city, Osaka, Japan.

--

-- Written by A.Ogiwara, Inst.Chem.Res. (Dr.Kanehisa's Lab),

-- Kyoto Univ., Japan

--

--**

PRF-General DEFINITIONS ::=

BEGIN

EXPORTS PRF-block;

PRF-block ::= SEQUENCE {

 extra-src PRF-ExtraSrc OPTIONAL,

 keywords SEQUENCE OF VisibleString OPTIONAL

}

PRF-ExtraSrc ::= SEQUENCE {

 host VisibleString OPTIONAL,

 part VisibleString OPTIONAL,

 state VisibleString OPTIONAL,

 strain VisibleString OPTIONAL,

 taxon VisibleString OPTIONAL

}

END

--***

--

-- PDB specific data

-- This block of specifications was developed by Jim Ostell and

--

Steve Bryant of NCBI

--

--***

PDB-General DEFINITIONS ::=

BEGIN

EXPORTS PDB-block;

IMPORTS Date FROM NCBI-General;

PDB-block ::= SEQUENCE { -- PDB specific descriptions

deposition Date , -- deposition date month,year

class VisibleString ,

compound SEQUENCE OF VisibleString ,

source SEQUENCE OF VisibleString ,

exp-method VisibleString OPTIONAL , -- present if NOT X-ray diffraction

replace PDB-replace OPTIONAL } -- replacement history

PDB-replace ::= SEQUENCE {

date Date ,

ids SEQUENCE OF VisibleString } -- entry ids replace by this one

END

ASN.1 Specification: seqcode.asn

--$Revision: 2.0 $

-- ***

--

-- These are code and conversion tables for NCBI sequence codes

-- ASN.1 for the sequences themselves are define in seq.asn

--

-- Seq-map-table and Seq-code-table REQUIRE that codes start with 0

-- and increase continuously. So IUPAC codes, which are upper case

-- letters will always have 65 0 cells before the codes begin. This

-- allows all codes to do indexed lookups for things

--

-- Valid names for code tables are:

-- IUPACna

-- IUPACaa

-- IUPACeaa

-- IUPACaa3 3 letter amino acid codes : parallels IUPACeaa

-- display only, not a data exchange type

-- NCBI2na

-- NCBI4na

-- NCBI8na

-- NCBI8aa

-- NCBIstdaa

-- probability types map to IUPAC types for display as characters

NCBI-SeqCode DEFINITIONS ::=

BEGIN

EXPORTS Seq-code-table, Seq-map-table, Seq-code-set;

Seq-code-type ::= ENUMERATED { -- sequence representations

 iupacna (1) , -- IUPAC 1 letter nuc acid code

 iupacaa (2) , -- IUPAC 1 letter amino acid code

 ncbi2na (3) , -- 2 bit nucleic acid code

 ncbi4na (4) , -- 4 bit nucleic acid code

 ncbi8na (5) , -- 8 bit extended nucleic acid code

 ncbipna (6) , -- nucleic acid probabilities

 ncbi8aa (7) , -- 8 bit extended amino acid codes

 ncbieaa (8) , -- extended ASCII 1 letter aa codes

 ncbipaa (9) , -- amino acid probabilities

 iupacaa3 (10) , -- 3 letter code only for display

 ncbistdaa (11) } -- consecutive codes for std aas, 0-25

Seq-map-table ::= SEQUENCE { -- for tables of sequence mappings

 from Seq-code-type , -- code to map from

 to Seq-code-type , -- code to map to

 num INTEGER , -- number of rows in table

 start-at INTEGER DEFAULT 0 , -- index offset of first element

 table SEQUENCE OF INTEGER } -- table of values, in from-to order

Seq-code-table ::= SEQUENCE { -- for names of coded values

 code Seq-code-type , -- name of code

 num INTEGER , -- number of rows in table

 one-letter BOOLEAN , -- symbol is ALWAYS 1 letter?

 start-at INTEGER DEFAULT 0 , -- index offset of first element

 table SEQUENCE OF

 SEQUENCE {

 symbol VisibleString , -- the printed symbol or letter

 name VisibleString } , -- an explanatory name or string

 comps SEQUENCE OF INTEGER OPTIONAL } -- pointers to complement nuc acid

Seq-code-set ::= SEQUENCE { -- for distribution

 codes SET OF Seq-code-table OPTIONAL ,

 maps SET OF Seq-map-table OPTIONAL }

END

C Structures and Functions: objseq.h

/* objseq.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: objseq.h

*

* Author: James Ostell

*

* Version Creation Date: 4/1/91

*

* $Revision: 2.0 $

*

* File Description: Object manager interface for module NCBI-Seq

*

* Modifications:

* --

* Date
 Name Description of modification

* ------- ---------- ---

*

*

* ==

*/

#ifndef _NCBI_Seq_

#define _NCBI_Seq_

#ifndef _ASNTOOL_

#include <asn.h>

#endif

#ifndef _NCBI_General_

#include <objgen.h>

#endif

#ifndef _NCBI_Seqloc_

#include <objloc.h>

#endif

#ifndef _NCBI_Pub_

#include <objpub.h>

#endif

#ifndef _NCBI_Seqalign_

#include <objalign.h>

#endif

#ifndef _NCBI_Pubdesc_

#include <objpubd.h> /* separated out to avoid typedef order problems */

#endif

#ifndef _NCBI_Seqfeat_

#include <objfeat.h> /* include organism for now */

#endif

#ifndef _NCBI_Seqres_

#include <objres.h>

#endif

#ifndef _NCBI_Access_

#include <objacces.h>

#endif

#ifndef _NCBI_SeqBlock_

#include <objblock.h>

#endif

#ifndef _NCBI_SeqCode_

#include <objcode.h>

#endif

#ifdef __cplusplus

extern "C" {

#endif

/***

*

* loader

*

***/

extern Boolean SeqAsnLoad PROTO((void));

/***

*

* internal structures for NCBI-Seq objects

*

***/

/***

*

* SeqAnnot - Sequence annotations

*

***/

typedef struct seqannot {

 ObjectIdPtr id;

 DbtagPtr db;

 CharPtr name,

 desc;

 Uint1 type; /* 1=ftable, 2=align, 3=graph */

 Pointer data;

 struct seqannot PNTR next;

} SeqAnnot, PNTR SeqAnnotPtr;

SeqAnnotPtr SeqAnnotNew PROTO((void));

Boolean SeqAnnotAsnWrite PROTO((SeqAnnotPtr sap, AsnIoPtr aip, AsnTypePtr atp));

SeqAnnotPtr SeqAnnotAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

SeqAnnotPtr SeqAnnotFree PROTO((SeqAnnotPtr sap));

/***

*

* Sets of SeqAnnots

*

***/

Boolean SeqAnnotSetAsnWrite PROTO((SeqAnnotPtr sap, AsnIoPtr aip, AsnTypePtr set, AsnTypePtr element));

SeqAnnotPtr SeqAnnotSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr set, AsnTypePtr element));

/***

*

* SeqHist

*

***/

typedef struct seqhist {

SeqAlignPtr assembly;

DatePtr replace_date;

SeqIdPtr replace_ids;

DatePtr replaced_by_date;

SeqIdPtr replaced_by_ids;

Boolean deleted;

DatePtr deleted_date;

} SeqHist, PNTR SeqHistPtr;

SeqHistPtr SeqHistNew PROTO((void));

Boolean SeqHistAsnWrite PROTO((SeqHistPtr shp, AsnIoPtr aip, AsnTypePtr atp));

SeqHistPtr SeqHistAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

SeqHistPtr SeqHistFree PROTO((SeqHistPtr shp));

/***

*

* Bioseq.

* Inst is incorporated within Bioseq for efficiency

* seq_data_type

* 0 = not set

* 1 = IUPACna

* 2 = IUPACaa

* 3 = NCBI2na

* 4 = NCBI4na

* 5 = NCBI8na

* 6 = NCBIpna

* 7 = NCBI8aa

* 8 = NCBIeaa

* 9 = NCBIpaa

* 11 = NCBIstdaa

* seq_ext_type

* 0 = none

* 1 = seg-ext

* 2 = ref-ext

* 3 = map-ext

*

***/

#define Seq_code_iupacna 1

#define Seq_code_iupacaa 2

#define Seq_code_ncbi2na 3

#define Seq_code_ncbi4na 4

#define Seq_code_ncbi8na 5

#define Seq_code_ncbipna 6

#define Seq_code_ncbi8aa 7

#define Seq_code_ncbieaa 8

#define Seq_code_ncbipaa 9

#define Seq_code_iupacaa3 10

#define Seq_code_ncbistdaa 11

#define Seq_repr_virtual 1

#define Seq_repr_raw 2

#define Seq_repr_seg 3

#define Seq_repr_const 4

#define Seq_repr_ref 5

#define Seq_repr_consen 6

#define Seq_repr_map 7

#define Seq_repr_other 255

#define Seq_mol_dna 1

#define Seq_mol_rna 2

#define Seq_mol_aa 3

#define Seq_mol_na 4

#define Seq_mol_other 255

#define ISA_na(x) ((x==1)||(x==2)||(x==4))

#define ISA_aa(x) (x == 3)

typedef struct bioseq {

 SeqIdPtr id; /* Seq-ids */

 ValNodePtr descr; /* Seq-descr */

 Uint1 repr,

 mol;

 Int4 length; /* -1 if not set */

 IntFuzzPtr fuzz;

 Uint1 topology,

 strand,

 seq_data_type, /* as in Seq_code_type above */

 seq_ext_type;

 ByteStorePtr seq_data;

 Pointer seq_ext;

 SeqAnnotPtr annot;

SeqHistPtr hist;

} Bioseq, PNTR BioseqPtr;

BioseqPtr BioseqNew PROTO((void));

Boolean BioseqAsnWrite PROTO((BioseqPtr bsp, AsnIoPtr aip, AsnTypePtr atp));

BioseqPtr BioseqAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

BioseqPtr BioseqFree PROTO((BioseqPtr bsp));

Boolean BioseqInstAsnWrite PROTO((BioseqPtr bsp, AsnIoPtr aip, AsnTypePtr orig));

Boolean BioseqInstAsnRead PROTO((BioseqPtr bsp, AsnIoPtr aip, AsnTypePtr orig));

BioseqPtr PNTR BioseqInMem PROTO((Int2Ptr numptr));

/***

*

* Initialize bioseq and seqcode tables and default numbering

*

***/

Boolean BioseqLoad PROTO((void));

/***

*

* BioseqAsnRead Options

*

***/

typedef struct op_objseq {

SeqIdPtr sip; /* seq id to find */

Boolean found_it; /* set to TRUE when BioseqAsnRead matches sip */

Boolean load_by_id; /* if TRUE, load only if sip matches */

} Op_objseq, PNTR Op_objseqPtr;

/* types for AsnIoOption OP_NCBIOBJSEQ */

#define BIOSEQ_CHECK_ID 1 /* match Op_objseq.sip */

/***

*

* SeqDescr uses an ValNode with choice =

 1 = * mol-type GIBB-mol , -- type of molecule

 2 = ** modif SET OF GIBB-mod , -- modifiers

 3 = * method GIBB-method , -- sequencing method

 4 = name VisibleString , -- a name for this sequence

 5 = title VisibleString , -- a title for this sequence

 6 = org Org-ref , -- if all from one organism

 7 = comment VisibleString , -- a more extensive comment

 8 = num Numbering , -- a numbering system

 9 = maploc Dbtag , -- map location of this sequence

 10 = pir PIR-block , -- PIR specific info

 11 = genbank GB-block , -- GenBank specific info

 12 = pub Pubdesc -- a reference to the publication

 13 = region VisibleString -- name for this region of sequence

 14 = user UserObject -- user structured data object

 15 = sp SP-block -- SWISSPROT specific info

 16 = neighbors Entrez-link -- links to sequence neighbors

17 = embl EMBL-block -- EMBL specific info

18 = create-date Date -- date entry created

19 = update-date Date -- date of last update

20 = prf PRF-block

 -- PRF specific information

21 = pdb PDB-block -- PDB specific information

22 = het Heterogen -- cofactor, etc associated but not bound

 types with * use data.intvalue. Other use data.ptrvalue

 ** uses a chain of ValNodes which use data.intvalue for enumerated type

*

***/

#define Seq_descr_mol_type 1

#define Seq_descr_modif 2

#define Seq_descr_method 3

#define Seq_descr_name 4

#define Seq_descr_title 5

#define Seq_descr_org 6

#define Seq_descr_comment 7

#define Seq_descr_num 8

#define Seq_descr_maploc 9

#define Seq_descr_pir 10

#define Seq_descr_genbank 11

#define Seq_descr_pub 12

#define Seq_descr_region 13

#define Seq_descr_user 14

#define Seq_descr_sp 15

#define Seq_descr_neighbors 16

#define Seq_descr_embl 17

#define Seq_descr_create_date 18

#define Seq_descr_update_date 19

#define Seq_descr_prf 20

#define Seq_descr_pdb 21

#define Seq_descr_het 22

Boolean SeqDescrAsnWrite PROTO((ValNodePtr anp, AsnIoPtr aip, AsnTypePtr atp));

ValNodePtr SeqDescrAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

ValNodePtr SeqDescrFree PROTO((ValNodePtr anp));

/***

*

* Pubdesc and Numbering types defined in objpubd.h

*

***/

#ifdef __cplusplus

}

#endif

#endif

C Structures and Functions: objpubd.h

/* objpubd.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: objpubd.h

*

* Author: James Ostell

*

* Version Creation Date: 4/1/91

*

* $Revision: 2.0 $

*

* File Description: Object manager interface for type Pubdesc from

* NCBI-Sequence. This is separate to avoid typedef

* order problems with NCBI-Sequence and NCBI-Seqfeat

* which both reference Pubdesc

*

 Numbering and Heterogen have now also been added

*

for the same reason. Heterogen is just a string,

*

so no special typedefs are required.

*

* Modifications:

* --

* Date
 Name Description of modification

* ------- ---------- ---

*

*

* ==

*/

#ifndef _NCBI_Pubdesc_

#define _NCBI_Pubdesc_

#ifndef _ASNTOOL_

#include <asn.h>

#endif

#ifdef __cplusplus

extern "C" {

#endif

/***

*

* Pubdesc

*

***/

typedef struct pd {

 ValNodePtr pub; /* points to Pub-equiv */

 CharPtr name,

 fig;

 ValNodePtr num; /* points to Numbering */

 Boolean numexc,

 poly_a;

 Uint1 align_group; /* 0 = not part of a group */

 CharPtr maploc,

 seq_raw,

comment;

} Pubdesc, PNTR PubdescPtr;

PubdescPtr PubdescNew PROTO((void));

Boolean PubdescAsnWrite PROTO((PubdescPtr pdp, AsnIoPtr aip, AsnTypePtr atp));

PubdescPtr PubdescAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

PubdescPtr PubdescFree PROTO((PubdescPtr pdp));

typedef ValNodePtr NumberingPtr;

/***

*

* Numbering uses an ValNode with choice =

 1 = cont Num-cont , -- continuous numbering

 2 = enum Num-enum , -- enumerated names for residues

 3 = ref Num-ref, type 1 sources -- by reference to another sequence

 4 = ref Num-ref, type 2 aligns (SeqAlign in data.ptrvalue)

 5 = real Num-real -- for maps etc

*

***/

#define Numbering_cont 1

#define Numbering_enum 2

#define Numbering_ref_source 3

#define Numbering_ref_align 4

#define Numbering_real 5

Boolean NumberingAsnWrite PROTO((NumberingPtr anp, AsnIoPtr aip, AsnTypePtr atp));

NumberingPtr NumberingAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

NumberingPtr NumberingFree PROTO((NumberingPtr anp));

/***

*

* NumCont - continuous numbering system

*

***/

typedef struct numcont {

 Int4 refnum;

 Boolean has_zero,

 ascending;

} NumCont, PNTR NumContPtr;

NumContPtr NumContNew PROTO((void));

Boolean NumContAsnWrite PROTO((NumContPtr ncp, AsnIoPtr aip, AsnTypePtr atp));

NumContPtr NumContAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

NumContPtr NumContFree PROTO((NumContPtr ncp));

/***

*

* NumEnum - enumerated numbering system

*

***/

typedef struct numenum {

 Int4 num; /* number of names */

 CharPtr buf; /* a buffer for the names */

 CharPtr PNTR names; /* array of pointers to names */

} NumEnum, PNTR NumEnumPtr;

NumEnumPtr NumEnumNew PROTO((void));

Boolean NumEnumAsnWrite PROTO((NumEnumPtr nep, AsnIoPtr aip, AsnTypePtr atp));

NumEnumPtr NumEnumAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

NumEnumPtr NumEnumFree PROTO((NumEnumPtr nep));

/***

*

* NumReal - float type numbering system

*

***/

typedef struct numreal {

 FloatHi a, b; /* number in "units" = ax + b */

 CharPtr units;

} NumReal, PNTR NumRealPtr;

NumRealPtr NumRealNew PROTO((void));

Boolean NumRealAsnWrite PROTO((NumRealPtr ncp, AsnIoPtr aip, AsnTypePtr atp));

NumRealPtr NumRealAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

NumRealPtr NumRealFree PROTO((NumRealPtr ncp));

#ifdef __cplusplus

}

#endif

#endif

C Structures and Functions: objblock.h

/* objblock.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: objblock.h

*

* Author: James Ostell

*

* Version Creation Date: 4/1/91

*

* $Revision: 2.0 $

*

* File Description: Object manager for module GenBank-General,

*

EMBL-General, PIR-General, SWISSPROT-General

*

* Modifications:

* --

* Date
 Name Description of modification

* ------- ---------- ---

*

*

* ==

*/

#ifndef _NCBI_SeqBlock_

#define _NCBI_SeqBlock_

#ifndef _ASNTOOL_

#include <asn.h>

#endif

#ifndef _NCBI_General_

#include <objgen.h>

#endif

#ifndef _NCBI_Seqloc_

#include <objloc.h>

#endif

#ifdef __cplusplus

extern "C" {

#endif

/***

*

* loader

*

***/

extern Boolean SeqBlockAsnLoad PROTO((void));

/***

*

* PirBlock - PIR specific data elements

*

***/

typedef struct pirblock {

 Boolean had_punct;

 CharPtr host,

 source,

 summary,

 genetic,

 includes,

 placement,

 superfamily,

 cross_reference,

 date,

 seq_raw;

 ValNodePtr keywords;

 SeqIdPtr seqref;

} PirBlock, PNTR PirBlockPtr;

PirBlockPtr PirBlockNew PROTO((void));

Boolean PirBlockAsnWrite PROTO((PirBlockPtr pbp, AsnIoPtr aip, AsnTypePtr atp));

PirBlockPtr PirBlockAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

PirBlockPtr PirBlockFree PROTO((PirBlockPtr pbp));

/***

*

* GBBlock - GenBank specific data elements

*

***/

typedef struct gbblock {

 ValNodePtr extra_accessions,

 keywords;

 CharPtr source,

 origin,

 date,

 div,

 taxonomy;

 DatePtr entry_date;

} GBBlock, PNTR GBBlockPtr;

GBBlockPtr GBBlockNew PROTO((void));

Boolean GBBlockAsnWrite PROTO((GBBlockPtr gbp, AsnIoPtr aip, AsnTypePtr atp));

GBBlockPtr GBBlockAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

GBBlockPtr GBBlockFree PROTO((GBBlockPtr gbp));

/***

*

* SPBlock - SWISSPROT specific data elements

*

***/

typedef struct spblock {

 Uint1 _class;

 ValNodePtr extra_acc;

 Boolean imeth;

 ValNodePtr plasnm;

 SeqIdPtr seqref;

 ValNodePtr dbref;

 ValNodePtr keywords;

NCBI_DatePtr created,

sequpd,

annotupd;

} SPBlock, PNTR SPBlockPtr;

SPBlockPtr SPBlockNew PROTO((void));

Boolean SPBlockAsnWrite PROTO((SPBlockPtr sbp, AsnIoPtr aip, AsnTypePtr atp));

SPBlockPtr SPBlockAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

SPBlockPtr SPBlockFree PROTO((SPBlockPtr sbp));

/***

*

* EMBLBlock - EMBL specific data elements

*

***/

typedef struct emblxref {

Uint1 _class;

CharPtr name;

/* NULL if class used */

ValNodePtr id; /* ValNode->data.ptrvalue is an ObjectIdPtr */

struct emblxref PNTR next;

} EMBLXref, PNTR EMBLXrefPtr;

typedef struct emblblock {

 Uint1 _class,

div; /* 255 = not set */

NCBI_DatePtr creation_date ,

update_date;

 ValNodePtr extra_acc;

 ValNodePtr keywords;

EMBLXrefPtr xref;

} EMBLBlock, PNTR EMBLBlockPtr;

EMBLBlockPtr EMBLBlockNew PROTO((void));

Boolean EMBLBlockAsnWrite PROTO((EMBLBlockPtr ebp, AsnIoPtr aip, AsnTypePtr atp));

EMBLBlockPtr EMBLBlockAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

EMBLBlockPtr EMBLBlockFree PROTO((EMBLBlockPtr ebp));

/***

*

*
PRF-Block
- PRF specific data emements

*

by A.Ogiwara

***/

typedef struct prfextsrc {

CharPtr

host;

CharPtr

part;

CharPtr

state;

CharPtr

strain;

CharPtr

taxon;

} PrfExtSrc, PNTR PrfExtSrcPtr;

typedef struct prfblock {

PrfExtSrcPtr
extra_src;

ValNodePtr
keywords;

} PrfBlock, PNTR PrfBlockPtr;

PrfBlockPtr
PrfBlockNew
PROTO((void));

Boolean

PrfBlockAsnWrite
PROTO((PrfBlockPtr pbp, AsnIoPtr aip,

AsnTypePtr atp));

PrfBlockPtr
PrfBlockAsnRead
PROTO((AsnIoPtr aip, AsnTypePtr atp));

PrfBlockPtr
PrfBlockFree
PROTO((PrfBlockPtr pbp));

/***

*

*
PDB-Block
- PDB specific data emements

*

***/

typedef struct pdbreplace {

DatePtr date;

ValNodePtr ids;

}

PdbRep, PNTR PdbRepPtr;

typedef struct pdbblock {

DatePtr deposition ;

CharPtr class ;

ValNodePtr compound ;

ValNodePtr source ;

CharPtr exp_method ;

PdbRepPtr replace;

}

PdbBlock, PNTR PdbBlockPtr;

PdbBlockPtr
PdbBlockNew
PROTO((void));

Boolean

PdbBlockAsnWrite
PROTO((PdbBlockPtr pdbp, AsnIoPtr aip,

AsnTypePtr atp));

PdbBlockPtr
PdbBlockAsnRead
PROTO((AsnIoPtr aip, AsnTypePtr atp));

PdbBlockPtr
PdbBlockFree
PROTO((PdbBlockPtr pdbp));

#ifdef __cplusplus

}

#endif

#endif

C Structures and Functions: objcode.h

/* objcode.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: objcode.h

*

* Author: James Ostell

*

* Version Creation Date: 8/10/92

*

* $Revision: 2.0 $

*

* File Description: Object manager interface for module NCBI-SeqCode

*

* Modifications:

* --

* Date
 Name Description of modification

* ------- ---------- ---

*

*

* ==

*/

#ifndef _NCBI_SeqCode_

#define _NCBI_SeqCode_

#ifndef _ASNTOOL_

#include <asn.h>

#endif

#ifdef __cplusplus

extern "C" {

#endif

/***

*

* loader

*

***/

extern Boolean SeqCodeAsnLoad PROTO((void));

/***

*

* SeqMapTable - Table from mapping sequence codes to each other

* Codes ALWAYS start from 0 and increase continuously

* IUPAC has 65 empty rows

*

***/

typedef struct seqmaptable {

 Uint1 from, /* as ENUMERATED in Seq-code-type */

 to;

 Uint1 num;

 Uint1 start_at;

 Uint1Ptr table;

 struct seqmaptable PNTR next;

} SeqMapTable, PNTR SeqMapTablePtr;

SeqMapTablePtr SeqMapTableNew PROTO((void));

Boolean SeqMapTableAsnWrite PROTO((SeqMapTablePtr smp, AsnIoPtr aip, AsnTypePtr atp));

SeqMapTablePtr SeqMapTableAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

SeqMapTablePtr SeqMapTableFree PROTO((SeqMapTablePtr smp));

SeqMapTablePtr SeqMapTableFind PROTO((Uint1 to, Uint1 from));

/***

*

* SeqCodeTable - Table of sequence codes

* in code order, starting with 0 and increasing continuously

*

***/

typedef struct seqcodetable {

 Uint1 code; /* as ENUMERATED in Seq-code-type */

 Uint1 num; /* number of codes */

 Boolean one_letter; /* one letter codes? */

 Uint1 start_at; /* index offset of first code */

 CharPtr letters; /* one letter codes */

 CharPtr PNTR symbols; /* multi-length codes */

 CharPtr PNTR names; /* explanatory names */

 Uint1Ptr comps; /* maps to complements */

 struct seqcodetable PNTR next;

} SeqCodeTable, PNTR SeqCodeTablePtr;

SeqCodeTablePtr SeqCodeTableNew PROTO((void));

Boolean SeqCodeTableAsnWrite PROTO((SeqCodeTablePtr scp, AsnIoPtr aip, AsnTypePtr atp));

SeqCodeTablePtr SeqCodeTableAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

SeqCodeTablePtr SeqCodeTableFree PROTO((SeqCodeTablePtr scp));

SeqCodeTablePtr SeqCodeTableFind PROTO((Uint1 code));

/***

*

* SeqCodeSet - Set of sequence codes and maps

*

***/

typedef struct seqcodeset {

 SeqCodeTablePtr codes;

 SeqMapTablePtr maps;

} SeqCodeSet, PNTR SeqCodeSetPtr;

SeqCodeSetPtr SeqCodeSetNew PROTO((void));

Boolean SeqCodeSetAsnWrite PROTO((SeqCodeSetPtr ssp, AsnIoPtr aip, AsnTypePtr atp));

SeqCodeSetPtr SeqCodeSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

SeqCodeSetPtr SeqCodeSetFree PROTO((SeqCodeSetPtr ssp));

/***

*

* SeqCodeSetLoad()

* loads the standard sequence codes from "seqcode.val" in "data"

*

***/

SeqCodeSetPtr SeqCodeSetLoad PROTO((void));

#ifdef __cplusplus

}

#endif

#endif

Collections of Sequences

Introduction
Seq-entry: The Sequence Entry
Bioseq-set: A Set Of Seq-entrys
Bioseq-sets are Convenient Packages
ASN.1 Specification: seqset.asn
C Structures and Functions: objsset.h

 Introduction

A biological sequence is often most appropriately stored in the context of other, related sequences. Such a collection might have a biological basis (e.g. a nucleic acid and its translated proteins, or the chains of an enzyme complex) or some other basis (e.g. a release of GenBank, or the sequences published in an article). The Bioseq-set provides a framework for collections of sequences.

Seq-entry: The Sequence Entry

Sometimes a sequence is not part of a collection (e.g. a single annotated protein). Thus a sequence entry could be either a single Bioseq or a collection of them. A Seq-entry is an entity which represents this choice. A great deal of NCBI software is designed to accept a Seq-entry as the primary unit of data. This is the most powerful and flexible object to use as a target software developement in general.

Bioseq-set: A Set Of Seq-entrys

A Bioseq-set contains a convenient collection of Seq-entrys. It can have descriptors and annotations just like a single Bioseq (see Biological Sequences). It can have identifiers for the set, although these are less thoroughly controlled than Seq-ids at this time. Since the "heart" of a Bioseq-set is a collection of Seq-entrys, which themselves are either a Bioseq or a Bioseq-set, a Bioseq-set can recursively contain other sets. This recursive property makes for a very rich data structure, and a necessary one for biological sequence data, but presents new challenges for software to manipulate and display it. We will discuss some guidelines for building and using Bioseq-sets below, based on the NCBI experience to date.

id: local identifier for this set

The id field just contains an integer or string to identify this set for internal use by a software system or database. This is useful for building collections of sequences for temporary use, but still be able to cite them.

coll: global identifier for this set

The coll field is a Dbtag, which will accept a string to identify a source database and a string or integer as an identifier within that database. This semi-controlled form provides a global identifier for the set of sequences in a simple way.

level: nesting level of set

Since Bioseq-sets are recursive, the level integer was conceived as way of explicit indicating the nesting level. In practice we have found this to be little or no use and recommend it be ignored and eventually removed.

class: classification of sets

The class field is an attempt to classify sets of sequences that may be widely used. There are a number which are just releases of well known databases and others which represent biological groupings.

Bioseq-set classes

	Value
	ASN.1 name
	Explanation

	0
	not-set
	not determined

	1
	nuc-prot
	a nucleic acid and the proteins from its coding regions

	2
	segset
	a segmented Bioseq and the Bioseqs it is made from

	3
	conset
	a constructed Bioseq and the Bioseqs it was assembled from

	4
	parts
	a set cotained within a segset or conset holding the Bioseqs which are the components of the segmented or constructed Bioseq

	5
	gibb
	GenInfo Backbone entries (NCBI Journal Scanning Database)

	6
	gi
	GenInfo entries (NCBI ID Database)

	7
	genbank
	GenBank entries

	8
	pir
	PIR entries

	9
	pub-set
	all the Seq-entrys from a single publication

	10
	equiv
	a set of equivalent representations of the same sequence (e.g. a genetic map Bioseq and a physical map Bioseq for the same chromosome)

	11
	swissprot
	SWISSPROT entries

	12
	pdb-entry
	all the Bioseqs associated with a single PDB structure

	255
	other
	new type. Usually Bioseq-set.release will have an explanatory string

release: an explanatory string

This is just a free text field which can contain a human readable description of the set. Often used to show which release of GenBank, for example.

date:

This is a date associated with the creation of this set.

descr: Seq-descr for this set

Just like a Bioseq, a Bioseq-set can have Seq-descr (see Biological Sequences) which set it in a biological or bibliographic context, or confer a title or a name. The rule for descriptors at the set level is that they apply to "all of everything below". So if an Org-ref is given at the set level, it means that every Bioseq in the set comes from that organism. If this is not true, then Org-ref would not appear on the set, but different Org-refs would occur on lower level members.

For any Bioseq in arbitrarily deeply nested Bioseq-sets, one should be able to collect all Bioseq-set.descr from all higher level Bioseq-sets that contain the Bioseq, and move them to the Bioseq. If this process introduces any confusion or contradiction, then the set level descriptor has been incorrectly used.

The only exception to this is the title and name types, which often refer to the set level on which they are placed (a nuc-prot may have the title "Adh gene and ADH protein", while the Bioseqs have the titles "Adh gene" and "ADH protein". The gain in code sharing by using exactly the same Seq-descr for Bioseq or Bioseq-set seemed to outweigh the price of this one exception to the rule.

To simplify access to elements like this that depend on a set context, a series of BioseqContext() functions are provided in utilities which allow easy access to all relevant descriptors starting with a specific Bioseq and moving up the levels in the set.

seq-set: the sequences and sets within the Bioseq-set

The seq-set field contains a SEQUENCE OF Seq-entry which represent the contents of the Bioseq-set. As mentioned above, these may be nested internally to any level. Although there is no guarantee that members of a set will come in any particular order, NCBI finds the following conventions useful and natural.

For sets of entries from specific databases, each Seq-entry is the "natural" size of an entry from that databases. Thus GenBank will contain a set of Seq-entry which will be a mixture of Bioseq (just a nucleic acid, no coding regions), seg-set (segmented nucleic acid, no coding regions), or nuc-prot (nucleic acid (as Bioseq or seg-set) and proteins from the translated coding regions). PDB will contain a mixture of Bioseq (single chain structures) or pdb-entry (multi-chain structures).

A segset, representing a segmented sequence combines the segmented Bioseq with the set of the Bioseqs that make it up.

segset (Bioseq-set) contains

segmented sequence (Bioseq)

parts (Bioseq-set) contains

first piece (Bioseq)

second piece (Bioseq

etc

A consset has the same layout as a segset, except the top level Bioseq is constructured rather than segmented.

A nuc-prot set gives the nucleic acid and its protein products at the same levels.

nuc-prot (Bioseq-set) contains

nucleic acid (Bioseq)

protein1 (Bioseq)

protein2 (Bioseq)

etc.

A nuc-prot set where the nucleic acid is segmented simply replaces the nucleic acid Bioseq with a seg-set.

nuc-prot (Bioseq-set) contains

nucleic acid segset (Bioseq-set) contains

segmented sequence (Bioseq)

parts (Bioseq-set) contains

first piece (Bioseq)

second piece (Bioseq

etc

protein1 (Bioseq)

protein2 (Bioseq)

etc.

annot: Seq-annots for the set

A Bioseq-set can have Seq-annots just like a Bioseq can. Because all forms of Seq-annot use explicit ids for the Bioseqs they reference, there is no dependence on context. Any Seq-annot can appear at any level of nesting in the set (or even stand alone) without any loss of information.

However, as a convention, NCBI puts the Seq-annot at the nesting level of the set that contains all the Bioseqs referenced by it, if possible. So if a feature applies just to one Bioseq, it goes in the Bioseq.annot itself. If it applies to all the members of a segmented set, it goes in Bioseq-set.annot of the segset. If, like a coding region, it points to both nucleic acid and protein sequences, it goes in the Bioseq-set.annot of the nuc-prot set.

The utilities include BioseqContextGetSeqFeat() which provides a convenient way of getting all the features that apply to a particular Bioseq in a set, not matter where in the nesting they occur.

Bioseq-sets are Convenient Packages

Remember that Bioseq-sets are just convenient ways to package Bioseqs and associated annotations. But Bioseqs may appear in various contexts and software should always be prepared to deal with them that way. A segmented Bioseq may not appear as part of a segset and a Bioseq with coding regions may not appear as part of a nuc-prot set. In both cases the elements making up the segmented Bioseq and the Bioseqs involved in the coding regions all use Seq-locs, which explicit reference Seq-ids. So they are not dependent on context. NCBI packages Bioseqs in sets for convenience, so all the closely related elements can be retrieved together. But this is only a convenience, not a requirement of the specification. The same caveat applies to the ordering conventions within a set, described above.

ASN.1 Specification: seqset.asn

--$Revision: 2.1 $

--**

--

-- NCBI Sequence Collections

-- by James Ostell, 1990

--

--**

NCBI-Seqset DEFINITIONS ::=

BEGIN

EXPORTS Bioseq-set, Seq-entry;

IMPORTS Bioseq, Seq-annot, Seq-descr FROM NCBI-Sequence

 Object-id, Dbtag, Date FROM NCBI-General;

--*** Sequence Collections ********************************

--*

Bioseq-set ::= SEQUENCE { -- just a collection

 id Object-id OPTIONAL ,

 coll Dbtag OPTIONAL , -- to identify a collection

 level INTEGER OPTIONAL , -- nesting level

 class ENUMERATED {

 not-set (0) ,

 nuc-prot (1) , -- nuc acid and coded proteins

 segset (2) , -- segmented sequence + parts

 conset (3) , -- constructed sequence + parts

 parts (4) , -- parts for 2 or 3

 gibb (5) , -- geninfo backbone

 gi (6) , -- geninfo

 genbank (7) , -- converted genbank

 pir (8) , -- converted pir

 pub-set (9) , -- all the seqs from a single publication

 equiv (10) , -- a set of equivalent maps or seqs

swissprot (11) , -- converted SWISSPROT

pdb-entry (12) , -- a complete PDB entry

 other (255) } DEFAULT not-set ,

 release VisibleString OPTIONAL ,

 date Date OPTIONAL ,

 descr Seq-descr OPTIONAL ,

 seq-set SEQUENCE OF Seq-entry ,

 annot SET OF Seq-annot OPTIONAL }

Seq-entry ::= CHOICE {

 seq Bioseq ,

 set Bioseq-set }

END

C Structures and Functions: objsset.h

/* objsset.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: objsset.h

*

* Author: James Ostell

*

* Version Creation Date: 4/1/91

*

* $Revision: 2.0 $

*

* File Description: Object manager interface for module NCBI-Seqset

*

* Modifications:

* --

* Date
 Name Description of modification

* ------- ---------- ---

*

*

* ==

*/

#ifndef _NCBI_Seqset_

#define _NCBI_Seqset_

#ifndef _ASNTOOL_

#include <asn.h>

#endif

#ifndef _NCBI_General_

#include <objgen.h>

#endif

#ifndef _NCBI_Seq_

#include <objseq.h>

#endif

#ifdef __cplusplus

extern "C" {

#endif

typedef ValNodePtr SeqEntryPtr;

/***

*

* loader

*

***/

extern Boolean SeqSetAsnLoad PROTO((void));

/***

*

* internal structures for NCBI-Seqset objects

*

***/

/***

*

* BioseqSet - a collection of sequences

*

***/

typedef struct seqset {

 ObjectIdPtr id;

 DbtagPtr coll;

 Int2 level; /* set to INT2_MIN (ncbilcl.h) for not used */

 Uint1 _class;

 CharPtr release;

 DatePtr date;

 ValNodePtr descr;

 SeqEntryPtr seq_set;

 SeqAnnotPtr annot;

} BioseqSet, PNTR BioseqSetPtr;

BioseqSetPtr BioseqSetNew PROTO((void));

Boolean BioseqSetAsnWrite PROTO((BioseqSetPtr bsp, AsnIoPtr aip, AsnTypePtr atp));

BioseqSetPtr BioseqSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

BioseqSetPtr BioseqSetFree PROTO((BioseqSetPtr bsp));

/***

*

* SeqEntry - implemented as an ValNode

* choice:

* 1 = Bioseq

* 2 = Bioseq-set

*

***/

SeqEntryPtr SeqEntryNew PROTO((void));

Boolean SeqEntryAsnWrite PROTO((SeqEntryPtr sep, AsnIoPtr aip, AsnTypePtr atp));

SeqEntryPtr SeqEntryAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

SeqEntryPtr SeqEntryFree PROTO((SeqEntryPtr sep));

SeqEntryPtr PNTR SeqEntryInMem PROTO((Int2Ptr numptr));

/***

*

* Options for SeqEntryAsnRead()

*

***/

SeqEntryPtr SeqEntryAsnGet PROTO((AsnIoPtr aip, AsnTypePtr atp, SeqIdPtr sip, Int2 retcode));

#define SEQENTRY_OPTION_MAX_COMPLEX 1 /* option type to use with OP_NCBIOBJSSET */

 /* values for retcode, implemented with AsnIoOptions */

#define SEQENTRY_READ_BIOSEQ 1 /* read only Bioseq identified by sip */

#define SEQENTRY_READ_SEG_SET 2 /* read any seg-set it may be part of */

#define SEQENTRY_READ_NUC_PROT 3 /* read any nuc-prot set it may be in */

#define SEQENTRY_READ_PUB_SET 4 /* read pub-set it may be part of */

typedef struct objsset_option {

SeqIdPtr sip; /* seq-id to find */

Int2 retcode; /* type of set/seq to return */

Boolean in_right_set;

Uint1 working_on_set; /* 2, if in first set of retcode type */

 /* 1, if found Bioseq, but not right set */

 /* 0, if Bioseq not yet found */

} Op_objsset, PNTR Op_objssetPtr;

#define IS_Bioseq(a) (a->choice == 1)

#define IS_Bioseq_set(a) (a->choice == 2)

/***

*

* loader for ObjSeqSet and Sequence Codes

*

***/

extern Boolean SeqEntryLoad PROTO((void));

#ifdef __cplusplus

}

#endif

#endif

Sequence Locations and Identifiers

Introduction
Seq-id: Identifying Sequences
Seq-id: Semantics of Use
Seq-id: The C Implementation
NCBI ID Database: Imposing Stable Seq-ids
Seq-loc: Locations on a Bioseq
Seq-loc: The C Implementation
ASN.1 Specification: seqloc.asn
C Structures and Functions: objloc.h

 Introduction

As described in the Biological Sequences chapter, a Bioseq always has at least one identifier. This means that any valid biological sequence can be referenced by using this identifier. However, all identifiers are not created equal. They may differ in their basic structure (e.g. a GenBank accession number is required to have an uppercase letter followed by exactly five digits while the NCBI GenInfo Id uses a simple integer identifier). They also differ in how they are used (e.g. the sequence identified by the GenBank accession number may change from release to release while the sequence identified by the NCBI GenInfo Id will always be exactly the same sequence).

Locations of regions on Bioseqs are always given as integer offsets, also described in the Biological Sequences chapter. So the first residue is always 0 and the last residue is always (length - 1). Further, since all the classes of Bioseqs from bands on a gel to genetic or physical maps to sequenced DNA use the same integer offset convention, locations always have the same form and meaning even when moving between very different types of Bioseq representations. This allows alignment, comparison, and display functions, among others, to have the same uniform interface and semantics, no matter what the underlying Bioseq class. Specialized numbering systems are supported but only as descriptive annotation (see Numbering in Biological Sequences and Feature types "seq" and "num" in Sequence Features). The internal conventions for positions on sequences are always the same.

There are no implicit Bioseq locations. All locations include a sequence identifier. This means Features, Alignments, and Graphs are always independent of context and can always be exchanged, submitted to databases, or stored as independent objects. The main consequence of this is that information ABOUT regions of Bioseqs can be developed and contributed to the public scientific discussion without any special rights of editing the Bioseq itself needing to be granted to anyone but the original author of the Bioseq. Bioseqs in the public databases, then, no longer need an anointed curator (beyond the original author) to be included in ongoing scientific discussion and data exchange by electronic media.

Seq-id: Identifying Sequences

In a pure sense, a Seq-id is meant to unambiguously identify a Bioseq. Unfortunately, different databases have different semantic rules regarding the stability and ambiguity of their best available identifiers. For this reason a Bioseq can have more than one Seq-id, so that the Seq-id with the best semantics for a particular use can be selected from all that are available for that Bioseq, or so that a new Seq-id with different semantics can be conferred on an existing Bioseq. Further, Seq-id is defined as a CHOICE of datatypes which may differ considerably in their structure and semantics from each other. Again, this is because differing sequence databases use different conventions for identifying sequences and it is important not to lose this critical information from the original data source.

One Seq-id type, "gi", has been implemented specifically to make a simple, absolutely stable Seq-id available for sequence data derived from any source. It is discussed in detail below.

A Textseq-id structure is used in many Seq-ids described below. It has four possible fields; a name, an accession number, a release, and a version. Formally, all fields are OPTIONAL, although to be useful, a Textseq-id should have at least a name or an accession or both. This style of Seq-id is used by GenBank, EMBL, DDBJ, PIR, SWISS-PROT, and PRF, but the semantics of its use differ considerably depending on the database. However none of these databases guarantees the stability of name or accession (i.e. that it points at a specific sequence), so to be unambiguous the id must also have either the release of the database in which the sequence with this id appeared. See the discussion under Seq-id: Semantics for details.

Seq-id: Semantics of Use

Different databases use their ids different ways and these patterns may change over time. An attempt is made is this section to describe current usage and offer some guidelines for interpreting Seq-ids.

local: Privately Maintained Data

The local Seq-id is an Object-id (see discussion in General Use Objects), which is a CHOICE of a string or an integer. This is to reconcile the requirement that all Bioseqs have a Seq-id and the needs of local software tools to manipulate data produced or maintained privately. This might be pre-publication data, data still being developed, or proprietary data. The Object-id will accommodate either a string or a number as is appropriate for the local environment. It is the responsibility of local software to keep the local Seq-ids unique. A local Seq-id is not globally unique, so when Bioseqs with such identifiers are published or exchanged, context (i.e. the submittor or owner of the id) must be maintained or a new id class must be applied to the Bioseq (e.g. the assignment of a GenBank accession upon direct data submission to GenBank).

other: A Local Textseq-id

The type "other" is a Textseq-id only, it does not carry context (what database is this from?). So it is meant only be used under similar conditions as "local", above, but allows the name/accession system to be used locally instead of being limited to a single string or name as "local" is.

general: Ids from Local Databases

The Seq-id type "general" uses a Dbtag (see discussion in General Use Objects), which is an Object-id as in Seq-id.local, above, with an additional string to identify a source database. This means that an integer or string id from a smaller database can create Seq-ids which both cite the database source and make the local Seq-ids globally unique (usually). For example, the EcoSeq database is a collection of E.coli sequences derived from many sources, curated and maintained by Kenn Rudd. Each sequence in EcoSeq has a unique descriptive name which is used as its primary identifier. A "general" Seq-id could be made for the EcoSeq entry "EcoAce" by making the following "general" Seq-id:

Seq-id ::= general {

db "EcoSeq" ,

tag str "EcoAce" }

gibbsq, gibbmt: GenInfo Backbone Ids

The journal scanning component of GenBank was originally known as the "GenInfo Backbone" database. This database is built by NCBI in collaboration with Library Operations at the National Library of Medicine (NLM) by building on the journal abstracting work done for building MEDLINE. This collaboration means more than 3500 different journals (more than 350,000 articles a year) are scanned for sequence containing publications, both nucleic acid and protein. New sequence data which cannot be proven to have been already directly submitted to the sequence databases is entered into the GenInfo Backbone. The data is released as part of the normal NCBI sequence database releases.

The Backbone database is a relational database which distinguishes between a simple sequence (equivalent to a virtual or a raw Bioseq) and a complex Bioseq (equivalent to a segmented Bioseq). As a result, every raw or virtual Bioseq produced from the Backbone will have a gibbsq (GenInfo Backbone Seq Id). If that Bioseq is a component of a segmented Bioseq, then the segmented Bioseq will have a gibbmt (GenInfo Backbone Molecule Type Id) but no gibbsq. If the raw or virtual Bioseq is not part of a segmented Bioseq, then it will have both a gibbsq and a gibbmt (the sequence and the molecule are the some).

This may seem confusing, and is, in fact, simply the result of the design of this database. For a user of Bioseqs derived from the GenInfo Backbone, it is enough to know three things. Every Bioseq from the Backbone will have a gibbsq, a gibbmt, or both. The gibbsq and gibbmt are simple integers from two independent series. Either a gibbsq or a gibbmt is sufficient to retrieve an entry, but the gibbsq is preferred if available to reference a specific sequence.

While sequences identified by a gibbsq or gibbmt are in practice very stable, they are not guaranteed to be stable. If a correction must be made to a sequence in the Backbone, its id will not be changed. See "gi" below for a guaranteed stable id. Backbone sequences for nucleic acids are assigned a GenBank accession number in addition to its backbone ids by NCBI.

genbank, embl, ddbj: The International Nucleic Acid Sequence Databases

NCBI (GenBank) in the U.S., the European Molecular Biology Laboratory datalibrary (EMBL) in Europe, and the DNA Database of Japan (DDBJ) in Japan are members of an international collaboration of nucleic acid sequence databases. Each collects data, often directly submitted by authors, and makes releases of its data in it's own format independently of each other. However, there are agreements in place for all the parties to exchange information with each other in an attempt to avoid duplication of effort and provide a world wide comprehensive database to their users. So a release by one of these databases is actually a composite of data derived from all three sources.

All three databases assign a mnemonic name (called a LOCUS name by GenBank and DDBJ, and an entry name by EMBL) which is meant to carry meaning encoded into it. The first few letters indicate the organism and next few a gene product, and so on. There is no concerted attempt to keep an entry name the same from release to release, nor is there any attempt for the same entry to have the same entry name in the three different databases (since they construct entry names using different conventions). While many people are used to referring to entries by name (and thus name is included in a Textseq-id) it is a notoriously unreliable way of identifying a Bioseq and should normally be avoided.

All three databases also assign an Accession Number to each entry. Accession numbers do not convey meaning, other than in a bookkeeping sense. Unlike names, accession numbers are meant to be same for the same entry, no matter which database one looks in. Thus, accession number is the best id for a Bioseq from this collaboration. Unfortunately rules for the use of accession numbers have not required that an accession number uniquely identify a sequence. A database may change an accession when it merely changes the annotation on an entry. Conversely, a database may not change an accession even though it has changed the sequence itself. There is no consistency about when such events may occur. There is also no exact method of recording the history of an entry in this collaboration, so such accession number shifts make it possible to lose track of entries by outside users of the databases. With all these caveats, accession numbers are still the best identifiers available within this collaboration.

A database release may be considered a snapshot of the database at a frozen moment of time. So a name or accession AND the database release IS a unique identifier for a Bioseq. For this reason it is provided in the Textseq-id structure. Be warned however, that depending on what data service is being queried, retrieval may not make use of the release information. Finally, EMBL assigns a version number to each entry. For entries derived from EMBL, the combination of accession number and version number is supposed to uniquely identify a sequence.

pir: PIR International

The PIR database is also produced through an international collaboration with contributors in the US at the Protein Identification Resource of the National Biomedical Research Foundation (NBRF), in Europe at the Martinsried Institute for Protein Sequences (MIPS), and in Japan at the International Protein Information Database in Japan (JIPID). They also use an entry name and accession number. The PIR accession numbers, however, are not related to the GenBank/EMBL/DDBJ accession numbers in any way and have a very different meaning. In PIR, the entry name identifies the sequence, which is meant to be the "best version" of that protein. The accession numbers are in transition from a meaning more similar to the GenBank/EMBL/DDBJ accessions, to one in which an accession is associated with protein sequences exactly as they appeared in specific publications. Thus, at present, PIR ids may have both an accession and a name, they will move to more typically having either a name or an accession, depending on what is being cited, the "best" sequence or an original published sequence.

swissprot: SWISS-PROT

The SWISS-PROT database was created by Amos Bairoch at the University of Geneva in Switzerland (thus the name) and he continues to direct and develop it in its current collaborative relationship with EMBL. SWISS-PROT is derived from many sources including PIR, the GenInfo Backbone, and the translated coding regions from the GenBank/EMBL/DDBJ nucleic acid databases, among others. SWISS-PROT follows the same name and accession number conventions as GenBank/EMBL/DDBJ. The name is meant to be easily remembered and codes biological information, but is not a stable identifier from release to release. The accession is meant to be a stable identifier from release to release, but conveys only bookkeeping information. Unlike PIR accession numbers, the SWISS-PROT accession numbers are coordinated with those of GenBank/EMBL/DDBJ and do not conflict.

prf: Protein Research Foundation

The Protein Research Foundation in Japan has a large database of protein sequence and peptide fragments derived from the literature. Again, there is a name and an accession number. Since this database is meant only to record the sequence as it appeared in a particular publication, the relationship between the id and the sequence is quite stable in practice.

patent: Citing a Patent

The minimal information to unambiguously identify a sequence in a patent is first to unambiguously identify the patent (by the Patent-seq-id.cit, see Bibliographic References for a discussion of Id-pat) and then providing an integer serial number to identify the sequence within the patent. The sequence data for sequence related patents are now being submitted to the international patent offices in computer readable form, and the serial number for the sequence is assigned by the processing office. However, older sequence related patents were not assigned serial numbers by the processing patent offices. For those sequences the serial number is assigned arbitrarily (but still uniquely). Note that a sequence with a Patent-seq-id just appeared as part of a patent document. It is NOT necessarily what was patented by the patent document.

pdb: Citing a Biopolymer Chain from a Structure Database

The Protein Data Bank (PDB, also known as the Brookhaven Database), is a collection of data about structures of biological entities such hemoglobin or cytochrome c. The basic entry in PDB is a structural model of a molecule, not a sequence as in most sequence databases. A molecule may have multiple chains. So a PDB-seq-id has a string for the PDB entry name (called PDB-mol-id here) and a single character for a chain identifier within the molecule. The use of the single character just maps the PDB practice. The character may be a digit, a letter, or even a space (ASCII 32). As with the databases using the Textseq-id, the sequence of the chain in PDB associated with this information is not stable, so to be unambiguous the id must also include the release date.

giim: GenInfo Import Id

A Giimport-id is a temporary id used to identify sequences imported into the GenInfo system at NCBI from a variety of sources. Currently this id type is used in the NCBI ASN.1 and Entrez:Sequences releases to provide a uniform id type across sequence from all sources. The giim is not stable from release to release. The use of giim is a temporary measure until long term, stable identifiers such as "gi" below can be assigned (first or second quarter of 1993).

gi: A Stable, Uniform Id Applied to Sequences From All Sources

A Seq-id of type "gi" is a simple integer assigned to a sequence by the NCBI "ID" database. It can be applied to a Bioseq of any representation class, nucleic acid or protein. It uniquely identifies a sequence from a particular source. If the sequence changes at all, then a new "gi" is assigned. The "gi" does not change if only annotations are changed. Thus the "gi" provides a simple, uniform way of identifying a stable coordinate system on a Bioseq provided by data sources which may not themselves have stable ids. This is the identifier of choice for all references to Bioseqs through features or alignments. See discussion below.

Seq-id: The C Implementation

A Seq-id is implemented in C as a ValNode with a typedef SeqIdPtr ValNodePtr. The type of the Seq-id is given in ValNode->choice and a series of #defines are used to indicate the type of the Seq-id. The ValNode->data.intvalue is used for the integer types and ValNode->data.ptrvalue for the other types as in the following table.

Seq-id

	Value
	#define
	ASN.1 name
	Type in ValNode->data

	0
	SEQID_NOT_SET
	not-set
	not needed

	1
	SEQID_LOCAL
	local
	ObjectIdPtr

	2
	SEQID_GIBBSQ
	gibbsq
	integer

	3
	SEQID_GIBBMT
	gibbmt
	integer

	4
	SEQID_GIIM
	giim
	GiimPtr

	5
	SEQID_GENBANK
	genbank
	TextSeqIdPtr

	6
	SEQID_EMBL
	embl
	TextSeqIdPtr

	7
	SEQID_PIR
	pir
	TextSeqIdPtr

	8
	SEQID_SWISSPROT
	swissprot
	TextSeqIdPtr

	9
	SEQID_PATENT
	patent
	PatentSeqIdPtr

	10
	SEQID_OTHER
	other
	TextSeqIdPtr

	11
	SEQID_GENERAL
	general
	DbtagPtr

	12
	SEQID_GI
	gi
	integer

	13
	SEQID_DDBJ
	ddbj
	TextSeqIdPtr

	14
	SEQID_PRF
	prf
	TextSeqIdPtr

	15
	SEQID_PDB
	pdb
	PDBSeqIdPtr

Since a SeqIdPtr is a ValNodePtr, a special SeqIdNew() is not provided, although the usual SeqIdAsnRead(), SeqIdAsnWrite(), and SeqIdFree() functions are provided. Since SET OF and SEQUENCE OF Seq-id are common, SeqIdSetAsnRead(), SeqIdSetAsnWrite(), and SeqIdSetFree() functions are provided. They assume that the SeqIdPtr passed is the head of a chain of SeqIds connect through the ValNodePtr->next and with the last ValNodePtr->next equal to NULL. SeqIdDup() provides a fast function for duplicating SeqIds.

A large number of additional functions for manipulating SeqIds are described in the Sequence Utilities chapter.

NCBI ID Database: Imposing Stable Seq-ids

As described in the Data Model chapter, Bioseqs provide a simple integer coordinate system through which a host of different data and analytical results can be easily associated with each other, even with scientists working independently of each other and on heterogeneous systems. For this model to work, however, requires stable identifiers for these integer coordinate systems. If one scientist notes a coding region from positions 10-50 of sequence "A", then the database adds a single base pair at position 5 of "A" without changing the identifier of "A", then at the next release of the database the scientist's coding region is now frame-shifted one position and invalid. Unfortunately this is currently the case due to the casual use of sequence identifiers by most existing databases.

Since NCBI integrates data from many different databases which follow their own directions, we must impose stable ids on an unstable starting material. While a daunting task, it is not, in the main, impossible. We have built a database called "ID", whose sole task is to assign and track stable sequence ids. ID assigns "gi" numbers, simple arbitrary integers which stably identify a particular sequence coordinate system.

The first time ID "sees" a Bioseq, say EMBL accession A00000, it checks to see if it has a Bioseq from EMBL with this accession already. If not, it assigns a new GI, say 5, to the entry and adds it to the Bioseq.id chain (the original EMBL id is not lost). It also replaces all references in the entry (say in the feature table) to EMBL A00000 to GI 5. This makes the annotations now apply to a stable coordinate system.

Now EMBL sends an update of the entry which is just a correction to the feature table. The same process occurs, except this time there is a previous entry with the same EMBL accession number. ID retrieves the old entry and compares the sequence of the old entry with the new entry. Since they are identical it reassigns GI 5 to the same entry, converts the new annotations, and stores it as the most current view of that EMBL entry.

Now ID gets another update to A00000, but this time the sequence is different. ID assigns a new GI, say 6, to this entry. It also updates the sequence history (Seq-inst.hist, see the Biological Sequences chapter) of both old and new entries to make a doubly linked list. The GI 5 entry has a pointer that it has been replaced by GI 6, and the GI 6 entry has a pointer showing it replaced GI 5. When NCBI makes a new data release the entry designated GI 6 will be released to represent EMBL entry A00000. However, the ASN.1 form of the data contains an explicit history. A scientist who annotated a coding region on GI 5 can discover that it has been replaced by GI 6. The GI 5 entry can still be retrieved from ID, aligned with GI 6, and the scientist can determine if her annotation is still valid on the new entry. If she annotated using the accession number instead of the GI, of course, she could be out of luck.

Since ID is attempting to order a chaotic world, mistakes will inevitably be made. However, it is clear that in the vast majority of cases it is possible to impose stable ids. As scientists and software begin to use the GI ids and reap the benefits of stable ids, the world may gradually become less chaotic. The Seq-inst.hist data structure can even be used by data suppliers to actively maintain an explicit history without ID having to infer it, which would be the ideal case.

Seq-loc: Locations on a Bioseq

A Seq-loc is a location on a Bioseq of any representation class, nucleic acid or protein. All Bioseqs provide a simple integer coordinate system from 0 to (length -1) and all Seq-locs refer to that coordinate system. All Seq-locs also explicitly the Bioseq (coordinate system) to which they apply with a Seq-id. Most objects which are attached to or reference sequences do so through a Seq-loc. Features are blocks of data attached by a Seq-loc. An alignment is just a collection of correlated Seq-locs. A segmented sequence is built from other sequences by reference to Seq-locs.

Seq-locs come in many varieties.

null: A Gap

A null Seq-loc can be used in a Seq-loc with many components to indicate a gap of unknown size. For example it is used in segmented sequences to indicate such gaps between the sequenced pieces.

empty: A Gap in an Alignment

A alignment (see Sequence Alignments) may require that every Seq-loc refer to a Bioseq, even for a gap. They empty type fulfills this need.

whole: A Reference to a Whole Bioseq

This is just a shorthand for the Bioseq from 0 to (length -1). This form is falling out of favor at NCBI because it means one must retrieve the referenced Bioseq to determine the length of the location. An interval covering the whole Bioseq is equivalent to this and more useful. One the other hand, if an unstable Seq-id is used here, it always applies to the full length of the Bioseq, even if the length changes. This was the original rationale for this type. And it may still be valid while unstable sequences persist.

int: An Interval on a Bioseq

An interval is a single continuous region of defined length on a Bioseq. A single integer value (Seq‑interval.from), another single integer value (Seq-interval.to), and a Seq-id (Seq-interval.id) are required. The "from" and "to" values must be in the range 0 to (length -1) of the Bioseq cited in "id". If there are uncertainty about either the "from" or "to" values, it is expressed in additional fields "fuzz-from" and/or "fuzz-to", and the "from" and "to" values can be considered a "best guess" location. This design means that simple software can ignore fuzzy values, but they are not lost to more sophisticated tools.

The "from" value is ALWAYS less than or equal to the "to" value, no matter what strand the interval is on. It may be convenient for software to present intervals on the minus strand with the "to" value before the "from" value, but internally this is NEVER the case. This requirement means that software which determines overlaps of locations need never treat plus or minus strand locations differently and it greatly simplifies processing.

The value of Seq-interval.strand is the only value different in intervals on the plus or minus strand. Seq-interval.strand is OPTIONAL since it is irrelevant for proteins, but operationally it will DEFAULT to plus strand on nucleic acid locations where it is not supplied.

The plus or minus strand is an attribute on each simple Seq-loc (interval or point) instead of as an operation on an arbitrarily complex location (as in the GenBank/EMBL/DDBJ flatfile Feature Table) since it means even very complex locations can be processed to a base pair location in simple linear order, instead of requiring that the whole expression be processed and resolved first.

packed-int: A Series of Intervals

A Packed-seqint is simply a SEQUENCE OF Seq-interval. That means the location is resolved by evaluating a series of Seq-interval in order. Note that the Seq-intervals in the series do not need all be on the same Bioseq or on the same strand.

pnt: A Single Point on a Sequence

A Seq-point is essentially one-half of a Seq-interval and the discussion (above) about fuzziness and strand applies equally to Seq-point.

packed-pnt: A Collection of Points

A Packed-seqpnt is an optimization for attaching a large number of points to a single Bioseq. Information about the Seq-id, strand, or fuzziness need not be duplicated for every point. Of course, this also means it must apply equally to all points as well. This would typically be the case for listing all the cut sites of a certain restriction enzyme, for example.

mix: An Arbitrarily Complex Location

A Seq-loc-mix is simply a SEQUENCE OF Seq-loc. The location is resolved by resolving each Seq-loc in order. The component Seq-locs may be of any complexity themselves, making this definition completely recursive. This means a relatively small amount of software code can process locations of extreme complexity with relative ease.

A Seq-loc-mix might be used to represent a segmented sequence with gaps of unknown length. In this case it would consist of some elements of type "int" for intervals on Bioseqs and some of type "null" representing gaps of unknown length. Another use would be to combine a Seq-interval representing an untranslated leader, with a Packed-seqint from a multi-exon coding region feature, and another Seq-interval representing an untranslated 3' end, to define the extent of an mRNA on a genomic sequence.

equiv: Equivalent Locations

This form is simply a SET OF Seq-loc which are equivalent to each other. Such a construct could be used to represent alternative splicing, for example (and is when translating the GenBank/EMBL/DDBJ location "one-of"). However note that such a location can never resolve to a single result. Further, if there are multiple "equiv" forms in a complex Seq-loc, it is unclear if all possible combinations are valid. In general this construct should be avoided unless there is no alternative.

bond: A Chemical Bond Between Two Residues

The data elements in a Seq-bond are just two Seq-points. The meaning is that these two points have a chemical bond between them (which is different than describing just the location of two points). At NCBI we have restricted its use to covalent bonds. Note that the points may be on the same (intra-chain bond) or different (inter-chain bond) Bioseqs completely explicitly.

feat: A Location Indirectly Referenced Through A Feature

This one is really for the future, when not only Bioseqs, but features have stable ids. The meaning is "the location of this feature". This way one could give a valid location by citing, for example a Gene feature, which would resolve to the location of that gene on a Bioseq. When identifiable features become common (see Sequence Features) this will become a very useful location.

Seq-loc: The C Implementation

Since a Seq-loc is a CHOICE of many types a SeqLocPtr is typedefed as a ValNodePtr. The ValNodePtr->choice indicates the type of SeqLoc and a series of #defines provide the values in a convenient way. The ValNodePtr->data.ptrvalue contains a pointer to the appropriate data structure as in the table below:

Seq-loc

	Value
	#define
	ASN.1 name
	Type in ValNode->data

	1
	SEQLOC_NULL
	null
	not needed

	2
	SEQLOC_EMPTY
	empty
	SeqIdPtr

	3
	SEQLOC_WHOLE
	whole
	SeqIdPtr

	4
	SEQLOC_INT
	int
	SeqIntPtr

	5
	SEQLOC_PACKED_INT
	packed-int
	SeqLocPtr

	6
	SEQLOC_PNT
	pnt
	SeqPntPtr

	7
	SEQLOC_PACKED_PNT
	packed-pnt
	PackSeqPntPtr

	8
	SEQLOC_MIX
	mix
	SeqLocPtr

	9
	SEQLOC_EQUIV
	equiv
	SeqLocPtr

	10
	SEQLOC_BOND
	bond
	SeqBondPtr

	11
	SEQLOC_FEAT
	feat
	ChoicePtr

Note that SEQLOC_MIX and SEQLOC_EQUIV types have a SeqLocPtr in their data.ptrvalue. This is expected since they are a SEQUENCE OF or SET OF Seq-loc and data.ptrvalue contains a pointer to the head of the linked list of ValNodes connect through their ->next pointers. SEQLOC_PACKED_INT is implemented this way as well, for simplicity, although each Seq-loc in that chain will be, by definition, of type SEQLOC_INT.

Like Seq-id, above, there is no SeqLocNew() function since it is just a ValNode, but there are the usual SeqLocAsnRead(), SeqLocAsnWrite(), and SeqLocFree() functions. In addition there are SeqLocSetAsnWrite(), SeqLocSetAsnRead(), and SeqLocSetFree() functions.

PackSeqPnt has some extra functions as well. PackSeqPntNum() returns the number of points in the the PackSeqPnt. PackSeqPntGet() will return a point given an index (0 to (number of points -1)) of the point. PackSeqPntPut() will add a point to the PackSeqPnt. These functions are to hide the complexity of managing the set of points.

A series of #defines for nucleic acid strands are provided to map to the ASN.1 ENUMERATED type. They are:

#define Seq_strand_unknown 0

#define Seq_strand_plus 1

#define Seq_strand_minus 2

#define Seq_strand_both 3

#define Seq_strand_both_rev 4

#define Seq_strand_other 255

In addition, there are a large number of utility functions for working with SeqLocs described in the chapter on Sequence Utilities. This allow traversal of complex locations, comparison of locations for overlap, conversion of coordinates in locations, and ability to open a window on a Bioseq through a location.

ASN.1 Specification: seqloc.asn

--$Revision: 2.0 $

--**

--

-- NCBI Sequence location and identifier elements

-- by James Ostell, 1990

--

--**

NCBI-Seqloc DEFINITIONS ::=

BEGIN

EXPORTS Seq-id, Seq-loc, Seq-interval, Packed-seqint, Seq-point, Packed-seqpnt,

 Na-strand, Giimport-id;

IMPORTS Object-id, Int-fuzz, Dbtag, Date FROM NCBI-General

 Id-pat FROM NCBI-Biblio

 Feat-id FROM NCBI-Seqfeat;

--*** Sequence identifiers ********************************

--*

Seq-id ::= CHOICE {

 local Object-id , -- local use

 gibbsq INTEGER , -- Geninfo backbone seqid

 gibbmt INTEGER , -- Geninfo backbone moltype

 giim Giimport-id , -- Geninfo import id

 genbank Textseq-id ,

 embl Textseq-id ,

 pir Textseq-id ,

 swissprot Textseq-id ,

 patent Patent-seq-id ,

 other Textseq-id , -- catch all

 general Dbtag , -- for other databases

 gi INTEGER , -- GenInfo Integrated Database

ddbj Textseq-id , -- DDBJ

prf Textseq-id , -- PRF SEQDB

pdb PDB-seq-id } -- PDB sequence

Patent-seq-id ::= SEQUENCE {

 seqid INTEGER , -- number of sequence in patent

 cit Id-pat } -- patent citation

Textseq-id ::= SEQUENCE {

 name VisibleString OPTIONAL ,

 accession VisibleString OPTIONAL ,

 release VisibleString OPTIONAL ,

 version INTEGER OPTIONAL }

Giimport-id ::= SEQUENCE {

 id INTEGER , -- the id to use here

 db VisibleString OPTIONAL , -- dbase used in

 release VisibleString OPTIONAL } -- the release

PDB-seq-id ::= SEQUENCE {

mol PDB-mol-id , -- the molecule name

chain INTEGER DEFAULT 32 ,-- a single ASCII character, chain id

 rel Date OPTIONAL } -- release date, month and year

PDB-mol-id ::= VisibleString -- name of mol, 4 chars

--*** Sequence locations **********************************

--*

Seq-loc ::= CHOICE {

 null NULL , -- not placed

 empty Seq-id , -- to NULL one Seq-id in a collection

 whole Seq-id , -- whole sequence

 int Seq-interval , -- from to

 packed-int Packed-seqint ,

 pnt Seq-point ,

 packed-pnt Packed-seqpnt ,

 mix Seq-loc-mix ,

 equiv Seq-loc-equiv , -- equivalent sets of locations

 bond Seq-bond ,

 feat Feat-id } -- indirect, through a Seq-feat

Seq-interval ::= SEQUENCE {

 from INTEGER ,

 to INTEGER ,

 strand Na-strand OPTIONAL ,

 id Seq-id , -- WARNING: this used to be optional

 fuzz-from Int-fuzz OPTIONAL ,

 fuzz-to Int-fuzz OPTIONAL }

Packed-seqint ::= SEQUENCE OF Seq-interval

Seq-point ::= SEQUENCE {

 point INTEGER ,

 strand Na-strand OPTIONAL ,

 id Seq-id , -- WARNING: this used to be optional

 fuzz Int-fuzz OPTIONAL }

Packed-seqpnt ::= SEQUENCE {

 strand Na-strand OPTIONAL ,

 id Seq-id ,

 fuzz Int-fuzz OPTIONAL ,

 points SEQUENCE OF INTEGER }

Na-strand ::= ENUMERATED { -- strand of nucleid acid

 unknown (0) ,

 plus (1) ,

 minus (2) ,

 both (3) , -- in forward orientation

 both-rev (4) , -- in reverse orientation

 other (255) }

Seq-bond ::= SEQUENCE { -- bond between residues

a Seq-point , -- connection to a least one residue

b Seq-point OPTIONAL } -- other end may not be available

Seq-loc-mix ::= SEQUENCE OF Seq-loc -- this will hold anything

Seq-loc-equiv ::= SET OF Seq-loc -- for a set of equivalent locations

END

C Structures and Functions: objloc.h

/* objloc.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the loclic for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: objloc.h

*

* Author: James Ostell

*

* Version Creation Date: 4/1/91

*

* $Revision: 2.0 $

*

* File Description: Object manager interface for module NCBI-Seqloc

*

* Modifications:

* --

* Date
 Name Description of modification

* ------- ---------- ---

*

*

* ==

*/

#ifndef _NCBI_Seqloc_

#define _NCBI_Seqloc_

#ifndef _ASNTOOL_

#include <asn.h>

#endif

#ifndef _NCBI_General_

#include <objgen.h>

#endif

#ifndef _NCBI_Biblio_

#include <objbibli.h>

#endif

typedef ValNodePtr SeqIdPtr;

typedef ValNodePtr SeqLocPtr;

#ifndef _NCBI_Seqfeat_

#include <objfeat.h> /* after Seqloc to avoid cycles */

#endif

#ifdef __cplusplus

extern "C" {

#endif

/***

*

* Seqloc loader

*

***/

extern Boolean SeqLocAsnLoad PROTO((void));

/***

*

* internal structures for NCBI-Seqloc objects

*

***/

/***

*

* SeqId is a choice using an ValNode, most types in data.ptrvalue

* except integers, in data.intvalue

* choice:

* 0 = not set

 1 = local Object-id , -- local use

 2 = gibbsq INTEGER , -- Geninfo backbone seqid

 3 = gibbmt INTEGER , -- Geninfo backbone moltype

 4 = giim Giimport-id , -- Geninfo import id

 5 = genbank Textseq-id ,

 6 = embl Textseq-id ,

 7 = pir Textseq-id ,

 8 = swissprot Textseq-id ,

 9 = patent Patent-seq-id ,

 10 = other Textseq-id , -- catch all

 11 = general Dbtag -- for other databases

 12 = gi INTEGER -- GenInfo Integrated Database

 13 = ddbj Textseq-id

14 = prf Textseq-id , -- PRF SEQDB

15 = pdb PDB-seq-id -- PDB sequence

*

***/

#define SEQID_NOT_SET ((Uint1)0)

#define SEQID_LOCAL ((Uint1)1)

#define SEQID_GIBBSQ ((Uint1)2)

#define SEQID_GIBBMT ((Uint1)3)

#define SEQID_GIIM ((Uint1)4)

/*---

 * WARNING: CODE in objloc.c, especially SeqIdPrint() requires that

 * GENBANK through SwissProt be contiguous numbers

 * in the following order.

 -----/

#define SEQID_GENBANK ((Uint1)5)

#define SEQID_EMBL ((Uint1)6)

#define SEQID_PIR ((Uint1)7)

#define SEQID_SWISSPROT ((Uint1)8)

#define SEQID_PATENT ((Uint1)9)

#define SEQID_OTHER ((Uint1)10)

#define SEQID_GENERAL ((Uint1)11)

#define SEQID_GI ((Uint1)12)

#define SEQID_DDBJ ((Uint1)13)

#define SEQID_PRF ((Uint1)14)

#define SEQID_PDB ((Uint1)15)

Boolean SeqIdAsnWrite PROTO((SeqIdPtr anp, AsnIoPtr aip, AsnTypePtr atp));

SeqIdPtr SeqIdAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

SeqIdPtr SeqIdFree PROTO((SeqIdPtr anp));

SeqIdPtr SeqIdDup PROTO((SeqIdPtr oldid));

/***

*

* These routines process sets or sequences of SeqId's

*

***/

Boolean SeqIdSetAsnWrite PROTO((SeqIdPtr anp, AsnIoPtr aip, AsnTypePtr settype, AsnTypePtr elementtype));

SeqIdPtr SeqIdSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr settype, AsnTypePtr elementtype));

SeqIdPtr SeqIdSetFree PROTO((SeqIdPtr anp));

/***

*

* PatentSeqId

*

***/

typedef struct patentseqid {

 Int2 seqid;

 IdPatPtr cit;

} PatentSeqId, PNTR PatentSeqIdPtr;

PatentSeqIdPtr PatentSeqIdNew PROTO((void));

Boolean PatentSeqIdAsnWrite PROTO((PatentSeqIdPtr psip, AsnIoPtr aip, AsnTypePtr atp));

PatentSeqIdPtr PatentSeqIdAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

PatentSeqIdPtr PatentSeqIdFree PROTO((PatentSeqIdPtr psip));

/***

*

* TextSeqId

*

***/

typedef struct textseqid {

 CharPtr name,

 accession,

 release;

Int2 version; /* INT2_MIN (ncbilcl.h) = not set */

} TextSeqId, PNTR TextSeqIdPtr;

TextSeqIdPtr TextSeqIdNew PROTO((void));

Boolean TextSeqIdAsnWrite PROTO((TextSeqIdPtr tsip, AsnIoPtr aip, AsnTypePtr atp));

TextSeqIdPtr TextSeqIdAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

TextSeqIdPtr TextSeqIdFree PROTO((TextSeqIdPtr tsip));

/***

*

* Giim

*

***/

typedef struct giim {

 Int4 id;

 CharPtr db,

 release;

} Giim, PNTR GiimPtr;

GiimPtr GiimNew PROTO((void));

Boolean GiimAsnWrite PROTO((GiimPtr gip, AsnIoPtr aip, AsnTypePtr atp));

GiimPtr GiimAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

GiimPtr GiimFree PROTO((GiimPtr gip));

/***

*

* PDBSeqId

*

***/

typedef struct pdbseqid {

 CharPtr mol;

Uint1 chain; /* 0 = no chain set. default = 32 */

DatePtr rel;

} PDBSeqId, PNTR PDBSeqIdPtr;

PDBSeqIdPtr PDBSeqIdNew PROTO((void));

Boolean PDBSeqIdAsnWrite PROTO((PDBSeqIdPtr tsip, AsnIoPtr aip, AsnTypePtr atp));

PDBSeqIdPtr PDBSeqIdAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

PDBSeqIdPtr PDBSeqIdFree PROTO((PDBSeqIdPtr tsip));

/***

*

* SeqLoc

* SeqLoc is a choice using an ValNode, most types in data.ptrvalue

* except integers, in data.intvalue

* choice:

 1 = null NULL , -- not placed

 2 = empty Seq-id , -- to NULL one Seq-id in a collection

 3 = whole Seq-id , -- whole sequence

 4 = int Seq-interval , -- from to

 5 = packed-int Packed-seqint ,

 6 = pnt Seq-point ,

 7 = packed-pnt Packed-seqpnt ,

 8 = mix SEQUENCE OF Seq-loc ,

 9 = equiv SET OF Seq-loc , -- equivalent sets of locations

 10 = bond Seq-bond

 11 = feat Feat-id -- indirect through a feature

*

***/

#define SEQLOC_NULL ((Uint1)1)

#define SEQLOC_EMPTY ((Uint1)2)

#define SEQLOC_WHOLE ((Uint1)3)

#define SEQLOC_INT ((Uint1)4)

#define SEQLOC_PACKED_INT ((Uint1)5)

#define SEQLOC_PNT ((Uint1)6)

#define SEQLOC_PACKED_PNT ((Uint1)7)

#define SEQLOC_MIX ((Uint1)8)

#define SEQLOC_EQUIV ((Uint1)9)

#define SEQLOC_BOND ((Uint1)10)

#define SEQLOC_FEAT ((Uint1)11)

Boolean SeqLocAsnWrite PROTO((SeqLocPtr anp, AsnIoPtr aip, AsnTypePtr atp));

SeqLocPtr SeqLocAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

SeqLocPtr SeqLocFree PROTO((SeqLocPtr anp));

/***

*

* these routines work on set/seq of SeqLoc

*

***/

Boolean SeqLocSetAsnWrite PROTO((SeqLocPtr anp, AsnIoPtr aip, AsnTypePtr set, AsnTypePtr element));

SeqLocPtr SeqLocSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr orig, AsnTypePtr element));

SeqLocPtr SeqLocSetFree PROTO((SeqLocPtr anp));

/***

*

* SeqInt

*

***/

typedef struct seqint {

 Int4 from,

 to;

 Uint1 strand;

 SeqIdPtr id; /* seq-id */

 IntFuzzPtr if_from,

 if_to;

} SeqInt, PNTR SeqIntPtr;

SeqIntPtr SeqIntNew PROTO((void));

Boolean SeqIntAsnWrite PROTO((SeqIntPtr sip, AsnIoPtr aip, AsnTypePtr atp));

SeqIntPtr SeqIntAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

SeqIntPtr SeqIntFree PROTO((SeqIntPtr sip));

/***

*

* Packed-int

*

***/

Boolean PackSeqIntAsnWrite PROTO((SeqLocPtr sip, AsnIoPtr aip, AsnTypePtr atp));

SeqLocPtr PackSeqIntAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

/***

*

* SeqLocMix

*

***/

Boolean SeqLocMixAsnWrite PROTO((SeqLocPtr anp, AsnIoPtr aip, AsnTypePtr atp));

SeqLocPtr SeqLocMixAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

/***

*

* SeqLocEquiv

*

***/

Boolean SeqLocEquivAsnWrite PROTO((SeqLocPtr anp, AsnIoPtr aip, AsnTypePtr atp));

SeqLocPtr SeqLocEquivAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

/***

*

* SeqPnt

*

***/

typedef struct seqpoint {

 Int4 point;

 Uint1 strand;

 SeqIdPtr id; /* seq-id */

 IntFuzzPtr fuzz;

} SeqPnt, PNTR SeqPntPtr;

SeqPntPtr SeqPntNew PROTO((void));

Boolean SeqPntAsnWrite PROTO((SeqPntPtr spp, AsnIoPtr aip, AsnTypePtr atp));

SeqPntPtr SeqPntAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

SeqPntPtr SeqPntFree PROTO((SeqPntPtr spp));

/***

*

* PackSeqPnt

*

***/

#define PACK_PNT_NUM 100 /* number of points per block */

typedef struct packseqpnt {

 SeqIdPtr id; /* seq-id */

 IntFuzzPtr fuzz;

 Uint1 strand,

 used; /* number of pnts used */

 Int4 pnts[PACK_PNT_NUM];

 struct packseqpnt PNTR next; /* builds up chain of points */

} PackSeqPnt, PNTR PackSeqPntPtr;

PackSeqPntPtr PackSeqPntNew PROTO((void));

Boolean PackSeqPntAsnWrite PROTO((PackSeqPntPtr pspp, AsnIoPtr aip, AsnTypePtr atp));

PackSeqPntPtr PackSeqPntAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

PackSeqPntPtr PackSeqPntFree PROTO((PackSeqPntPtr pspp));

Int4 PackSeqPntGet PROTO((PackSeqPntPtr pspp, Int4 index));

Boolean PackSeqPntPut PROTO((PackSeqPntPtr pspp, Int4 point));

Int4 PackSeqPntNum PROTO((PackSeqPntPtr pspp));

/***

*

* SeqBond

*

***/

typedef struct seqbond {

 SeqPntPtr a,

 b;

} SeqBond, PNTR SeqBondPtr;

SeqBondPtr SeqBondNew PROTO((void));

Boolean SeqBondAsnWrite PROTO((SeqBondPtr sbp, AsnIoPtr aip, AsnTypePtr atp));

SeqBondPtr SeqBondAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

SeqBondPtr SeqBondFree PROTO((SeqBondPtr sbp));

/***

*

* strand types

*

***/

#define Seq_strand_unknown 0

#define Seq_strand_plus 1

#define Seq_strand_minus 2

#define Seq_strand_both 3

#define Seq_strand_both_rev 4

#define Seq_strand_other 255

#ifdef __cplusplus

}

#endif

#endif

Sequence Features

Introduction
Seq-feat: Structure of a Feature
SeqFeatData: Type Specific Feature Data
Seq-feat Implementation in C
CdRegion: Coding Region
Genetic Codes
Rsite-ref: Reference To A Restriction Enzyme
RNA-ref: Reference To An RNA
Gene-ref: Reference To A Gene
Prot-ref: Reference To A Protein
Txinit: Transcription Initiation
Current Genetic Code Table: gc.prt
ASN.1 Specification: seqfeat.asn
C Structures and Functions: objfeat.h

 Introduction

A sequence feature (Seq-feat) is a block of structured data (SeqFeatData) explicitly attached to a region of a Bioseq through one or two Seq-locs (see Sequence Locations and Identifiers). The Seq-feat itself can carry information common to all features, as well as serving as the junction between the SeqFeatData and Seq-loc(s). Since a Seq-feat references a Bioseq through an explicit Seq-loc, a Seq-feat is an entity which can stand alone, or be moved between contexts without loss of information. Thus, information ABOUT Bioseqs can be created, exchanged, and compared independently from the Bioseq itself. This is an important attribute of the NCBI data model.

A feature table is a set of Seq-feat gathered together within a Seq-annot (see Biological Sequences). The Seq-annot allows the features to be attributed to a source and be associated with a title or comment. Seq-feats are normally exchanged "packaged" into a feature table.

Seq-feat: Structure of a Feature

A Seq-feat is a data structure common to all features. The fields it contains can be evaluated by software the same way for all features, ignoring the "data" element which is what makes each feature class unique.

id: Features Can Have Identifiers

At this time unique identifiers for features are even less available or controlled than sequence identifiers. However, as molecular biology informatics becomes more sophisticated, it will become not only useful, but essential to be able to cite features as precisely as NCBI is beginning to be able to cite sequences. The Seq-feat.id slot is where these identifiers will go. The Feat-id object for features, meant to be equivalent of the Seq-id object for Bioseqs, is not very fully developed yet. It can accommodate feature ids from the NCBI Backbone database, local ids, and the generic Dbtag type. Look for better characterized global ids to appear here in future as the requirement for structured data exchange becomes increasingly accepted.

data: Structured Data Makes Feature Types Unique

Each type of feature can have a data structure which is specifically designed to accommodate all the requirements of that type with no concern about the requirements of other feature types. Thus a coding region data structure can have fielded elements for reading frame and genetic code, while a tRNA data structure would have information about the amino acid transferred.

This design completely modularizes the components required specifically by each feature type. If a new field is required by a particular feature type, it does not affect any of the others. A new feature type, even a very complex one, can be added without affecting any of the others.

Software can be written in a very modular fashion, reflecting the data design. Functions common to all features (such as determining all features in a sequence region) simply ignore the "data" field and are robust against changes or additions to this component. Functions which process particular types have a well defined data interface unique to each type.

Perhaps a less obvious consequence is code and data reuse. Data objects used in other contexts can be used as features simply by making them a CHOICE in SeqFeatData. For example, the publication feature reuses the Pubdesc type used for Bioseq descriptors. This type includes all the standard bibliographic types (see Bibliographic References) used by MEDLINE or other bibliographic databases. Software which displays, queries, or retrieves publications will work without change on the "data" component of a publication feature because it is EXACTLY THE SAME object. This has profound positive consequences for both data and code development and maintenance.

This modularization also makes it natural to discuss each allowed feature type separately as is done in the SeqFeatData section below.

partial: This Feature is Incomplete

If Seq-feat.partial is TRUE, the feature is incomplete in some (unspecified) way. The details of incompleteness may be specified in more detail in the Seq-feat.location field. This flag allows quick exclusion of incomplete features when doing a database wide survey. It also allows the feature to be flagged when the details of incompleteness may not be known.

Seq-feat.partial should ALWAYS be TRUE if the feature is incomplete, even if Seq-feat.location indicates the incompleteness as well.

except: There is Something Biologically Exceptional

The Seq-feat.except flag is similar to the Seq-feat.partial flag in that it allows a simple warning that there is something unusual about this feature, without attempting to structure a detailed explanation. Again, this allows software scanning features in the database to ignore atypical cases easily. If Seq-feat.except is TRUE, Seq-feat.comment should contain a string explaining the exceptional situation.

Seq-feat.except does not necessarily indicate there is something wrong with the feature, but more that the biological exceeds the current representational capacity of the feature definition and that this may lead to an incorrect interpretation. For example, a coding region feature on genomic DNA where post-transcriptional editing of the RNA occurs would be a biological exception. If one translates the region using the frame and genetic code given in the feature one does not get the protein it points to, but the data supplied in the feature is, in fact, correct. It just does not take into account the RNA editing process.

Ideally, one should try to avoid or minimize exceptions by the way annotation is done. An approach to minimizing the RNA editing problem is described in the "product" section below. If one is forced to use exception consistently, it is a signal that a new or revised feature type is needed.

comment: A Comment About This Feature

No length limit is set on the comment, but practically speaking brief is better.

product: Does This Feature Produce Another Bioseq?

A Seq-feat is unusual in that it can point to two different sequence locations. The "product" location enables two Bioseqs to be linked together in a source/product relationship explicitly. This is very valuable for features which describe a transformation from one Bioseq to another, such as coding region (nucleic acid to protein) or the various RNA types (genomic nucleic acid to RNA product).

This explicit linkage is extremely valuable for connecting diverse types. Linkage of nucleic acid to protein through coding region makes data traversal from gene to product or back simple and explicit, but clearly of profound biological significance. Less obvious, but nonetheless useful is the connection between a tRNA gene and the modified sequence of the tRNA itself, or of a transcribed coding region and an edited mRNA.

Note that such a feature is as valuable in association with its product Bioseq alone as it is with its source Bioseq alone, and could be distributed with either or both.

location: Source Location of This Feature

The Seq-feat.location is the traditional location associated with a feature. While it is possible to use any Seq-loc type in Seq-feat.location, it is recommended to use types which resolve to a single unique sequence. The use of a type like Seq-loc-equiv to represent alternative splicing of exons (similar to the GenBank/EMBL/DDBJ feature table "one-of") is strongly discouraged. Consider the example of such an alternatively spliced coding region. What protein sequence is coded for by such usage? This problem is accentuated by the availability of the "product" slot. Which protein sequence is the product of this coding region? While such a short hand notation may seem attractive at first glance, it is clearly much more useful to represent each splicing alternative, and it's associated protein product, times of expression, etc. separately.

qual: GenBank Style Qualifiers

The GenBank/EMBL/DDBJ feature table uses "qualifiers", a combination of a string key and a string value. Many of these qualifiers do not map to the ASN.1 specification, so this provides a means of carrying them in the Seq-feat for features derived from those sources.

title: A User Defined Name

This field is provided for naming features for display. It would be used by end-user software to allow the user to add locally meaningful names to features. This is not an id, as this is provided by the "id" slot.

ext: A User Defined Structured Extension

The "ext" field allows the extension of a standard feature type with a structured User-object (see General Use Objects) defined by a user. For example, a particular scientist may have additional detailed information about coding regions which do not fit into the standard CdRegion data type. Rather than create a completely new feature type, the CdRegion type can be extended by filling in as much of the standard CdRegion fields as possible, then putting the additional information in the User-object. Software which only expects a standard coding region will operate on the extended feature without a problem, while software that can make use of the additional data in the User-object can operate on exactly the same the feature.

cit: Citations For This Feature

This slot is a set of Pubs which are citations about the feature itself, not about the Bioseq as a whole. It can be of any type, although the most common is type "pub", a set of any kind of Pubs. The individual Pubs within the set may be Pub-equivs (see Bibliographic References) to hold equivalent forms for the same publication, so some thought should be given to the process of accessing all the possible levels of information in this seemingly simple field.

exp-ev: Experimental Evidence

If it is known for certain that there is or is not experimental evidence supporting a particular feature, Seq-feat.exp-ev can be "experimental" or "not-experimental" respectively. If the type of evidence supporting the feature is not known, exp-ev should not be given at all.

This field is only a simple flag. It gives no indication of what kind of evidence may be available. A structured field of this type will differ from feature type to feature type, and thus is inappropriate to the generic Seq-feat. Information regarding the quality of the feature can be found in the CdRegion feature and even more detail on methods in the Tx-init feature. Other feature types may gain experimental evidence fields appropriate to their types as it becomes clear what a reasonable classification of that evidence might be.

xref: Linking To Other Features

SeqFeatXrefs are copies of the Seq-feat.data field and (optionally) the Seq-feat.id field from other related features. This is a copy operation and is meant to keep some degree of connectivity or completeness with a Seq-feat that is moved out of context. For example, in a collection of data including a nucleic acid sequence and its translated protein product, there would be a Gene feature on the nucleic acid, a Prot-ref feature on the protein, and a CdRegion feature linking all three together. However, if the CdRegion feature is taken by itself, the name of the translated protein and the name of the gene are not immediately available. The Seq-feat.xref provides a simple way to copy the relevant information. Note that there is a danger to any such copy operation in that the original source of the copied data may be modified without updating the copy. Software should be careful about this, and the best course is to take the original data if it is available to the software, using any copies in xref only as a last resort. If the "id" is included in the xref, this makes it easier for software to keep the copy up to date. But it depends on widespread use of feature ids.

SeqFeatData: Type Specific Feature Data

The "data" slot of a Seq-feat is filled with SeqFeatData, which is just a CHOICE of a variety of specific data structures. They are listed under their CHOICE type below, but for most types a detailed discussion will be found under the type name itself later in this chapter, or in another chapter. That is because most types are data objects in their own right, and may find uses in many other contexts than features.

gene: Location Of A Gene

A gene is a feature of its own, rather than a modifier of other features as in the GenBank/EMBL/DDBJ feature tables. A gene is a heritable region of nucleic acid sequence which confers a measurable phenotype. That phenotype may be achieved by many components of the gene including but not limited to coding regions, promoters, enhancers, terminators, and so on. The gene feature is meant to approximately cover the region of nucleic acid considered by workers in the field to be the gene. This admittedly fuzzy concept has an appealing simplicity and fits in well with higher level views of genes such as genetic maps.

The gene feature is implemented with a Gene-ref object, or a "reference to" a gene. The Gene-ref object is discussed below.

org: Source Organism Of The Bioseq

Normally when a whole Bioseq or set of Bioseqs is from the same organism, the Org-ref (reference to Organism) will be found at the descriptor level of the Bioseq or Bioseq-set (see Biological Sequences). However, in some cases the whole Bioseq may not be from the same organism. This may occur naturally (e.g. a provirus integrated into a host chromosome) or artificially (e.g. recombinant DNA techniques).

The org feature is implemented with an Org-ref object, or a "reference to" an organism. The Org‑ref is discussed below.

cdregion: Coding Region

A cdregion is a region of nucleic acid which codes for a protein. It can be thought of as "instructions to translate" a nucleic acid, not simply as a series of exons or a reflection of an mRNA or primary transcript. Other features represent those things. Unfortunately, most existing sequences in the database are only annotated for coding region, so transcription and splicing information must be inferred (often inaccurately) from it. We encourage the annotation of transcription features in addition to the coding region. Note that since the cdregion is "instructions to translate", one can represent translational stuttering by having overlapping intervals in the Seq-feat.location. Again, beware of assuming a cdregion definitely reflects transcription.

A cdregion feature is implemented with a Cdregion object, discussed below.

prot: Describing A Protein

A protein feature describes and/or names a protein or region of a protein. It uses a Prot-ref object, or "reference to" a protein, described in detail below.

A single amino acid Bioseq can have many protein features on it. It may have one over its full length describing a pro-peptide, then a shorter one describing the mature peptide. An extreme case might be a viral polyprotein which would have one protein feature for the whole polyprotein, then additional protein features for each of the component mature proteins. One should always take into account the "location" slot of a protein feature.

rna: Describing An RNA

An RNA feature can describe both coding intermediates and structural RNAs using an RNA-ref, or "reference to" an RNA. The RNA-ref is described in more detail below. The Seq-feat.location for an RNA can be attached to either the genomic sequence coding for the RNA, or to the sequence of the RNA itself, when available. The determination of whether the Bioseq the RNA feature is attached to is genomic or an RNA type is made by examining the Bioseq.descr.mol-type, not by making assumptions based on the feature. When both the genomic Bioseq and the RNA Bioseq are both available, one could attach the RNA Seq-feat.location to the genomic sequence and the Seq-feat.product to the RNA to connect them and capture explicitly the process by which the RNA is created.

pub: Publication About A Bioseq Region

When a publication describes a whole Bioseq, it would normally be at the "descr" slot of the Bioseq. However, if it applies to a sub region of the Bioseq, it is convenient to make it a feature. The pub feature uses a Pubdesc (see Biological Sequences for a detailed description) to describe a publication and how it relates to the Bioseq. To indicate a citation about a specific feature (as opposed to about the sequence region in general), use the Seq-feat.cit slot of that feature.

seq: Tracking Original Sequence Sources

The "seq" feature is a simple way to associate a region of sequence with a region of another. For example, if one wished to annotate a region of a recombinant sequence as being from "pBR322 10-50" one would simply use a Seq-loc (see Sequence Locations and Identifiers) for the interval 10-50 on Seq-id pBR322. Software tools could use such information to provide the pBR322 numbering system over that interval.

This feature is really meant to accommodate older or approximate data about the source of a sequence region and is no more than annotation. More specific and computationally useful ways of doing this are (1) create the recombinant sequence as a segmented sequence directly (see Biological Sequences), (2) use the Seq-hist field of a Bioseq to record its history, (3) create alignments (see Sequence Alignments) which are also valid Seq-annots, to indicate more complex relationships of one Bioseq to others.

imp: Importing Features From Other Data Models

The SeqFeatData types explicitly define only certain well understood or widely used feature types. There may be other features contained in databases converted to this specification which are not represented by this ASN.1 specification. At least for GenBank, EMBL, DDBJ, PIR, and SWISS-PROT, these can be mapped to an Imp-feat structure so the features are not lost, although they are still unique to the source database. All these features have the basic form of a string key, a location (carried as the original string), and a descriptor (another string). In the GenBank/EMBL/DDBJ case, any additional qualifiers can be carried on the Seq-feat.qual slot.

GenBank/EMBL/DDBJ use a "location" called "replace" which is actually an editing operation on the sequence which incorporates literal strings. Since the locations defined in this specification are locations on sequences, and not editing operations, features with replace operators are all converted to Imp-feat so that the original location string can be preserved. This same strategy is taken in the face of incorrectly constructed locations encountered in parsing outside databases into ASN.1.

region: A Named Region

The region feature provides a simple way to name a region of a Bioseq (e.g. "globin locus", "LTR", "subrepeat region", etc).

comment: A Comment On A Region Of Sequence

The comment feature allows a comment to be made about any specified region of sequence. Since comment is already a field in Seq-feat, there is no need for an additional type specific data item in this case, so it is just NULL.

bond: A Bond Between Residues

This feature annotates a bond between two residues. A Seq-loc of type "bond" is expected in Seq-feat.location. Certain types of bonds are given in the ENUMERATED type. If the bond type is "other" the Seq-feat.comment slot should be used to explain the type of the bond. Allowed bond types are:

 disulfide (1) ,

 thiolester (2) ,

 xlink (3) ,

 thioether (4) ,

 other (255) } ,

site: A Defined Site

The site feature annotates a know site from the following specified list. If the site is "other" then Seq-feat.comment should be used to explain the site.

active (1) ,

binding (2) ,

cleavage (3) ,

inhibit (4) ,

modified (5),

glycosylation (6) ,

myristoylation (7) ,

mutagenized (8) ,

metal-binding (9) ,

phosphorylation (10) ,

acetylation (11) ,

amidation (12) ,

methylation (13) ,

hydroxylation (14) ,

sulfatation (15) ,

oxidative-deamination (16) ,

pyrrolidone-carboxylic-acid (17) ,

gamma-carboxyglutamic-acid (18) ,

blocked (19) ,

lipid-binding (20) ,

np-binding (21) ,

dna-binding (22) ,

other (255) } ,

rsite: A Restriction Enzyme Cut Site

A restriction map is basically a feature table with rsite features. Software which generates such a feature table could then use any sequence annotation viewer to display its results. Restriction maps generated by physical methods (before sequence is available), can use this feature to create a map type Bioseq representing the ordered restriction map. For efficiency one would probably create one Seq-feat for each restriction enzyme used and used the Packed-pnt Seq-loc in the location slot. See Rsite-ref, below.

user: A User Defined Feature

An end-user can create a feature completely of their own design by using a User-object (see General Use Objects) for SeqFeatData. This provides a means for controlled addition and testing of new feature types, which may or may not become widely accepted or to "graduate" to a defined SeqFeatData type. It is also a means for software to add structured information to Bioseqs for it's own use and which may never be intended to become a widely used standard. All the generic feature operations, including display, deletion, determining which features are carried on a sub region of sequence, etc, can be applied to an user feature with no knowledge of the particular User-object structure or meaning. Yet software which recognizes that User-object can take advantage of it.

If an existing feature type is available but lacks certain additional fields necessary for a special task or view of information, then it should be extended with the Seq-feat.ext slot, rather than building a complete user feature de novo.

txinit: Transcription Initiation

This feature is used to designate the region of transcription initiation, about which considerable knowledge is available. See Txinit, below.

num: Applying Custom Numbering To A Region

A Numbering object can be used as a Bioseq descriptor to associate various numbering systems with an entire Bioseq. When used as a feature, the numbering system applies only to the region in Seq-feat.location. This make multiple, discontinuous numbering systems available on the same Bioseq. See Biological Sequences for a description of Numbering, and also Seq-feat.seq, above, for an alternative way of applying a sequence name and it's numbering system to a sequence region.

psec-str: Protein Secondary Structure

Secondary structure can be annotated on a protein sequence using this type. It can be predicted by algorithm (in which case Seq-feat.exp-ev should be "not-experimental") or by analysis of the known protein structure (Seq-feat.exp-ev = "experimental"). Only three types of secondary structure are currently supported. A "helix" is any helix, a "sheet" is beta sheet, and "turn" is a beta or gamma turn. Given the controversial nature of secondary structure classification (not be mention prediction), we opted to keep it simple until it was clear that more detail was really necessary or understood.

non-std-residue: Unusual Residues

When an unusual residue does not have a direct sequence code, the "best" standard substitute can be used in the sequence and the residue can be labeled with its real name. No attempt is made to enforce a standard nomenclature for this string.

het: Heterogen

In the PDB structural database, non-biopolymer atoms associated with a Bioseq are referred to as "heterogens". When a heterogen appears as a feature, it is assumed to be bonded to the sequence positions in Seq-feat.location. If there is no specific bonding information, the heterogen will appear as a descriptor of the Bioseq. The Seq-loc for the Seq-feat.location will probably be a point or points, not a bond. A Seq-loc of type bond is between sequence residues.

Seq-feat Implementation in C

The C implementation of a Seq-feat is mostly straightforward. However, some explanation of the "id" and "data" slots will be helpful. Both are implemented as a Choice, which is like a ValNode but without a next pointer. Both Choice structures are included as part of a SeqFeat structure. In the tables below the values of Choice.choice and the type in Choice.data.ptrvalue or Choice.data.intvalue are shown.

SeqFeat.id

	ASN.1 name
	Value in Choice.choice
	Type in Choice.data

	(not present)
	0
	not needed

	gibb
	1
	integer

	giim
	2
	GiimPtr

	local
	3
	ObjectIdPtr

	general
	4
	DbtagPtr

SeqFeat.data

	ASN.1 name
	Value in Choice.choice
	Type in Choice.data

	(not present)
	0
	not needed

	gene
	1
	GeneRefPtr

	org
	2
	OrgRefPtr

	cdregion
	3
	CdRegionPtr

	prot
	4
	ProtRefPtr

	rna
	5
	RnaRefPtr

	pub
	6
	PubdescPtr

	seq
	7
	SeqLocPtr

	imp
	8
	ImpFeatPtr

	region
	9
	CharPtr

	comment
	10
	(not used)

	bond
	11
	integer

	site
	12
	integer

	rsite
	13
	RsiteRefPtr

	user
	14
	UserObjectPtr

	txinit
	15
	TxinitPtr

	num
	16
	NumberingPtr

	psec-str
	17
	integer

	non-std-residue
	18
	CharPtr

	het
	19
	CharPtr

In addition to the usual SeqFeatNew(), SeqFeatAsnRead(), SeqFeatAsnWrite(), and SeqFeatFree() functions, there is a SeqFeatToXref() function which creates an xref and copies the "id" and "data" slots to it. There are also SeqFeatSetAsnRead() and SeqFeatSetAsnWrite() functions for sets of features. Finally, there is are special SeqFeatDataAsnRead(), SeqFeatDataAsnWrite(), and SeqFeatDataFree() functions which operate on the "data" component of a SeqFeat structure since there is no separate C structure for SeqFeatData.

Of course, within the software tools for producing GenBank, report, or other formats from ASN.1 are functions to format and display features as well. There are some functions to manipulate the SeqFeatData objects, such as the translation of a CdRegion, and a host of functions to use and compare the Seq-locs of "product" and "location" or easily access and use the sequence regions they point to. These functions are discussed in the Sequence Utilities chapter. Additional functions, described in Exploring The Data, allow one to easily locate features of interest by type, in arbitrarily complex objects.

CdRegion: Coding Region

A CdRegion, in association with a Seq-feat, is considered "instructions to translate" to protein. The Seq-locs used by the Seq-feat do not necessarily reflect the exon structure of the primary transcript (although they often do). A Seq-feat of type CdRegion can point both to the source nucleic acid and to the protein sequence it produces. Most of the information about the source nucleic acid (such as the gene) or the destination protein (such as it's name) are associated directly with those Bioseqs. The CdRegion only serves as a link between them, and as a method for explicitly encoding the information needed to derive one from the other.

orf: Open Reading Frame

CdRegion.orf is TRUE if the coding region is only known to be an open reading frame. This is a signal that nothing is known about the protein product, or even if it is produced. In this case the translated protein sequence will be attached, but there will be no other information associated with it. This flag allows such very speculative coding regions to be easily ignored when scanning the database for genuine protein coding regions.

The orf flag is not set when any reasonable argument can be made that the CdRegion is really expressed, such as detection of mRNA or strong sequence similarity to known proteins.

Translation Information

CdRegion has several explicit fields to define how to translate the coding region. Reading frame is explicitly given or defaults to frame one.

The genetic code is assumed to be the universal code unless given explicitly. The code itself is given, rather than requiring software to determine the code at run-time by analyzing the phylogenetic position of the Bioseq. Genetic code is described below.

Occasionally the genetic code is not followed at specific positions in the sequence. Examples are the use of alternate initiation codons only in the first position, the effects of suppresser tRNAs, or the addition of selenocysteine. The Code-break object specifies the three bases of the codon in the Bioseq which is treated differently and the amino acid which is generated at that position. During translation the genetic code is followed except at positions indicated by Code-breaks, where the instructions in the Code-break are followed instead.

Problems With Translations

In a surprising number of cases an author publishes both a nucleic acid sequence and the protein sequence produced by its coding region, but the translation of the coding region does not yield the published protein sequence. On the basis of the publication it is not possible to know for certain which sequence is correct. In the NCBI Backbone database both sequences are preserved as published by the author, but the conflict flag is set to TRUE in the CdRegion. If available, the number of gaps and mismatches in the alignment of the translated sequence to the published protein sequence are also given so a judgment can be made about the severity of the problem.

Genetic Codes

A Genetic-code is a SET which may include one or more of a name, an integer id, or 64 cell arrays of amino acid codes in different alphabets. Thus, in a CdRegion, one can either refer to a genetic code by name or id, provide the genetic code itself, or both. Tables of genetic codes are provided in the NCBI software release with most possibilities filled in.

The Genetic-code.name is a descriptive name for the genetic code, mainly for display to humans. The integer id refers to the ids in the gc.val (binary ASN.1) or gc.prt (text ASN.1) file of genetic codes maintained by NCBI, distributed with the software tools and Entrez releases, and published in the GenBank/EMBL/DDBJ feature table document. Genetic-code.id is the best way to explicitly refer to a genetic code.

The genetic codes themselves are arrays of 64 amino acid codes. The index to the position in the array of the amino acid is derived from the codon by the following method:

index = (base1 * 16) + (base2 * 4) + base3

where T=0, C=1, A=2, G=3

Note that this encoding of the bases is not the same as any of the standard nucleic acid encoding described in Biological Sequence. This set of values was chosen specifically for genetic codes because it results in the convenient groupings of amino acid by codon preferred for display of genetic code tables.

The genetic code arrays have names which indicate the amino acid alphabet used (e.g. ncbieaa). The same encoding technique is used to specify start codons. Alphabet names are prefixed with "s" (e.g. sncbieaa) to indicate start codon arrays. Each cell of a start codon array contains either the gap code ("-" for ncbieaa) or an amino acid code if it is valid to use the codon as a start codon. Currently all starts are set to code for methionine, since it has never been convincingly demonstrated that a protein can start with any other amino acid. However, if other amino acids are shown to be used as starts, this structure can easily accommodate that information.

The contents of gc.prt, the current supported genetic codes, is given at the end of this chapter.

C Implementation Of Genetic Codes

GeneticCode is implemented as a ValNodePtr with choice = 254. The ValNodePtr‑>data.ptrvalue is the head of a linked list of ValNodes, each of which contains on of the possible forms of a particular GeneticCode as follows:

GeneticCode Elements

	ASN.1 name
	Value in ValNode.choice
	Type in ValNode.data

	name
	1
	CharPtr

	id
	2
	integer

	ncbieaa
	3
	CharPtr

	ncbi8aa
	4
	ByteStorePtr

	ncbistdaa
	5
	ByteStorePtr

	sncbieaa
	6
	CharPtr

	sncbi8aa
	7
	ByteStorePtr

	sncbistdaa
	8
	ByteStorePtr

GeneticCodeNew() returns a pointer to the ValNode with choice = 254, the element which points to the head of the chain. This is the datum which is returned from GeneticCodeAsnRead() and is passed to GeneticCodeAsnWrite() and GeneticCodeFree(). There are also GeneticCodeTableAsnRead() and ..Write() functions. The table functions expect a list of ValNode with ->choice = 254 linked by their ->next pointers, each with a linked list of ValNodes representing the elements of a genetic code starting from its ValNodePtr->data.ptrvalue.

A special function, GeneticCodeTableLoad() reads gc.val into memory. For this function to work the gc.val file must be in the directory with other DATA items such as sequence alphabet file, seqcode.val.

GeneticCodeFind(id, name) returns a GeneticCodePtr to the appropriate code assuming GeneticCodeTableLoad() has previously succeeded. If "name" is NULL, id is matched. If the code cannot be found, NULL is returned.

Rsite-ref: Reference To A Restriction Enzyme

This simple data structure just references a restriction enzyme. It is a choice of a simple string (which may or may not be from a controlled vocabulary) or a Dbtag, in order to cite an enzyme from a specific database such as RSITE. The Dbtag is preferred, if available.

Note that this reference is not an Rsite-entry which might contain a host of information about the restriction enzyme, but is only a reference to the enzyme.

RNA-ref: Reference To An RNA

An RNA-ref allows naming and a minimal description of various RNAs. The "type" is a controlled vocabulary for dividing RNAs into broad, well accepted classes. The "pseudo" field is used for RNA pseudogenes.

The "ext" field allows the addition of structure information appropriate to a specific RNA class as appropriate. The "name" extension allows naming the "other" type or adding a modifier, such as "28S" to rRNA. For tRNA there is a structured extension which as fields for the amino acid transferred, drawn from the standard amino acid alphabets, and a value for one or more codons that this tRNA recognizes. The values of the codons are calculated as a number from 0 to 63 using the same formula as for calculating the index to Genetic Codes, above.

As nomenclature and attributes for classes of RNAs becomes better understood and accepted, the RNA-ref.ext will gain additional extensions.

Gene-ref: Reference To A Gene

A Gene-ref is not intended to carry all the information one might want to know about a gene, but to provide a small set of information and reference some larger body of information, such as an entry in a genetic database.

The "locus" field is for the gene symbol, preferably an official one (e.g. "Adh"). The "allele" field is for an allele symbol (e.g. "S"). The "desc" field is for a descriptive name for the gene (e.g. "Alcohol dehydrogenase, SLOW allele"). One should fill in as many of these fields as possible.

The "maploc" field accepts a string with a map location using whatever conventions are appropriate to the organism. This field is hardly definitive and if up to date mapping information is desired a true mapping database should always be consulted.

If "pseudo" is TRUE, this is a pseudogene.

The "db" field allows the Gene-ref to be attached to controlled identifiers from established gene databases. This allows a direct key to a database where gene information will be kept up to date without requiring that the rest of the information in the Gene-ref necessarily be up to date as well. This type of foreign key is essential to keeping loosely connected data up to date and NCBI is encouraging gene databases to make such controlled keys publicly available.

The "syn" field holds synonyms for the gene. It does not attempt to discriminate symbols, alleles, or descriptions.

In addition to the usual C functions, there is a specific GeneRefDup() function to duplicate this object quickly.

Prot-ref: Reference To A Protein

A Prot-ref is meant to reference a protein very analogous to the way a Gene-ref references a gene. The "name" field is a SET OF strings to allow synonyms. The first name is presumed to be the preferred name by software tools. Since there is no controlled vocabulary for protein names this is the best that can be done at this time. "ADH" and "alcohol dehydrogenase" are both protein names.

The "desc" field is for a description of the protein. This field is often not necessary if the name field is filled in, but may be informative in some cases and essential in cases where the protein has not yet been named (e.g. ORF21 putative protein).

The "ec" field contains a SET of EC numbers. These strings are expected to be only numbers separated by periods (no leading "EC"). Sometimes the last few positions will be occupied by dashes or not filled in at all if the protein has not been fully characterized. Examples of EC numbers are (1.14.13.8 or 1.14.14.- or 1.14.14.3 or 1.14.--.-- or 1.14).

The "activity" field allows the various known activities of the protein to be specified. This can be very helpful, especially when the name is not informative.

The "db" field is to accommodate keys from protein databases. While protein nomenclature is not well controlled, there are subfields such as immunology which have controlled names. There are also databases which characterize proteins in other ways than sequence, such as 2-d spot databases which could provide such a key.

In addition to the usual C functions, there is also a ProtRefDup() for quickly duplicating this object.

Txinit: Transcription Initiation

This is an example of a SeqFeatData block designed and built by a domain expert, an approach the NCBI strongly encourages and supports. The Txinit structure was developed by Philip Bucher and David Ghosh. It carries most of the information about transcription initiation represented in the Eukaryotic Promoter Database (EPD). The Txinit structure carries a host of detailed experimental information, far beyond the simple "promoter" features in GenBank/EMBL/DDBJ. EPD is released as a database in its own right and as Txinit Seq-feats. NCBI will be incorporating the EPD in its feature table form to provide expert annotation of the sequence databases in the manner described in the Data Model chapter.

The Txinit object is well described by its comments in the ASN.1 definition. The best source of more in depth discussion of these fields is in the EPD documentation, and so it will not be reproduced here.

Current Genetic Code Table: gc.prt

--**

-- This is the NCBI genetic code table

-- Base 1-3 of each codon have been added as comments to facilitate

-- readability at the suggestion of Peter Rice, EMBL

--***

Genetic-code-table ::= {

{

name "Standard" ,

name "SGC0" ,

id 1 ,

ncbieaa "FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",

sncbieaa "-----------------------------------M----------------------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

} ,

{

name "Vertebrate Mitochondrial" ,

name "SGC1" ,

id 2 ,

ncbieaa "FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSS**VVVVAAAADDEEGGGG",

sncbieaa "--------------------------------MMMM---------------M------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

} ,

{

name "Yeast Mitochondrial" ,

name "SGC2" ,

id 3 ,

ncbieaa "FFLLSSSSYY**CCWWTTTTPPPPHHQQRRRRIIMMTTTTNNKKSSRRVVVVAAAADDEEGGGG",

sncbieaa "-----------------------------------M----------------------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

} ,

{

name "Mold Mitochondrial and Mycoplasma" ,

name "SGC3" ,

id 4 ,

ncbieaa "FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",

sncbieaa "-----------------------------------M----------------------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

} ,

{

name "Invertebrate Mitochondrial" ,

name "SGC4" ,

id 5 ,

ncbieaa "FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSSSSVVVVAAAADDEEGGGG",

sncbieaa "---M----------------------------M-MM----------------------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

} ,

{

name "Ciliate Macronuclear and Daycladacean" ,

name "SGC5" ,

id 6 ,

ncbieaa "FFLLSSSSYYQQCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",

sncbieaa "-----------------------------------M----------------------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

} ,

{

name "Protozoan Mitochondrial (and Kinetoplast)" ,

name "SGC6" ,

id 7 ,

ncbieaa "FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",

sncbieaa "--MM---------------M------------MMMM---------------M------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

} ,

{

name "Plant Mitochondrial/Chloroplast (posttranscriptional variant)" ,

name "SGC7" ,

id 8 ,

ncbieaa "FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRWIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",

sncbieaa "--M-----------------------------MMMM---------------M------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

} ,

{

name "Echinoderm Mitochondrial" ,

name "SGC8" ,

id 9 ,

ncbieaa "FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNNKSSSSVVVVAAAADDEEGGGG",

sncbieaa "-----------------------------------M----------------------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

} ,

{

name "Euplotid Macronuclear" ,

name "SGC9" ,

id 10 ,

ncbieaa "FFLLSSSSYY*QCCCWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",

sncbieaa "-----------------------------------M----------------------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

} ,

{

name "Eubacterial" ,

id 11 ,

ncbieaa "FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",

sncbieaa "---M---------------M------------M--M---------------M------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

}

}

ASN.1 Specification: seqfeat.asn

--$Revision: 2.0 $

--**

--

-- NCBI Sequence Feature elements

-- by James Ostell, 1990

--

--**

NCBI-Seqfeat DEFINITIONS ::=

BEGIN

EXPORTS Seq-feat, Feat-id;

IMPORTS Gene-ref FROM NCBI-Gene

 Prot-ref FROM NCBI-Protein

 Org-ref FROM NCBI-Organism

 RNA-ref FROM NCBI-RNA

 Seq-loc, Giimport-id FROM NCBI-Seqloc

 Pubdesc, Numbering, Heterogen FROM NCBI-Sequence

 Rsite-ref FROM NCBI-Rsite

 Txinit FROM NCBI-TxInit

 Pub-set FROM NCBI-Pub

 Object-id, Dbtag, User-object FROM NCBI-General;

--*** Feature identifiers ********************************

--*

Feat-id ::= CHOICE {

 gibb INTEGER , -- geninfo backbone

 giim Giimport-id , -- geninfo import

 local Object-id , -- for local software use

 general Dbtag } -- for use by various databases

--*** Seq-feat ***

--* sequence feature generalization

Seq-feat ::= SEQUENCE {

 id Feat-id OPTIONAL ,

 data SeqFeatData , -- the specific data

 partial BOOLEAN OPTIONAL , -- incomplete in some way?

 except BOOLEAN OPTIONAL , -- something funny about this?

 comment VisibleString OPTIONAL ,

 product Seq-loc OPTIONAL , -- product of process

 location Seq-loc , -- feature made from

 qual SEQUENCE OF Gb-qual OPTIONAL , -- qualifiers

 title VisibleString OPTIONAL , -- for user defined label

 ext User-object OPTIONAL , -- user defined structure extension

 cit Pub-set OPTIONAL , -- citations for this feature

 exp-ev ENUMERATED { -- evidence for existence of feature

 experimental (1) , -- any reasonable experimental check

 not-experimental (2) } OPTIONAL , -- similarity, pattern, etc

xref SET OF SeqFeatXref OPTIONAL } -- cite other relevant features

SeqFeatData ::= CHOICE {

 gene Gene-ref ,

 org Org-ref ,

 cdregion Cdregion ,

 prot Prot-ref ,

 rna RNA-ref ,

 pub Pubdesc , -- publication applies to this seq

 seq Seq-loc , -- to annotate origin from another seq

 imp Imp-feat ,

 region VisibleString, -- named region (globin locus)

 comment NULL , -- just a comment

 bond ENUMERATED {

 disulfide (1) ,

 thiolester (2) ,

 xlink (3) ,

 thioether (4) ,

 other (255) } ,

site ENUMERATED {

active (1) ,

binding (2) ,

cleavage (3) ,

inhibit (4) ,

modified (5),

glycosylation (6) ,

myristoylation (7) ,

mutagenized (8) ,

metal-binding (9) ,

phosphorylation (10) ,

acetylation (11) ,

amidation (12) ,

methylation (13) ,

hydroxylation (14) ,

sulfatation (15) ,

oxidative-deamination (16) ,

pyrrolidone-carboxylic-acid (17) ,

gamma-carboxyglutamic-acid (18) ,

blocked (19) ,

lipid-binding (20) ,

np-binding (21) ,

dna-binding (22) ,

other (255) } ,

 rsite Rsite-ref , -- restriction site (for maps really)

 user User-object , -- user defined structure

 txinit Txinit , -- transcription initiation

num Numbering , -- a numbering system

psec-str ENUMERATED { -- protein secondary structure

helix (1) , -- any helix

sheet (2) , -- beta sheet

turn (3) } , -- beta or gamma turn

non-std-residue VisibleString , -- non-standard residue here in seq

het Heterogen } -- cofactor, prosthetic grp, etc, bound to seq

SeqFeatXref ::= SEQUENCE {

 id Feat-id OPTIONAL ,

 -- the feature copied

 data SeqFeatData } -- the specific data

--*** CdRegion ***

--*

--* Instructions to translate from a nucleic acid to a peptide

--* conflict means it's supposed to translate but doesn't

--*

Cdregion ::= SEQUENCE {

 orf BOOLEAN OPTIONAL , -- just an ORF ?

 frame ENUMERATED {

 not-set (0) , -- not set, default to one

 one (1) ,

 two (2) ,

 three (3) } DEFAULT one , -- reading frame

 conflict BOOLEAN OPTIONAL , -- conflict

 gaps INTEGER OPTIONAL , -- number of gaps on conflict/except

 mismatch INTEGER OPTIONAL , -- number of mismatches on above

 code Genetic-code OPTIONAL , -- genetic code used

 code-break SEQUENCE OF Code-break OPTIONAL , -- individual exceptions

 stops INTEGER OPTIONAL } -- number of stop codons on above

 -- each code is 64 cells long, in the order where

 -- T=0,C=1,A=2,G=3, TTT=0, TTC=1, TCA=4, etc

 -- NOTE: this order does NOT corresspond to a Seq-data

 -- encoding. It is "natural" to codon usage instead.

 -- the value in each cell is the AA coded for

 -- start= AA coded only if first in peptide

 -- in start array, if codon is not a legitimate start

 -- codon, that cell will have the "gap" symbol for

 -- that alphabet. Otherwise it will have the AA

 -- encoded when that codon is used at the start.

Genetic-code ::= SET OF CHOICE {

 name VisibleString , -- name of a code

 id INTEGER , -- id in dbase

 ncbieaa VisibleString , -- indexed to IUPAC extended

 ncbi8aa OCTET STRING , -- indexed to NCBI8aa

ncbistdaa OCTET STRING , -- indexed to NCBIstdaa

 sncbieaa VisibleString , -- start, indexed to IUPAC extended

 sncbi8aa OCTET STRING , -- start, indexed to NCBI8aa

sncbistdaa OCTET STRING } -- start, indexed to NCBIstdaa

Code-break ::= SEQUENCE { -- specific codon exceptions

 loc Seq-loc , -- location of exception

 aa CHOICE { -- the amino acid

 ncbieaa INTEGER , -- ASCII value of NCBIeaa code

 ncbi8aa INTEGER , -- NCBI8aa code

ncbistdaa INTEGER } } -- NCBIstdaa code

Genetic-code-table ::= SET OF Genetic-code -- table of genetic codes

--*** Import ***

--*

--* Features imported from other databases

--*

Imp-feat ::= SEQUENCE {

 key VisibleString ,

 loc VisibleString OPTIONAL , -- original location string

 descr VisibleString OPTIONAL } -- text description

Gb-qual ::= SEQUENCE {

 qual VisibleString ,

 val VisibleString }

END

--**

--

-- NCBI Restriction Sites

-- by James Ostell, 1990

-- version 0.8

--

--**

NCBI-Rsite DEFINITIONS ::=

BEGIN

EXPORTS Rsite-ref;

IMPORTS Dbtag FROM NCBI-General;

Rsite-ref ::= CHOICE {

 str VisibleString , -- may be unparsable

 db Dbtag } -- pointer to a restriction site database

END

--**

--

-- NCBI RNAs

-- by James Ostell, 1990

-- version 0.8

--

--**

NCBI-RNA DEFINITIONS ::=

BEGIN

EXPORTS RNA-ref, Trna-ext;

--*** rnas ***

--*

--* various rnas

--*

 -- minimal RNA sequence

RNA-ref ::= SEQUENCE {

 type ENUMERATED { -- type of RNA feature

 unknown (0) ,

 premsg (1) ,

 mRNA (2) ,

 tRNA (3) ,

 rRNA (4) ,

 snRNA (5) ,

 scRNA (6) ,

 other (255) } ,

 pseudo BOOLEAN OPTIONAL ,

 ext CHOICE {

 name VisibleString , -- for naming "other" type

 tRNA Trna-ext } OPTIONAL } -- for tRNAs

Trna-ext ::= SEQUENCE { -- tRNA feature extensions

 aa CHOICE { -- aa this carries

 iupacaa INTEGER ,

 ncbieaa INTEGER ,

 ncbi8aa INTEGER ,

ncbistdaa INTEGER } OPTIONAL ,

 codon SET OF INTEGER OPTIONAL } -- codon(s) as in Genetic-code

 -- NOT anti-codons

END

--**

--

-- NCBI Genes

-- by James Ostell, 1990

-- version 0.8

--

--**

NCBI-Gene DEFINITIONS ::=

BEGIN

EXPORTS Gene-ref;

IMPORTS Dbtag FROM NCBI-General;

--*** Gene ***

--*

--* reference to a gene

--*

Gene-ref ::= SEQUENCE {

 locus VisibleString OPTIONAL , -- Official gene symbol

 allele VisibleString OPTIONAL , -- Official allele designation

 desc VisibleString OPTIONAL , -- descriptive name

 maploc VisibleString OPTIONAL , -- descriptive map location

 pseudo BOOLEAN DEFAULT FALSE , -- pseudogene

 db SET OF Dbtag OPTIONAL , -- ids in other dbases

syn SET OF VisibleString OPTIONAL } -- synonyms for locus

END

--**

--

-- NCBI Organism

-- by James Ostell, 1990

-- version 0.8

--

--**

NCBI-Organism DEFINITIONS ::=

BEGIN

EXPORTS Org-ref;

IMPORTS Dbtag FROM NCBI-General;

--*** Org-ref ***

--*

--* Reference to an organism

--*

Org-ref ::= SEQUENCE {

 taxname VisibleString OPTIONAL , -- scientific name

 common VisibleString OPTIONAL , -- common name

 mod SET OF VisibleString OPTIONAL , -- modifier for tissue/strain/line

 db SET OF Dbtag OPTIONAL , -- ids in other dbases

 syn SET OF VisibleString OPTIONAL } -- synonyms for taxname or common

END

--**

--

-- NCBI Protein

-- by James Ostell, 1990

-- version 0.8

--

--**

NCBI-Protein DEFINITIONS ::=

BEGIN

EXPORTS Prot-ref;

IMPORTS Dbtag FROM NCBI-General;

--*** Prot-ref ***

--*

--* Reference to a protein name

--*

Prot-ref ::= SEQUENCE {

 name SET OF VisibleString OPTIONAL , -- protein name

 desc VisibleString OPTIONAL , -- description (instead of name)

 ec SET OF VisibleString OPTIONAL , -- E.C. number(s)

 activity SET OF VisibleString OPTIONAL , -- activities

 db SET OF Dbtag OPTIONAL } -- ids in other dbases

END

--**

--

-- Transcription Initiation Site Feature Data Block

-- James Ostell, 1991

-- Philip Bucher, David Ghosh

-- version 1.1

--

--

--

--**

NCBI-TxInit DEFINITIONS ::=

BEGIN

EXPORTS Txinit;

IMPORTS Gene-ref, Prot-ref, Org-ref FROM NCBI-SeqFeat;

Txinit ::= SEQUENCE {

 name VisibleString , -- descriptive name of initiation site

 syn SEQUENCE OF VisibleString OPTIONAL , -- synonyms

 gene SEQUENCE OF Gene-ref OPTIONAL , -- gene(s) transcribed

 protein SEQUENCE OF Prot-ref OPTIONAL , -- protein(s) produced

 rna SEQUENCE OF VisibleString OPTIONAL , -- rna(s) produced

 expression VisibleString OPTIONAL , -- tissue/time of expression

 txsystem ENUMERATED { -- transcription apparatus used at this site

 unknown (0) ,

 pol1 (1) , -- eukaryotic Pol I

 pol2 (2) , -- eukaryotic Pol II

 pol3 (3) , -- eukaryotic Pol III

 bacterial (4) ,

 viral (5) ,

 rna (6) , -- RNA replicase

 organelle (7) ,

 other (255) } ,

 txdescr VisibleString OPTIONAL , -- modifiers on txsystem

 txorg Org-ref OPTIONAL , -- organism supplying transcription apparatus

 mapping-precise BOOLEAN DEFAULT FALSE , -- mapping precise or approx

 location-accurate BOOLEAN DEFAULT FALSE , -- does Seq-loc reflect mapping

 inittype ENUMERATED {

 unknown (0) ,

 single (1) ,

 multiple (2) ,

 region (3) } OPTIONAL ,

 evidence SET OF Tx-evidence OPTIONAL }

Tx-evidence ::= SEQUENCE {

 exp-code ENUMERATED {

 unknown (0) ,

 rna-seq (1) , -- direct RNA sequencing

 rna-size (2) , -- RNA length measurement

 np-map (3) , -- nuclease protection mapping with homologous sequence ladder

 np-size (4) , -- nuclease protected fragment length measurement

 pe-seq (5) , -- dideoxy RNA sequencing

 cDNA-seq (6) , -- full-length cDNA sequencing

 pe-map (7) , -- primer extension mapping with homologous sequence ladder

 pe-size (8) , -- primer extension product length measurement

 pseudo-seq (9) , -- full-length processed pseudogene sequencing

rev-pe-map (10) , -- see NOTE (1) below

 other (255) } ,

 expression-system ENUMERATED {

 unknown (0) ,

 physiological (1) ,

 in-vitro (2) ,

 oocyte (3) ,

 transfection (4) ,

 transgenic (5) ,

 other (255) } DEFAULT physiological ,

 low-prec-data BOOLEAN DEFAULT FALSE ,

 from-homolog BOOLEAN DEFAULT FALSE } -- experiment actually done on

 -- close homolog

-- NOTE (1) length measurement of a reverse direction primer-extension

--

product (blocked by RNA 5'end) by comparison with

--

homologous sequence ladder (J. Mol. Biol. 199, 587)

END

C Structures and Functions: objfeat.h

/* objfeat.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: objfeat.h

*

* Author: James Ostell

*

* Version Creation Date: 4/1/91

*

* $Revision: 2.0 $

*

* File Description: Object manager interface for module NCBI-SeqFeat

*

* Modifications:

* --

* Date
 Name Description of modification

* ------- ---------- ---

*

*

* ==

*/

#ifndef _NCBI_Seqfeat_

#define _NCBI_Seqfeat_

#ifndef _ASNTOOL_

#include <asn.h>

#endif

#ifndef _NCBI_General_

#include <objgen.h>

#endif

#ifndef _NCBI_Seqloc_

#include <objloc.h>

#endif

#ifndef _NCBI_Pub_

#include <objpub.h>

#endif

#ifndef _NCBI_Pubdesc_

#include <objpubd.h>

#endif

#ifdef __cplusplus

extern "C" {

#endif

/***

*

* loader

*

***/

extern Boolean SeqFeatAsnLoad PROTO((void));

/***

*

* GBQual

*

***/

typedef struct gbqual {

 CharPtr qual,

 val;

 struct gbqual PNTR next;

} GBQual, PNTR GBQualPtr;

GBQualPtr GBQualNew PROTO((void));

Boolean GBQualAsnWrite PROTO((GBQualPtr gbp, AsnIoPtr aip, AsnTypePtr atp));

GBQualPtr GBQualAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

GBQualPtr GBQualFree PROTO((GBQualPtr gbp));

/***

*

* SeqFeatXref

*
cross references between features

*

***/

typedef struct seqfeatxref {

 Choice id;

 Choice data;

 struct seqfeatxref PNTR next;

} SeqFeatXref, PNTR SeqFeatXrefPtr;

SeqFeatXrefPtr SeqFeatXrefNew PROTO((void));

Boolean SeqFeatXrefAsnWrite PROTO((SeqFeatXrefPtr sfxp, AsnIoPtr aip, AsnTypePtr atp));

SeqFeatXrefPtr SeqFeatXrefAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

SeqFeatXrefPtr SeqFeatXrefFree PROTO((SeqFeatXrefPtr sfxp));

 /* free frees whole chain of SeqFeatXref */

/***

*

* SeqFeat

* Feat-id is built into idtype/id

* 1=gibb (in id.intvalue)

* 2=gimm (id.ptrvalue)

* 3=local (id.ptrvalue to Object-id)

* 4=general (id.ptrvalue to Dbtag)

* SeqFeatData is built into datatype/data

* datatype gives type of SeqFeatData:

* 0 = not set

 1 = gene, data.value.ptrvalue = Gene-ref ,

 2 = org , data.value.ptrvalue = Org-ref ,

 3 = cdregion, data.value.ptrvalue = Cdregion ,

 4 = prot , data.value.ptrvalue = Prot-ref ,

 5 = rna, data.value.ptrvalue = RNA-ref ,

 6 = pub, data.value.ptrvalue = Pubdesc , -- publication applies to this seq

 7 = seq, data.value.ptrvalue = Seq-loc , -- for tracking source of a seq.

 8 = imp, data.value.ptrvalue = Imp-feat ,

 9 = region, data.value.ptrvalue= VisibleString, -- for a name

 10 = comment, data.value.ptrvalue= NULL , -- just a comment

 11 = bond, data.value.intvalue = ENUMERATED {

 disulfide (1) ,

 thiolester (2) ,

 xlink (3) ,

 other (255) } ,

 12 = site, data.value.intvalue = ENUMERATED {

 active (1) ,

 binding (2) ,

 cleavage (3) ,

 inhibit (4) ,

 modified (5),

 other (255) } ,

 13 = rsite, data.value.ptrvalue = Rsite-ref

 14 = user, data.value.ptrvalue = UserObjectPtr

 15 = txinit, data.value.ptrvalue = TxinitPtr

16 = num, data.value.ptrvalue = NumberingPtr -- a numbering system

17 = psec-str data.value.intvalue = ENUMERATED { -- protein secondary structure

helix (1) , -- any helix

sheet (2) , -- beta sheet

turn (3) } , -- beta or gamma turn

18 = non-std-residue data.value.ptrvalue = VisibleString , -- non-standard residue here in seq

19 = het data.value.ptrvalue=CharPtr Heterogen -- cofactor, prosthetic grp, etc, bound to seq

*

*

***/

typedef struct seqfeat {

 Choice id;

 Choice data;

 Boolean partial ,

 except;

 CharPtr comment;

 ValNodePtr product ,

 location;

 GBQualPtr qual;

 CharPtr title;

 UserObjectPtr ext;

 ValNodePtr cit; /* citations (Pub-set) */

Uint1 exp_ev;

SeqFeatXrefPtr xref;

 struct seqfeat PNTR next;

} SeqFeat, PNTR SeqFeatPtr;

SeqFeatPtr SeqFeatNew PROTO((void));

Boolean SeqFeatAsnWrite PROTO((SeqFeatPtr anp, AsnIoPtr aip, AsnTypePtr atp));

SeqFeatPtr SeqFeatAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

SeqFeatPtr SeqFeatFree PROTO((SeqFeatPtr anp));

 /* get a SeqFeatXref from a feature. Currently only Prot-ref and */

 /* Gene-ref are supported */

SeqFeatXrefPtr SeqFeatToXref PROTO((SeqFeatPtr sfp));

/***

*

* SeqFeatId - used as parts of other things, so is not allocated itself

*

***/

void SeqFeatIdFree PROTO((ChoicePtr cp)); /* does NOT free cp itself */

Boolean SeqFeatIdAsnWrite PROTO((ChoicePtr cp, AsnIoPtr aip, AsnTypePtr orig));

Boolean SeqFeatIdAsnRead PROTO((AsnIoPtr aip, AsnTypePtr orig, ChoicePtr cp));

 /** NOTE: SeqFeatIdAsnRead() does NOT allocate cp ***/

Boolean SeqFeatIdDup PROTO((ChoicePtr dest, ChoicePtr src));

/***

*

* SeqFeatData - used as parts of other things, so is not allocated itself

*

***/

void SeqFeatDataFree PROTO((ChoicePtr cp)); /* does NOT free cp itself */

Boolean SeqFeatDataAsnWrite PROTO((ChoicePtr cp, AsnIoPtr aip, AsnTypePtr orig));

Boolean SeqFeatDataAsnRead PROTO((AsnIoPtr aip, AsnTypePtr orig, ChoicePtr cp));

 /** NOTE: SeqFeatDataAsnRead() does NOT allocate cp ***/

/***

*

* SeqFeatSet - sets of seqfeats

*

***/

Boolean SeqFeatSetAsnWrite PROTO((SeqFeatPtr anp, AsnIoPtr aip, AsnTypePtr set, AsnTypePtr element));

SeqFeatPtr SeqFeatSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr set, AsnTypePtr element));

/***

*

* CodeBreak

*

***/

typedef struct cb {

 SeqLocPtr loc; /* the Seq-loc */

 Choice aa; /* 1=ncbieaa, 2=ncbi8aa, 3=ncbistdaa */

 struct cb PNTR next;

} CodeBreak, PNTR CodeBreakPtr;

CodeBreakPtr CodeBreakNew PROTO((void));

Boolean CodeBreakAsnWrite PROTO((CodeBreakPtr cbp, AsnIoPtr aip, AsnTypePtr atp));

CodeBreakPtr CodeBreakAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

CodeBreakPtr CodeBreakFree PROTO((CodeBreakPtr cbp));

/***

*

* CdRegion

*

***/

typedef struct cdregion {

 Boolean orf;

 Uint1 frame;

 Boolean conflict;

 Uint1 gaps, /* 255 = any number > 254 */

 mismatch,

 stops;

 ValNodePtr genetic_code; /* NULL = not set */

 CodeBreakPtr code_break;

} CdRegion, PNTR CdRegionPtr;

CdRegionPtr CdRegionNew PROTO((void));

Boolean CdRegionAsnWrite PROTO((CdRegionPtr cdp, AsnIoPtr aip, AsnTypePtr atp));

CdRegionPtr CdRegionAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

CdRegionPtr CdRegionFree PROTO((CdRegionPtr cdp));

/***

*

* GeneticCode

*

* ncbieaa, ncbi8aa, ncbistdaa

* are arrays 64 cells long, where each cell gives the aa produced

* by triplets coded by T=0, C=1, A=2, G=3

* TTT = cell[0]

* TTC = cell[1]

* TTA = cell[2]

* TTG = cell[3]

* TCT = cell[4]

* ((base1 * 16) + (base2 * 4) + (base3)) = cell in table

*

* sncbieaa, sncbi8aa, sncbistdaa

*
are arrays same as above, except the AA's they code for are only for

*
the first AA of a peptide. This accomdates alternate start codes.

* If a codon is not a valid start, the cell contains the "gap" symbol

* instead of an AA.

*

* in both cases, IUPAC cannot be used because it has no symbol for

* stop.

*

*

* GeneticCode is a ValNodePtr so variable numbers of elements are

*
easily accomodated. A ValNodePtr with choice = 254 is the head

* of the list. It's elements are a chain of ValNodes beginning with

* the data.ptrvalue of the GeneticCode (head). GeneticCodeNew()

* returns the head.

*

* Types in ValNodePtr->choice are:

*
0 = not set

*
1 = name (CharPtr in ptrvalue)

*
2 = id
(in intvalue)

*
3 = ncbieaa (CharPtr in ptrvalue)

*
4 = ncbi8aa (ByteStorePtr in ptrvalue)

*
5 = ncbistdaa (ByteStorePtr in ptrvalue)

*
6 = sncbieaa (CharPtr in ptrvalue)

*
7 = sncbi8aa (ByteStorePtr in ptrvalue)

*
8 = sncbistdaa (ByteStorePtr in ptrvalue)

*
255 = read unrecognized type, but passed ASN.1

*

***/

typedef ValNodePtr GeneticCodePtr;

GeneticCodePtr GeneticCodeNew PROTO((void));

Boolean GeneticCodeAsnWrite PROTO((GeneticCodePtr gcp, AsnIoPtr aip, AsnTypePtr atp));

GeneticCodePtr GeneticCodeAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

GeneticCodePtr GeneticCodeFree PROTO((GeneticCodePtr gcp));

Boolean GeneticCodeTableAsnWrite PROTO((GeneticCodePtr gcp, AsnIoPtr aip, AsnTypePtr atp));

GeneticCodePtr GeneticCodeTableAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

GeneticCodePtr GeneticCodeFind PROTO((Int4 id, CharPtr name));

GeneticCodePtr GeneticCodeTableLoad PROTO((void));

/***

*

* ImpFeat

*

***/

typedef struct impfeat {

 CharPtr key,

 loc,

 descr;

} ImpFeat, PNTR ImpFeatPtr;

ImpFeatPtr ImpFeatNew PROTO((void));

Boolean ImpFeatAsnWrite PROTO((ImpFeatPtr ifp, AsnIoPtr aip, AsnTypePtr atp));

ImpFeatPtr ImpFeatAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

ImpFeatPtr ImpFeatFree PROTO((ImpFeatPtr ifp));

/***

*

* RnaRef

* Choice used for extensions

* 0 = no extension

* 1 = name, ext.value.ptrvalue = CharPtr

* 2 = trna, ext.value.ptrvalue = tRNA

*

***/

typedef struct rnaref {

 Uint1 type;

 Boolean pseudo;

 Choice ext;

} RnaRef, PNTR RnaRefPtr;

RnaRefPtr RnaRefNew PROTO((void));

Boolean RnaRefAsnWrite PROTO((RnaRefPtr rrp, AsnIoPtr aip, AsnTypePtr atp));

RnaRefPtr RnaRefAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

RnaRefPtr RnaRefFree PROTO((RnaRefPtr rrp));

/***

*

* tRNA

*

***/

typedef struct trna {

 Uint1 aatype, /* 0=not set, 1=iupacaa, 2=ncbieaa, 3=ncbi8aa 4=ncbistdaa */

 aa; /* the aa transferred in above code */

 Uint1 codon[6]; /* codons recognized, coded as for Genetic-code */

} tRNA, PNTR tRNAPtr; /* 0-63 = codon, 255=no data in cell */

/***

*

* GeneRef

*

***/

typedef struct generef {

 CharPtr locus,

 allele,

 desc,

 maploc;

 Boolean pseudo;

 ValNodePtr db; /* ids in other databases */

 ValNodePtr syn; /* synonyms for locus */

} GeneRef, PNTR GeneRefPtr;

GeneRefPtr GeneRefNew PROTO((void));

Boolean GeneRefAsnWrite PROTO((GeneRefPtr grp, AsnIoPtr aip, AsnTypePtr atp));

GeneRefPtr GeneRefAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

GeneRefPtr GeneRefFree PROTO((GeneRefPtr grp));

GeneRefPtr GeneRefDup PROTO((GeneRefPtr grp));

/***

*

* OrgRef

*

***/

typedef struct orgref {

 CharPtr taxname,

 common;

 ValNodePtr mod;

 ValNodePtr db; /* ids in other databases */

 ValNodePtr syn; /* synonyms for taxname and/or common */

} OrgRef, PNTR OrgRefPtr;

OrgRefPtr OrgRefNew PROTO((void));

Boolean OrgRefAsnWrite PROTO((OrgRefPtr orp, AsnIoPtr aip, AsnTypePtr atp));

OrgRefPtr OrgRefAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

OrgRefPtr OrgRefFree PROTO((OrgRefPtr orp));

/***

*

* ProtRef

*

***/

typedef struct protref {

 ValNodePtr name;

 CharPtr desc;

 ValNodePtr ec,

 activity;

 ValNodePtr db; /* ids in other databases */

} ProtRef, PNTR ProtRefPtr;

ProtRefPtr ProtRefNew PROTO((void));

Boolean ProtRefAsnWrite PROTO((ProtRefPtr orp, AsnIoPtr aip, AsnTypePtr atp));

ProtRefPtr ProtRefAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

ProtRefPtr ProtRefFree PROTO((ProtRefPtr orp));

ProtRefPtr ProtRefDup PROTO((ProtRefPtr orp));

/***

*

* RsiteRef

* uses an ValNode

* choice = 1 = str

* 2 = db

*

***/

typedef ValNodePtr RsiteRefPtr;

Boolean RsiteRefAsnWrite PROTO((RsiteRefPtr orp, AsnIoPtr aip, AsnTypePtr atp));

RsiteRefPtr RsiteRefAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

RsiteRefPtr RsiteRefFree PROTO((RsiteRefPtr orp));

/***

*

* Txinit

* Transcription initiation site

*

***/

typedef struct txevidence {

 Uint1 exp_code ,

 exp_sys ;

 Boolean low_prec_data ,

 from_homolog;

 struct txevidence PNTR next;

} TxEvidence, PNTR TxEvidencePtr;

typedef struct txinit {

 CharPtr name;

 ValNodePtr syn ,

 gene ,

 protein ,

 rna ;

 CharPtr expression;

 Uint1 txsystem;

 CharPtr txdescr;

 OrgRefPtr txorg;

 Boolean mapping_precise,

 location_accurate;

 Uint1 inittype; /* 255 if not set */

 TxEvidencePtr evidence;

} Txinit, PNTR TxinitPtr;

TxinitPtr TxinitNew PROTO((void));

Boolean TxinitAsnWrite PROTO((TxinitPtr txp, AsnIoPtr aip, AsnTypePtr atp));

TxinitPtr TxinitAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

TxinitPtr TxinitFree PROTO((TxinitPtr txp));

#ifdef __cplusplus

}

#endif

#endif

Sequence Alignments

Introduction
Seq-align
Score: Score Of An Alignment Or Segment
Dense-diag: Segments For "diags" Seq-align
Dense-seg: Segments for "global" or "partial" Seq-align
Std-seg: Aligning Any Bioseq Type With Any Other
ASN.1 Specification: seqalign.asn
C Structures and Functions: objalign.h

 Introduction

A sequence alignment is a mapping of the coordinates of one Bioseq onto the coordinates of one or more other Bioseqs. Such a mapping may be associated with a score and/or a method for doing the alignment. An alignment can be generated algorithmically by software or manually by a scientist. The Seq-align object is designed to capture the final result of the process, not the process itself.

A Seq-align is one of the forms of Seq-annot and is as acceptable a sequence annotation as a feature table. Seq-aligns would normally be "packaged" in a Seq-annot for exchange with other tools or databases so the alignments can be identified and given a title.

The most common sequence alignment is from one sequence to another with a one to one relationship between the aligned residues of one sequence with the residues of the other (with allowance for gaps). Two types of Seq-align types, Dense-seg and Dense-diag are specifically for this type of alignment. The Std-seg, on the other hand, is very generic and does not assume that the length of one aligned region is necessarily the same as the other. This permits expansion and contraction of one Bioseq relative to another, which is necessary in the case of a physical map Bioseq aligned to a genetic map Bioseq, or a sequence Bioseq aligned with any map Bioseq.

All the forms of Seq-align are composed of segments. Each segment is an aligned region which contains only sequence or only a gap for any sequence in the alignment. Below is a three dimensional alignment with six segments:

Seq-ids

id=100

AAGGCCTTTTAGAGATGATGATGATGATGA

id=200

AAGGCCTaTTAG.......GATGATGATGA

id=300

....CCTTTTAGAGATGATGAT....ATGA

| 1 | 2 | 3 |4| 5 | 6| Segments

Taking only two of the sequences in a two way alignment, only three segments are needed to define the alignment:

Seq-ids

id=100

AAGGCCTTTTAGAGATGATGATGATGATGA

id=200

AAGGCCTaTTAG.......GATGATGATGA

| 1 | 2 | 3 | Segments

Seq-align

A Seq-align is a collection of segments representing one complete alignment. The whole Seq‑align may have a Score representing some measure of quality or attributing the method used to build the Seq-align. In addition, each segment may have a score for that segment alone.

type: global

A global alignment is the alignment of Bioseqs over their complete length. It expresses the relationship between the intact Bioseqs. As such it is typically used in studies of homology between closely related proteins or genomes where there is reason to believe they share a common origin over their complete lengths.

The segments making up a global alignment are assumed to be connected in order from first to last to make up the alignment, and that the full lengths of all sequences will be accounted for in the alignment.

type: partial

A partial alignment only defines a relationship between sequences for the lengths actually included in the alignment. No claim is made that the relationship pertains to the full lengths of any of the sequences.

Like a global alignment, the segments making up a partial alignment are assumed to be connected in order from first to last to make up the alignment. Unlike a global alignment, it is not assumed the alignment will necessarily account for the full lengths of any or all sequences.

A partial or global alignment may use either the "denseg" choice of segment (for aligned Bioseqs with one to one residue mappings, such as protein or nucleic acid sequences) or the "std" choice for any Bioseqs including maps. In both cases there is an ordered relationship between one segment and the next to make the complete alignment.

type: diags

A Seq-align of type "diags" means that each segment is independent of the next and no claims are made about the reasonableness of connecting one segment to another. This is the kind of relationship shown by a "dot matrix" display. A series of diagonal lines in a square matrix indicate unbroken regions of similarity between the sequences. However, diagonals may overlap multiple times, or regions of the matrix may have no diagonals at all. The "diags" type of alignment captures that kind of relationship, although it is not limited to two dimensions as a dot matrix is.

The "diags" type of Seq-align may use either the "dendiag" choice of segment (for aligned Bioseqs with one to one residue mappings, such as protein or nucleic acid sequences) or the "std" choice for any Bioseqs including maps. In both cases the SEQUENCE OF does not imply any ordered relationship between one segment and the next. Each segment is independent of any other.

dim: Dimensionality Of The Alignment

Most scientists are familiar with pairwise, or two dimensional, sequence alignments. However, it is often useful to align sequences in more dimensions. The "dim" attribute of Seq-align indicates the number of sequences which are SIMULTANEOUSLY aligned. A three dimensional alignment is a true three way alignment (ABC), not three pairwise alignments (AB, AC, BC). Three pairwise alignments are three Seq-align objects, each with dimension equal to two.

Another common situation is when many sequences are aligned to one, as is the case of a merge of a number of components into a larger sequence, or the relationship of many mutant alleles to the wild type sequence. This is also a collection of two dimensional alignments, where one of the Bioseqs is common to all alignments. If the wild type Bioseq is A, and the mutants are B, C, D, then the Seq-annot would contain three two dimensional alignments, AB, AC, AD.

The "dim" attribute at the level of the Seq-align is OPTIONAL, while the "dim" attribute is required on EACH segment. This is because it is convenient for a global or partial alignment to know the dimensionality for the whole alignment. It is also an integrity check that every segment in such a Seq-align has the same dimension. For "diags" however, the segments are independent of each other, and may even have different dimensions. This would be true for algorithms that locate the best n-way diagonals, where n can be 2 to the number of sequences. For a simple dot-matrix, all segments would be dimension two.

Score: Score Of An Alignment Or Segment

A Score contains an id (of type Object-id) which is meant to identify the method used to generate the score. It could be a string (e.g. "BLAST raw score", "BLAST p value") or an integer for use by a software system planning to process an number of defined values. The value of the Score is either an integer or real number. Both Seq-align and segment types allow more than one Score so that a variety of measures for the same alignment can be accommodated.

Dense-diag: Segments For "diags" Seq-align

A Seq-align of type "diags" represents a series of unconnected diagonals as a SEQUENCE OF Dense-diag. Since each Dense-diag is unrelated to the next the SEQUENCE OF just suggests a presentation order. It does not imply anything about the reasonableness of joining one Dense-diag to the next. In fact, for a multi-sequence comparison, each Dense-diag may have a different dimension and/or include Bioseqs not included by another Dense-diag.

A single Dense-diag defines its dimension with "dim". There should be "dim" number of Seq-id in "ids", indicating the Bioseqs involved in the segment, in order. There should be "dim" number of integers in "starts" (offsets into the Bioseqs, starting with 0, as in any Seq-loc) indicating the first (lowest numbered) residue of each Bioseq involved in the segment is, in the same order as "ids". The "len" indicates the length of all Bioseqs in the segment. Thus the last residue involved in the segment for every Bioseq will be its "start" plus ("len " - 1).

In the case of nucleic acids, if any or all of the segments are on the complement strand of the original bioseq, then there should be "dim" number of Na-strand in "strands" in the same order as "ids", indicating which segments are on the plus or minus strands. The fact that a segment is on the minus strand or not does NOT affect the values chosen for "starts". It is still the lowest numbered offset of a residue involved in the segment.

Clearly all Bioseq regions involved in a Dense-diag must have the same length, so this form does not allow stretching of one Bioseq compared to another, as may occur when comparing a genetic map Bioseq to a physical map or sequence Bioseq. In this case one would use Std-seg.

Dense-seg: Segments for "global" or "partial" Seq-align

A Dense-seg is a single entity which describes a complete global or partial alignment containing many segments. Like Dense-diag above, it is only appropriate when there is no stretching of the Bioseq coordinates relative to each other (as may happen when aligning a physical to a genetic map Bioseq). In that case, one would use a SEQUENCE OF Std-seg, described below.

A Dense-seg must give the dimension of the alignment in "dim" and the number of segments in the alignment in "numseg". The "ids" slot must contain "dim" number of "Seq-ids" for the Bioseqs used in the alignment.

The "starts" slot contains the lowest numbered residue contained in each segment, in "ids" order. The "starts" slot should have "numseg" times "dim" integers, or the start of each Bioseq in the first segment in "ids" order, followed by the start of each Bioseq in the second segment in "ids" order and so on. A "start" of minus one indicates that the Bioseq is not present in the segment (i.e. a gap in a Bioseq).

The "lens" slot contains the length of each segment in segment order, so "lens" will contain "numseg" integers.

If any or all of the sequences are on the minus strand of the original Bioseq, then there should be "numseg" times "dim" Na-strand values in "strands" in the same order as "starts". Whether a sequence segment is on the plus or minus strand has NO effect on the value selected for "starts". It is ALWAYS the lowest numbered residue included in the segment.

The "scores" is a SEQUENCE OF Score, one for each segment. So there should be "numseg" Scores, if "scores" is filled. A single Score for the whole alignment would appear in the "score" slot of the Seq-align.

The three dimensional alignment show above is repeated below, followed by its ASN.1 encoding into a Seq-align using Dense-seg. The Seq-ids are given in the ASN.1 as type "local".

Seq-ids

id=100

AAGGCCTTTTAGAGATGATGATGATGATGA

id=200

AAGGCCTaTTAG.......GATGATGATGA

id=300

....CCTTTTAGAGATGATGAT....ATGA

| 1 | 2 | 3 |4| 5 | 6| Segments

Seq-align ::= {

type global ,

dim 3 ,

segs denseg {

dim 3 ,

numseg 6 ,

ids {

local id 100 ,

local id 200 ,

local id 300 } ,

starts { 0,0,-1, 4,4,0, 12,-1,8, 19,12,15, 22,15,-1, 26,19,18 } ,

lens { 4, 8, 7, 3, 4, 4 } } }
Std-seg: Aligning Any Bioseq Type With Any Other

A SEQUENCE OF Std-seg can be used to describe any Seq-align type on any types of Bioseqs. A Std-seg is very purely a collection of correlated Seq-locs. There is no requirement that the length of each Bioseq in a segment be the same as the other members of the segment or that the same Seq-loc type be used for each member of the segment. This allows stretching of one Bioseq relative to the other(s) and potentially very complex descriptions of relationships between sequences.

Each Std-seg must give its dimension, so it can be used for "diags". Optionally it can give the Seq-ids for the Bioseqs used in the segment (again a convenience for Seq-align of type "diags"). The "loc" slot gives the locations on the Bioseqs used in this segment. As usual, there is also a place for various Score(s) associated with the segment. The example given above is presented again, this time as a Seq-align using Std-segs. Note the use of Seq-loc type "empty" to indicate a gap. Alternatively one could simply change the "dim" for each segment to exclude the Bioseqs not present in the segment, although this would require more interpretation by software.

Seq-ids

id=100

AAGGCCTTTTAGAGATGATGATGATGATGA

id=200

AAGGCCTaTTAG.......GATGATGATGA

id=300

....CCTTTTAGAGATGATGAT....ATGA

| 1 | 2 | 3 |4| 5 | 6| Segments

Seq-align ::= {

type global ,

dim 3 ,

segs std {

{

dim 3 ,

loc {

int {

id local id 100 ,

from 0 ,

to 3 } ,

int {

id local id 200 ,

from 0 ,

to 3 } ,

empty local id 300 } ,

{

dim 3 ,

loc {

int {

id local id 100 ,

from 4 ,

to 11 } ,

int {

id local id 200 ,

from 4 ,

to 11 } ,

int {

id local id 300 ,

from 0 ,

to 7 } } ,

{

dim 3 ,

loc {

int {

id local id 100 ,

from 12 ,

to 18 } ,

empty local id 200 ,

int {

id local id 300 ,

from 8 ,

to 14 } } ,

{

dim 3 ,

loc {

int {

id local id 100 ,

from 19 ,

to 21 } ,

int {

id local id 200 ,

from 12 ,

to 14 } ,

int {

id local id 300 ,

from 15 ,

to 17 } } ,

{

dim 3 ,

loc {

int {

id local id 100 ,

from 22 ,

to 25 } ,

int {

id local id 200 ,

from 15 ,

to 18 } ,

empty local id 300 } ,

{

dim 3 ,

loc {

int {

id local id 100 ,

from 26 ,

to 29 } ,

int {

id local id 200 ,

from 19 ,

to 22 } ,

int {

id local id 300 ,

from 18 ,

to 21 } } } }

Clearly the Std-seg method should only be used when its flexibility is required. Nonetheless, there is no ready substitute for Std-seg when flexibility is demanded.

ASN.1 Specification: seqalign.asn

--$Revision: 2.0 $

--**

--

-- NCBI Sequence Alignment elements

-- by James Ostell, 1990

--

--**

NCBI-Seqalign DEFINITIONS ::=

BEGIN

EXPORTS Seq-align;

IMPORTS Seq-id, Seq-loc , Na-strand FROM NCBI-Seqloc

 Object-id FROM NCBI-General;

--*** Sequence Alignment ********************************

--*

Seq-align ::= SEQUENCE {

 type ENUMERATED {

 not-set (0) ,

 global (1) ,

 diags (2) ,

 partial (3) , -- mapping pieces together

 other (255) } ,

 dim INTEGER OPTIONAL , -- dimensionality

 score SET OF Score OPTIONAL , -- for whole alignment

 segs CHOICE { -- alignment data

 dendiag SEQUENCE OF Dense-diag ,

 denseg Dense-seg ,

 std SEQUENCE OF Std-seg } }

Dense-diag ::= SEQUENCE { -- for (multiway) diagonals

 dim INTEGER DEFAULT 2 , -- dimensionality

 ids SEQUENCE OF Seq-id , -- sequences in order

 starts SEQUENCE OF INTEGER , -- start OFFSETS in ids order

 len INTEGER , -- len of aligned segments

 strands SEQUENCE OF Na-strand OPTIONAL ,

 scores SET OF Score OPTIONAL }

 -- Dense-seg: the densist packing for sequence alignments only.

 -- a start of -1 indicates a gap for that sequence of

 -- length lens.

 --

 -- id=100 AAGGCCTTTTAGAGATGATGATGATGATGA

 -- id=200 AAGGCCTTTTAG.......GATGATGATGA

 -- id=300 CCTTTTAGAGATGATGAT....ATGA

 --

 -- dim = 3, numseg = 6, ids = { 100, 200, 300 }

 -- starts = { 0,0,-1, 4,4,0, 12,-1,8, 19,12,15, 22,15,-1, 26,19,18 }

 -- lens = { 4, 8, 7, 3, 4, 4 }

 --

Dense-seg ::= SEQUENCE { -- for (multiway) global or partial alignments

 dim INTEGER DEFAULT 2 , -- dimensionality

 numseg INTEGER , -- number of segments here

 ids SEQUENCE OF Seq-id , -- sequences in order

 starts SEQUENCE OF INTEGER , -- start OFFSETS in ids order within segs

 lens SEQUENCE OF INTEGER , -- lengths in ids order within segs

 strands SEQUENCE OF Na-strand OPTIONAL ,

 scores SEQUENCE OF Score OPTIONAL } -- score for each seg

Std-seg ::= SEQUENCE {

 dim INTEGER DEFAULT 2 , -- dimensionality

 ids SEQUENCE OF Seq-id OPTIONAL ,

 loc SEQUENCE OF Seq-loc ,

 scores SET OF Score OPTIONAL }

Score ::= SEQUENCE {

 id Object-id OPTIONAL ,

 value CHOICE {

 real REAL ,

 int INTEGER } }

END

C Structures and Functions: objalign.h

/* objalign.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: objalign.h

*

* Author: James Ostell

*

* Version Creation Date: 4/1/91

*

* $Revision: 2.0 $

*

* File Description: Object manager interface for module NCBI-Seqalign

*

* Modifications:

* --

* Date
 Name Description of modification

* ------- ---------- ---

*

*

* ==

*/

#ifndef _NCBI_Seqalign_

#define _NCBI_Seqalign_

#ifndef _ASNTOOL_

#include <asn.h>

#endif

#ifndef _NCBI_General_

#include <objgen.h>

#endif

#ifndef _NCBI_Seqloc_

#include <objloc.h>

#endif

#ifdef __cplusplus

extern "C" {

#endif

/***

*

* loader

*

***/

extern Boolean SeqAlignAsnLoad PROTO((void));

/***

*

* internal structures for NCBI-Seqalign objects

*

***/

/***

*

* Score

* NOTE: read, write, and free always process GROUPS of scores

*

***/

typedef struct score {

 ObjectIdPtr id;

 Uint1 choice; /* 0=not set, 1=int, 2=real */

 DataVal value;

 struct score PNTR next; /* for sets of scores */

} Score, PNTR ScorePtr;

ScorePtr ScoreNew PROTO((void));

Boolean ScoreSetAsnWrite PROTO((ScorePtr sp, AsnIoPtr aip, AsnTypePtr settype, AsnTypePtr elementtype));

ScorePtr ScoreSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr settype, AsnTypePtr elementtype));

ScorePtr ScoreSetFree PROTO((ScorePtr anp));

/***

*

* SeqAlign

* type = type of alignment

 not-set (0) ,

 global (1) ,

 diags (2) ,

 partial (3) , -- mapping pieces together

 other (255) } ,

 segtype = type of segs structure

 not-set 0

 dendiag 1

 denseq 2

 std 3

*

*

***/

typedef struct seqalign {

 Uint1 type,

 segtype;

 Int2 dim;

 ScorePtr score;

 Pointer segs;

 struct seqalign PNTR next;

} SeqAlign, PNTR SeqAlignPtr;

SeqAlignPtr SeqAlignNew PROTO((void));

Boolean SeqAlignAsnWrite PROTO((SeqAlignPtr anp, AsnIoPtr aip, AsnTypePtr atp));

SeqAlignPtr SeqAlignAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

SeqAlignPtr SeqAlignFree PROTO((SeqAlignPtr anp));

/***

*

* SeqAlignSet

*

***/

Boolean SeqAlignSetAsnWrite PROTO((SeqAlignPtr anp, AsnIoPtr aip, AsnTypePtr set, AsnTypePtr element));

SeqAlignPtr SeqAlignSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr set, AsnTypePtr element));

/***

*

* DenseDiag

*

*

***/

typedef struct dendiag {

 Int2 dim; /* this is a convenience, not in asn1 */

 SeqIdPtr id;

 Int4Ptr starts;

 Int4 len;

 Uint1Ptr strands;

 ScorePtr scores;

 struct dendiag PNTR next;

} DenseDiag, PNTR DenseDiagPtr;

DenseDiagPtr DenseDiagNew PROTO((void));

Boolean DenseDiagAsnWrite PROTO((DenseDiagPtr ddp, AsnIoPtr aip, AsnTypePtr atp));

DenseDiagPtr DenseDiagAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

DenseDiagPtr DenseDiagFree PROTO((DenseDiagPtr ddp));

/***

*

* DenseSeg

*

*

***/

typedef struct denseg {

 Int2 dim,

 numseg;

 SeqIdPtr ids;

 Int4Ptr starts;

 Int4Ptr lens;

 Uint1Ptr strands;

 ScorePtr scores;

} DenseSeg, PNTR DenseSegPtr;

DenseSegPtr DenseSegNew PROTO((void));

Boolean DenseSegAsnWrite PROTO((DenseSegPtr dsp, AsnIoPtr aip, AsnTypePtr atp));

DenseSegPtr DenseSegAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

DenseSegPtr DenseSegFree PROTO((DenseSegPtr dsp));

/***

*

* StdSeg

*

*

***/

typedef struct stdseg {

 Int2 dim;

 SeqIdPtr ids; /* SeqId s */

 SeqLocPtr loc; /* SeqLoc s */

 ScorePtr scores;

 struct stdseg PNTR next;

} StdSeg, PNTR StdSegPtr;

StdSegPtr StdSegNew PROTO((void));

Boolean StdSegAsnWrite PROTO((StdSegPtr ssp, AsnIoPtr aip, AsnTypePtr atp));

StdSegPtr StdSegAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

StdSegPtr StdSegFree PROTO((StdSegPtr ssp));

#ifdef __cplusplus

}

#endif

#endif

Sequence Graphs

Introduction
Seq-graph: Graph on a Bioseq
ASN.1 Specification: seqres.asn
C Structures and Functions: objres.h

 Introduction

Analytical tools can attach results to Bioseqs in named collections as Seq-annots. This allows analytical programs developed from various sources to add information to a standard object (the Bioseq) and then let a single program designed for displaying a Bioseq and its associated information show the analytical results in an integrated fashion. Feature tables have been discussed previously, and can serve as the vehicle for results from restriction mapping programs, motif searching programs, open reading frame locators, and so on. Alignment programs and curator tools can produce Seq-annots containing Seq-aligns. In this chapter we present the third annotation type, a graph, which can be used to show properties like G+C content, surface potential, hydrophobicity, and so on.

Seq-graph: Graph on a Bioseq

A Seq-graph defines some continuous set of values over a defined interval on a Bioseq. It has slots for a title and a comment. The "loc" field defines the region of the Bioseq to which the graph applies. Titles can be given for the X (graph value) axis and/or the Y (sequence axis) of the graph. The "comp" slot allows a compression to supplied (i.e. how many residues are represented by a single value of the graph?). Compression is assumed to be one otherwise. Scaling values, a and b can be used to scale the values given in the Seq-graph to those displayed on the graph (by the formula "display value" = (a times "graph value") plus b). Finally, the number of values in the graph must be given (and should agree with the length of "loc" divided by "comp").

The graphs themselves can be coded as byte, integer, or real values. Each type defines the maximum and minimum values to show on the graph (no given values need necessarily reach the maximum or minimum) and the value along which to draw the X axis of the graph.

ASN.1 Specification: seqres.asn

--$Revision: 2.0 $

--**

--

-- NCBI Sequence Analysis Results (other than alignments)

-- by James Ostell, 1990

--

--**

NCBI-Seqres DEFINITIONS ::=

BEGIN

EXPORTS Seq-graph;

IMPORTS Seq-loc FROM NCBI-Seqloc;

--*** Sequence Graph ********************************

--*

--* for values mapped by residue or range to sequence

--*

Seq-graph ::= SEQUENCE {

 title VisibleString OPTIONAL ,

 comment VisibleString OPTIONAL ,

 loc Seq-loc , -- region this applies to

 title-x VisibleString OPTIONAL , -- title for x-axis

 title-y VisibleString OPTIONAL ,

 comp INTEGER OPTIONAL , -- compression (residues/value)

a REAL OPTIONAL , -- for scaling values

b REAL OPTIONAL , -- display = (a x value) + b

 numval INTEGER , -- number of values in graph

 graph CHOICE {

 real Real-graph ,

 int Int-graph ,

 byte Byte-graph } }

Real-graph ::= SEQUENCE {

 max REAL , -- top of graph

 min REAL , -- bottom of graph

 axis REAL , -- value to draw axis on

 values SEQUENCE OF REAL }

Int-graph ::= SEQUENCE {

 max INTEGER ,

 min INTEGER ,

 axis INTEGER ,

 values SEQUENCE OF INTEGER }

Byte-graph ::= SEQUENCE { -- integer from 0-255

 max INTEGER ,

 min INTEGER ,

 axis INTEGER ,

 values OCTET STRING }

END

C Structures and Functions: objres.h

/* objres.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: objres.h

*

* Author: James Ostell

*

* Version Creation Date: 4/1/91

*

* $Revision: 2.0 $

*

* File Description: Object manager interface for module NCBI-Seqres

*

* Modifications:

* --

* Date
 Name Description of modification

* ------- ---------- ---

*

*

* ==

*/

#ifndef _NCBI_Seqres_

#define _NCBI_Seqres_

#ifndef _ASNTOOL_

#include <asn.h>

#endif

#ifndef _NCBI_Seqloc_

#include <objloc.h>

#endif

#ifdef __cplusplus

extern "C" {

#endif

/***

*

* loader

*

***/

extern Boolean SeqResAsnLoad PROTO((void));

/***

*

* internal structures for NCBI-SeqRes objects

*

***/

/***

*

* SeqGraph

*

***/

typedef struct seqgraph {

 CharPtr title,

 comment;

 SeqLocPtr loc; /* SeqLoc */

 CharPtr titlex,

 titley;

 Uint1 flags[3]; /* [0]-comp used?,[1]-a,b used?, [2] graphtype */

 Int4 compl; /* 1=real, 2=int, 3=byte */

 FloatHi a, b;

 Int4 numval;

 DataVal max,

 min,

 axis;

 Pointer values; /* real=array of FloatHi, int=array of Int4, */

 struct seqgraph PNTR next; /* byte = ByteStore */

} SeqGraph, PNTR SeqGraphPtr;

SeqGraphPtr SeqGraphNew PROTO((void));

Boolean SeqGraphAsnWrite PROTO((SeqGraphPtr sgp, AsnIoPtr aip, AsnTypePtr atp));

SeqGraphPtr SeqGraphAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

SeqGraphPtr SeqGraphFree PROTO((SeqGraphPtr sgp));

/***

*

* SeqGraphSet

*

***/

Boolean SeqGraphSetAsnWrite PROTO((SeqGraphPtr sgp, AsnIoPtr aip, AsnTypePtr set, AsnTypePtr element));

SeqGraphPtr SeqGraphSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr set, AsnTypePtr element));

#ifdef __cplusplus

}

#endif

#endif

Sequence Utilities

Introduction
Demo: seqtest.c
Finding Features and Descriptors in an Entry
Exploring an Object Using ASN.1 Defined Names
C Structures and Functions: sequtil.h
C Structures and Functions: seqport.h

 Introduction

This chapter discusses a number of high level sequence manipulation functions available in the api directory of the toolkit release. These include functions for exploring data structures, comparing them, or querying their attributes. Also included are routines to output Seq-entrys in GenBank format, report format or FASTA format, and for outputting MEDLINE records in MEDLARS format.

Until the narrative text of this chapter can be written, we have simply included the relevant header files and some examples of function uses with listing of some of the programs in the demo directory of the toolkit release.

Demo: seqtest.c

Seqtest reads an ASN.1 formatted Seq-entry file into memory. It then uses BioseqExplore to count the number of "real" sequences. The file "example.prt" contains a segmented nucleic acid with two segments of DNA and with two proteins connected by a CdRegion. BioseqExplore reports 3 sequences for it, one nucleic acid (the segmented one... the two segments are really part of one nucleic acid sequence) and 2 proteins. It then uses utility functions to determine their lengths and number of gaps (unspecified spaces, such as between the two segments of the segmented sequence). It prints:

A.variabilis nifD gene 5' recombination site.

len=497 gaps=1 segs=3

 len = 204

 len = 0

 len = 293

xisA peptide A (alt.)

len=44 gaps=0 segs=1

xisA peptide B (alt.)

len=5 gaps=0 segs=1

It then opens a SeqPort on the segmented nucleic acid sequence, specifying the plus strand and the IUPAC nucleic acid alphabet. A SeqPort allow you to treat a Bioseq , even a complicated segmented sequence, as if it were a disk file in the alphabet requested. You can seek to a location (like fseek()), get a residue at the current position and increment the current position (like fgetc()), or read a buffer of residues at a time (like fread()). It returns special characters for end of sequence (SEQPORT_EOF), end of an internal segment (SEQPORT_EOS), invalid residue (INVALID_RESIDUE), and supports a little macro (IS_Residue()) to filter these. This is generated from a SeqPort on the plus strand of the segmented nucleic acid sequence:

SeqPort: plus strand with SeqPortGetResidue

ATCGATAACGCCACCATCATTTATGATGACGTTACCGCCTACGAATTTGAAGAGTTCGTA

AAAGCTAAGAAGCCTGATTTAATCGCTTCTGGTATTAAAGAGAAGTATGTCTTCCAAAAG

ATGGCTCTTCCCTTCCGTCAAATGCACTCTTGGGATTACTCCGAACCTAGCGATGGGGTG

CAAATGTCAGATCAGATAAGGTTT

Segment

Segment

ACTTTTGTTCTCATGTGTTCTCTTTGCTGCTGTGCTTGCAGACTTGAGCCGAGAAAACTG

CCGTCGGTAGATGAAAGTGGCTCCAAGTCTGCAAAGGCTTGTTGATATTTGTCTTGACCC

TGATTTTGCATCGCTGTGGTATTAGCCTATATTTAGCCTAAAAATTAATGTGTTATCAGC

AAACAATGTTCATCACTAACACTGCTCAGTGCAAACATTAAGCTGTTGAAAGCTATTAAA

CCACAAAAAGGATTACTCCGGCCCTTATCACGGTTACGACGGATTTGCTATCT

EOF

Next, it opens a Seqport on the minus strand of the same segmented sequence. Note that a SeqPort is a "view" on the sequence data. It does not change the underlying sequence in any way. This it is possible to have many different SeqPorts open on the same sequence at the same time without interfering with each other. On the minus strand the SeqPort runs backwards and complements the residues. In this example, buffers of residues are read with SeqPortRead instead of one residue at a time with SeqPortGetResidue. Of course either approach could have been used.

SeqPort on minus with SeqPortRead

AGATAGCAAATCCGTCGTAACCGTGATAAGGGCCGGAGTAATCCTTTTTGTGGTTTAATA

GCTTTCAACAGCTTAATGTTTGCACTGAGCAGTGTTAGTGATGAACATTGTTTGCTGATA

ACACATTAATTTTTAGGCTAAATATAGGCTAATACCACAGCGATGCAAAATCAGGGTCAA

GACAAATATCAACAAGCCTTTGCAGACTTGGAGCCACTTTCATCTACCGACGGCAGTTTT

CTCGGCTCAAGTCTGCAAGCACAGCAGCAAAGAGAACACATGAGAACAAAAGT

Segment

Segment

AAACCTTATCTGATCTGACATTTGCACCCCATCGCTAGGTTCGGAGTAATCCCAAGAGTG

CATTTGACGGAAGGGAAGAGCCATCTTTTGGAAGACATACTTCTCTTTAATACCAGAAGC

GATTAAATCAGGCTTCTTAGCTTTTACGAACTCTTCAAATTCGTAGGCGGTAACGTCATC

ATAAATGATGGTGGCGTTATCGAT

EOF

Finally, seqtest.c calls the SeqEntryToFasta function (found in tofasta.h). This function traverses the SeqEntry finding every raw Bioseq for either nucleic acids or proteins and prints them out in FASTA format using what alphabet is specified. This is useful for generating data for tools which require only a simple view of a sequence entry. First the nucleic acids are printed, then the proteins:

Nucleic Acids in FASTA format:

>gb|M28152|ANANIFDR1 A.variabilis nifD gene 5' recombination site.

ATCGATAACGCCACCATCATTTATGATGACGTTACCGCCTACGAATTTGAAGAGTTCGTA

AAAGCTAAGAAGCCTGATTTAATCGCTTCTGGTATTAAAGAGAAGTATGTCTTCCAAAAG

ATGGCTCTTCCCTTCCGTCAAATGCACTCTTGGGATTACTCCGAACCTAGCGATGGGGTG

CAAATGTCAGATCAGATAAGGTTT

>gb|M28153|ANANIFDR2 A.variabilis nifD gene 3' recombination site, and xisA gene, 5' end.

ACTTTTGTTCTCATGTGTTCTCTTTGCTGCTGTGCTTGCAGACTTGAGCCGAGAAAACTG

CCGTCGGTAGATGAAAGTGGCTCCAAGTCTGCAAAGGCTTGTTGATATTTGTCTTGACCC

TGATTTTGCATCGCTGTGGTATTAGCCTATATTTAGCCTAAAAATTAATGTGTTATCAGC

AAACAATGTTCATCACTAACACTGCTCAGTGCAAACATTAAGCTGTTGAAAGCTATTAAA

CCACAAAAAGGATTACTCCGGCCCTTATCACGGTTACGACGGATTTGCTATCT

Proteins in FASTA format:

>gim|86660 xisA peptide A (alt.)

MQNQGQDKYQQAFADLEPLSSTDGSFLGSSLQAQQQREHMRTKV

>gim|86661 xisA peptide B (alt.)

MRTKV

SeqEntryToFasta uses the SeqIdPrint function to print out the Seq-ids for these sequences. Since this data model supports Seq-ids from many different sources and in many different formats, it displays them in a variety of ways. First comes a code for the source database followed by a vertical bar (|). "gb" is GenBank, "gim" is for a temporary "import id" assigned to sequences lacking a source Seq-id (such as these translated coding regions). Following the source identifier are various numbers of fields depending on the source type. For GenBank, the fields are accession number and locus name.

This demo simply serves to show a few of the capabilities of current function library while we are finishing the documentation. There are functions to print a Seq-entry in GenBank format, SeqEntryToGenBank (in togenbnk.h) which is used the demo program asn2gnbk.c. There is also a human readable report generator (SeqEntryToFile) which is used in asn2rpt.c. ProteinFromCdRegion (in seqport.h) will translate a CdRegion feature, taking into account alternate genetic codes, unusual start codons, and code-breaks. The reader is encouraged to look over the code in \demo.

/***

*

* seqtest.c

* test program for sequence display, SeqPort and ToFasta

*

***/

#include <seqport.h>

#include <tofasta.h>

void BuildList (SeqEntryPtr sep, Pointer data, Int4 index, Int2 indent);

Int2 Main()

{

AsnIoPtr aip;

SeqEntryPtr sep;

BioseqPtr PNTR seqlist;

Int4 seqnum, i, numseg, lens[10], j;

Int2 ctr;

SeqPortPtr spp;

Uint1 residue;

FILE* fp;

CharPtr title;

Char buffer[101];

/*

** Load SeqEntry object loader and sequence alphabets

*/

if (! SeqEntryLoad()) {

Message(MSG_ERROR, "SeqEntryLoad failed");

return 1;

}

/*

** Use the file "example.prt" as the ASN I/O stream. This file

** can be found in the ncbi/demo. It is in ASN.1 Print Value format.

*/

if ((aip = AsnIoOpen("example.prt", "r")) == NULL)

return 1;

/*

** Write the output to "seqtest.out".

*/

fp = FileOpen("seqtest.out", "w");

fprintf(fp, "Sequence summary:\n\n");

/*

** Read in the whole entry into the Sequence Entry Pointer, sep.

** Close the ASN stream, which in turn closes the input file.

*/

sep = SeqEntryAsnRead(aip, NULL);

aip = AsnIoClose(aip);

/*

** Determine how many Bioseqs are in this SeqEntry. Allocate

** enough memory to hold a list of pointer to all of these

** Bioseqs. Invoke an Explore function to "visit"each Bioseq.

** We are allowed to pass one pointer for use by the exploring

** function, in this case, "BuildList".

*/

seqnum = BioseqCount(sep);

seqlist = MemNew((size_t)(seqnum * sizeof(BioseqPtr)));

BioseqExplore(sep, (Pointer) seqlist, BuildList);

/*

** For each Bioseq in the SeqEntry write out it's title

** len, number of gaps, and number of segments. Write out

** the length of each segment, up to 10.

*/

for(i = 0; i < seqnum; i++) {

numseg = BioseqCountSegs(seqlist[i]);

title = BioseqGetTitle(seqlist[i]);

FilePuts((VoidPtr)title, fp);

FilePuts("\n", fp);

fprintf(fp, "len=%ld gaps=%ld segs=%ld\n", BioseqGetLen(seqlist[i]),

BioseqGetGaps(seqlist[i]), numseg);

if ((numseg > 1) && (numseg <= 10)) {

BioseqGetSegLens (seqlist[i], lens);

for (j = 0; j < numseg; j++)

fprintf(fp, " len = %ld\n", lens[j]);

}

FilePuts("\n", fp);

}

spp = SeqPortNew(seqlist[0], 0, -1, 0, Seq_code_iupacna);

if (spp == NULL)

Message(MSG_ERROR, "fail on SeqPortNew");

fprintf(fp, "SeqPort: plus strand with SeqPortGetResidue\n\n");

i = 0;

while ((residue = SeqPortGetResidue(spp)) != SEQPORT_EOF) {

if (residue == SEQPORT_EOS) {

buffer[i] = '\0';

fprintf(fp, "%s\nSegment\n", buffer);

i = 0;

} else {

buffer[i] = residue;

i++;

if (i == 60) {

buffer[i] = '\0';

fprintf(fp, "%s\n", buffer);

i = 0;

}

}

}

if (i) {

buffer[i] = '\0';

fprintf(fp, "%s\n", buffer);

}

fprintf(fp, "EOF\n");

SeqPortFree(spp);

fprintf(fp, "\nSeqPort on minus with SeqPortRead\n\n");

spp = SeqPortNew(seqlist[0], 0, -1, Seq_strand_minus, Seq_code_iupacna);

if (spp == NULL)

Message(MSG_ERROR, "fail on SeqPortNew");

do {

ctr = SeqPortRead(spp, (Uint1Ptr)buffer, 60);

if (ctr > 0) {

buffer[ctr] = '\0';

fprintf(fp, "%s\n", buffer);

} else {

ctr *= -1;

if (ctr == SEQPORT_EOS)

fprintf(fp,"Segment\n");

else if (ctr == SEQPORT_EOF)

fprintf(fp,"EOF\n");

}

} while (ctr != SEQPORT_EOF);

SeqPortFree(spp);

/*

** Write out the nucleic acid sequences in this SeqEntry

*/

fprintf(fp, "\nNucleic Acids in FASTA format:\n\n");

SeqEntryToFasta(sep, fp, TRUE);

/*

** Write out the protein sequences in this SeqEntry.

*/

fprintf(fp, "\nProteins in FASTA format:\n\n");

SeqEntryToFasta(sep, fp, FALSE);

/*

** Close the output file and free up allocated space.

*/

fclose(fp);

MemFree(seqlist);

SeqEntryFree(sep);

return 0;

}

/*

** This SeqEntry exploration function copy the current pointer position inthe

** the Bioseq entry to a list of Bioseq pointers

*/

void BuildList(SeqEntryPtr sep, Pointer data, Int4 index, Int2 indent)

{

((BioseqPtr PNTR) data)[index] = (BioseqPtr)sep->data.ptrvalue;

return;

}

Finding Features and Descriptors in an Entry

The features attached to one particular SeqEntry can be obtained as follows:

 #include <objall.h>

 #include <sequtil.h>

 BioseqPtr bsp;

 BioseqSetPtr bsetp;

 ValNodePtr descr;

 SeqAnnotPtr annot;

 SeqFeatPtr feat;

 descr = NULL;

 annot = NULL;

 feat = NULL;

 bsp = NULL;

 bsetp = NULL;

 if (IS_Bioseq (sep)) {

 bsp = (BioseqPtr) sep->data.ptrvalue;

 if (bsp != NULL) {

 descr = bsp->descr;

 annot = bsp->annot;

 }

 } else if (IS_Bioseq_set (sep)) {

 bsetp = (BioseqSetPtr) sep->data.ptrvalue;

 if (bsetp != NULL) {

 descr = bsetp->descr;

 annot = bsetp->annot;

 }

 }

 while (descr != NULL) {

 /* Do something with the descr. */

 descr = descr->next;

 }

 while (annot != NULL) {

 if (annot->type == 1) {

 feat = (SeqFeatPtr) annot->data;

 while (feat != NULL) {

 /* Do something with the feat. */

 feat = feat->next;

 }

 }

 annot = annot->next;

 }

The features applicable to a given Bioseq, which may be attached at any point in the hierarchy, can be obtained using the BioseqContext functions as follows:

 #include <objall.h>

 #include <sequtil.h>

 BioseqPtr bsp;

 BioseqSetPtr bsetp;

 ValNodePtr descr;

 SeqAnnotPtr annot;

 SeqFeatPtr feat;

 BioseqContextPtr bcp;

 if (IS_Bioseq (sep))

 bcp = BioseqContextNew ((BioseqPtr) sep->data.ptrvalue);

 if (bcp != NULL) {

 descr = BioseqContextGetSeqDescr (bcp, 0, NULL, NULL);

 while (descr != NULL) {

 /* Do something with the descr. */

 descr = BioseqContextGetSeqDescr (bcp, 0, descr, NULL);

 }

 BioseqContextFree (bcp);

 }

 bcp = BioseqContextNew ((BioseqPtr) sep->data.ptrvalue);

 if (bcp != NULL) {

 feat = BioseqContextGetSeqFeat (bcp, 0, NULL, NULL, 0);

 while (feat != NULL) {

 /* Do something with the feat. */

 feat = BioseqContextGetSeqFeat (bcp, 0, feat, NULL, 0);

 }

 BioseqContextFree (bcp);

 }

 }

Exploring an Object Using ASN.1 Defined Names

An alternative method of obtaining features utilizes exploration of the object loading in memory by the functions which writes it to an ASN.1 stream. This method allows you to call a function(s) of your design with a data structure of your own on any ASN.1 defined object by just giving the string defining its ASN.1 path. The callback function in this example prints the sequences referenced by coding region features (choice 3):

 #include <seqport.h>

 #include <asn.h>

 static AsnExpOptPtr aeop;

 static AsnIoPtr aip;

 static Int2 charsPerLine = 50;

 static FILE *fp;

 static void GetSeqFeat (AsnExpOptStructPtr aeosp)

 {

 Char buffer [101];

 Int2 i;

 Uint1 residue;

 SeqFeatPtr sfp;

 SeqPortPtr spp;

 if (aeosp->dvp->intvalue != START_STRUCT) {

 return

 }

 sfp = (SeqFeatPtr) aeosp->the_struct;

 if (sfp->data.choice == 3) {

 spp = SeqPortNewByLoc (sfp->location, Seq_code_iupacna);

 i = 0;

 while ((residue = SeqPortGetResidue(spp)) != SEQPORT_EOF) {

 if (residue == SEQPORT_EOS) {

 buffer [i] = '\0';

 fprintf (fp, "%s\n>Segment\n", buffer);

 i = 0;

 } else {

 buffer [i] = residue;

 i++;

 if (i >= charsPerLine) {

 buffer [i] = '\0';

 fprintf (fp, "%s\n", buffer);

 i = 0;

 }

 }

 }

 if (i != 0) {

 buffer [i] = '\0';

 fprint (fp, "%s\n", buffer);

 }

 SeqPortFree(spp);

 }

 }

The callback is attached to an AsnIoPtr stream with AsnExpOptNew. In this case we use AsnIoNullOpen to attach the AsnIo stream to a null device (will exhaustively traverse the object in memory, but not actually write out ASN.1). When the object loader function SeqEntryAsnWrite is called, passing the specified ASN.1 entity (Seq-feat in this example) triggers the callback:

 fp = FileOpen ("test.out", "w");

 aip = AsnIoNullOpen ();

 aeop = AsnExpOptNew (aip, "Seq-feat", NULL, GetSeqFeat);

 if (aeop != NULL) {

 SeqEntryAsnWrite (sep, aip, NULL);

 }

 AsnIoClose (aip);

 FileClose (fp);

C Structures and Functions: sequtil.h

/* sequtil.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: sequtil.h

*

* Author: James Ostell

*

* Version Creation Date: 4/1/91

*

* $Revision: 2.11 $

*

* File Description: Sequence Utilities for objseq and objsset

*

* Modifications:

* --

* Date
 Name Description of modification

* ------- ---------- ---

*

*

* ==

*/

#ifndef _NCBI_SeqUtil_

#define _NCBI_SeqUtil_

#ifndef _NCBI_Seqset_

#include <objsset.h>

 /* the object loader interface */

#endif

#ifdef __cplusplus

extern "C" {

#endif

/***

*

* What am I?

*

***/

extern Uint1 Bioseq_repr PROTO((BioseqPtr bsp));

extern Uint1 BioseqGetCode PROTO((BioseqPtr bsp));

ValNodePtr BioseqGetSeqDescr PROTO((BioseqPtr bsp, Int2 type, ValNodePtr curr));

CharPtr BioseqGetTitle PROTO((BioseqPtr bsp));

NumberingPtr BioseqGetNumbering PROTO((BioseqPtr bsp));

extern Int4 BioseqGetLen PROTO((BioseqPtr bsp));

extern Int4 BioseqGetGaps PROTO((BioseqPtr bsp));

extern Int4 BioseqGetSegLens PROTO((BioseqPtr bsp, Int4Ptr lens));

#define BioseqCountSegs(x) BioseqGetSegLens(x, NULL)

extern Boolean BioseqRawConvert PROTO((BioseqPtr bsp, Uint1 newcode));

extern Boolean BioseqRawPack PROTO((BioseqPtr bsp));

extern ByteStorePtr BSConvertSeq PROTO((ByteStorePtr bsp, Uint1 newcode, Uint1 oldcode, Int4 seqlen));

BioseqPtr BioseqFind PROTO((SeqIdPtr sip));

Boolean BioseqMatch PROTO((BioseqPtr bsp, SeqIdPtr sip));

CharPtr StringForSeqMethod PROTO((Int2 method));

/***

*

* Context routines for Bioseqs in Seq-entrys

* Context is the chain of Seqentries leading to the bioseq.

* context[count-1] is SeqEntry for bsp itself

* If Bioseq not in a Seqentry, count is 0

*

***/

#define BIOSEQCONTEXTMAX 20

typedef struct bioseqcontxt {

BioseqPtr bsp; /* the Bioseq in question */

Int2 count; /* number of elements in context */

Boolean hit; /* used by BioseqContextNew and ..GetSeqFeat */

SeqEntryPtr context[BIOSEQCONTEXTMAX]; /* array of SeqEntryPtr (last is count -1) */

SeqFeatPtr sfp; /* current sfp */

SeqAnnotPtr sap; /* current sap */

Int2 sftype, /* SeqFeat type to look for */

in;

 /* 0=location, 1=product, 2=either */

} BioseqContext, PNTR BioseqContextPtr;

BioseqContextPtr BioseqContextNew PROTO((BioseqPtr bsp));

BioseqContextPtr BioseqContextFree PROTO((BioseqContextPtr bcp));

ValNodePtr BioseqContextGetSeqDescr PROTO((BioseqContextPtr bcp, Int2 type, ValNodePtr curr, SeqEntryPtr PNTR the_sep));

CharPtr BioseqContextGetTitle PROTO((BioseqContextPtr bcp));

SeqFeatPtr BioseqContextGetSeqFeat PROTO((BioseqContextPtr bcp, Int2 type,

SeqFeatPtr curr, SeqAnnotPtr PNTR sapp, Int2 in));

/***

*

* SeqCodeTable routines

* SeqMapTable routines

* both may return INVALID_RESIDUE when a residue is out of range

*

***/

#define INVALID_RESIDUE 255

Uint1 SeqMapTableConvert PROTO((SeqMapTablePtr smtp, Uint1 residue));

Uint1 SeqCodeTableComp PROTO((SeqCodeTablePtr sctp, Uint1 residue));

/***

*

* Numbering routines

*

***/

 /* convert any numbering value to seq offset */

extern Int4 NumberingOffset PROTO((NumberingPtr np, DataValPtr avp));

 /* convert seq offset to numbering value */

extern Int2 NumberingValue PROTO((NumberingPtr np, Int4 offset, DataValPtr avp));

extern Int2 NumberingValueBySeqId PROTO((SeqIdPtr sip, Int4 offset, DataValPtr avp));

extern void NumberingDefaultLoad PROTO((void));

extern NumberingPtr NumberingDefaultGet PROTO((void));

/***

*

* SeqEntry and BioseqSet stuff

*

***/

Uint1 Bioseq_set_class PROTO((SeqEntryPtr sep));

/***

*

* traversal routines

* SeqEntry - any type

*

***/

typedef void (* SeqEntryFunc) PROTO((SeqEntryPtr sep, Pointer mydata, Int4 index, Int2 indent));

extern Int4 SeqEntryList PROTO((SeqEntryPtr sep, Pointer mydata, SeqEntryFunc mycallback, Int4 index, Int2 indent));

#define SeqEntryCount(a) SeqEntryList(a ,NULL,NULL,0,0);

#define SeqEntryExplore(a,b,c) SeqEntryList(a, b, c, 0L, 0);

/***

*

* traversal routines

* Bioseq types only - "individual" sequences

* do NOT traverse component parts of seqmented or constructed types

*

***/

extern Int4 BioseqList PROTO((SeqEntryPtr sep, Pointer mydata, SeqEntryFunc mycallback, Int4 index, Int2 indent));

#define BioseqCount(a) BioseqList(a ,NULL,NULL,0,0);

#define BioseqExplore(a,b,c) BioseqList(a, b, c, 0L, 0);

/***

*

* Get parts routines

*

***/

 /* gets next Seqdescr after curr in sep of type type */

ValNodePtr SeqEntryGetSeqDescr PROTO((SeqEntryPtr sep, Int2 type, ValNodePtr curr));

 /* gets first title from sep */

CharPtr SeqEntryGetTitle PROTO((SeqEntryPtr sep));

/***

*

* Manipulations

*

***/

extern Boolean SeqEntryConvert PROTO((SeqEntryPtr sep, Uint1 newcode));

#define SeqEntryPack(x) SeqEntryConvert(x, (Uint1)0)

/***

*

* SeqLoc stuff

*

***/

#define PRINTID_FASTA_SHORT ((Uint1)1)

#define PRINTID_FASTA_LONG ((Uint1)2)

#define PRINTID_TEXTID_LOCUS ((Uint1)3)

#define PRINTID_TEXTID_ACCESSION ((Uint1)4)

#define PRINTID_REPORT ((Uint1)5)

SeqIdPtr SeqIdSelect PROTO((SeqIdPtr sip, Uint1Ptr order, Int2 num));

Int2 SeqIdBestRank PROTO((Uint1Ptr buf, Int2 num));

SeqIdPtr SeqIdFindBest PROTO((SeqIdPtr sip, Uint1 target));

CharPtr SeqIdPrint PROTO((SeqIdPtr sip, CharPtr buf, Uint1 format));

SeqIdPtr SeqIdParse PROTO((CharPtr buf));

/***

*

* Boolean SeqIdMatch(a,b)

* returns TRUE if seqids match

*

***/

Boolean SeqIdMatch PROTO((SeqIdPtr a, SeqIdPtr b));

/*************************

 SeqIdForSameBioseq(a,b)

 trys to locate all ids for a or b and determine

 if (a and b refer the the same Bioseq)

**************************/

Boolean SeqIdForSameBioseq PROTO((SeqIdPtr a, SeqIdPtr b));

/*************************

 * Boolean SeqIdIn (a,b)

 * returns TRUE if a in list of b

 ******************/

Boolean SeqIdIn PROTO((SeqIdPtr a, SeqIdPtr b));

SeqLocPtr SeqLocFindNext PROTO((SeqLocPtr seqlochead, SeqLocPtr currseqloc));

Boolean IS_one_loc PROTO((SeqLocPtr anp)); /* for SeqLoc */

Int4 SeqLocStart PROTO((SeqLocPtr seqloc));

Int4 SeqLocStop PROTO((SeqLocPtr seqloc));

Uint1 SeqLocStrand PROTO((SeqLocPtr seqloc));

Int4 SeqLocLen PROTO((SeqLocPtr seqloc));

Int4 SeqLocGetSegLens PROTO((SeqLocPtr slp, Int4Ptr lens, Int4 ctr, Boolean gaps));

#define SeqLocCountSegs(x) SeqLocGetSegLens(x, NULL,0,FALSE)

#define SeqLocGetGaps(x) SeqLocGetSegLens(x,NULL,0,TRUE)

SeqIdPtr SeqLocId PROTO((SeqLocPtr seqloc));

Uint1 StrandCmp PROTO((Uint1 strand));

Boolean SeqLocRevCmp PROTO((SeqLocPtr anp));

Int4 GetOffsetInLoc PROTO((SeqLocPtr of, SeqLocPtr in, Boolean start));

Int4 GetOffsetInBioseq PROTO((SeqLocPtr of, BioseqPtr in, Boolean start));

Int2 SeqLocOrder PROTO((SeqLocPtr a, SeqLocPtr b, BioseqPtr in));

Int2 SeqLocMol PROTO((SeqLocPtr seqloc));

CharPtr SeqLocPrint PROTO((SeqLocPtr slp));

/***

*

* SeqLocCompare(a, b)

*
returns

*
0 = no overlap

*
1 = a is completely contained in b

*
2 = b is completely contained in a

*
3 = a == b

*
4 = a and b overlap, but neither completely contained in the other

*

***/

Int2 SeqLocCompare PROTO((SeqLocPtr a, SeqLocPtr b));

#define SLC_NO_MATCH 0

#define SLC_A_IN_B 1

#define SLC_B_IN_A 2

#define SLC_A_EQ_B 3

#define SLC_A_OVERLAP_B 4

Boolean SeqIntCheck PROTO((SeqIntPtr sip)); /* checks for valid interval */

Boolean SeqPntCheck PROTO((Int4 point, SeqIdPtr seq_id)); /* checks valid pnt */

CharPtr TaxNameFromCommon PROTO((CharPtr common));

#ifdef __cplusplus

}

#endif

#endif

C Structures and Functions: seqport.h

/* seqport.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: seqport.h

*

* Author: James Ostell

*

* Version Creation Date: 7/13/91

*

* $Revision: 2.2 $

*

* File Description: Ports onto Bioseqs

*

* Modifications:

* --

* Date
 Name Description of modification

* ------- ---------- ---

*

*

* ==

*/

#ifndef _NCBI_Seqport_

#define _NCBI_Seqport_

#include <sequtil.h>

#ifdef __cplusplus

extern "C" {

#endif

/***

*

* SeqPort

* will attach only to "individual" sequence

* Get/Read return 253 for end of sequence,

* 252 for end of segment

* 251 when skipping a virtual sequence with length

* and INVALID_RESIDUE (255) on invalid residues

*

***/

#define SEQPORT_EOF 253 /* end of sequence data */

#define SEQPORT_EOS 252 /* end of segment */

#define SEQPORT_VIRT 251 /* skipping virtual sequence with length */

#define IS_residue(x) (x <= 250)

typedef struct seqport {

 BioseqPtr bsp; /* 1 seqentry per port */

 Int4 start, stop, /* region of bsp covered */

 curpos, /* current position 0-(totlen-1) */

 totlen, /* total length of covered region */

bytepos; /* current byte position in bsp->data */

 NumberingPtr currnum; /* current numbering info */

 Uint1 strand, /* as in seqloc */

 lastmsg; /* used by SeqPortRead() */

 Boolean is_circle , /* go around the end of a circle? */

 is_seg , /* return EOS at the end of segments? */

 do_virtual, /* deliver '-' over virtual seqs */

 eos; /* set when comp strand tries to back off */

 SeqMapTablePtr smtp; /* for mapping to requested alphabet */

 SeqCodeTablePtr sctp; /* for getting symbols */

 Uint1 newcode, /* requested output code */

 oldcode; /* current input seq code (0 if not raw) */

 Uint1 byte, /* current byte in buf */

 bc, /* value to start bitctr */

 bitctr, /* current shift */

 lshift, /* amount to left shift on decompact */

 rshift, /* amount to right shift residue value */

 mask; /* mask for compact byte */

 struct seqport PNTR curr , /* current active seqport if seg or ref */

 PNTR segs, /* segments if seg or ref */

 PNTR next; /* if part of a segment chain */

} SeqPort, PNTR SeqPortPtr;

SeqPortPtr SeqPortNew PROTO((BioseqPtr bsp, Int4 start, Int4 stop, Uint1 strand, Uint1 code));

SeqPortPtr SeqPortNewByLoc PROTO((SeqLocPtr seqloc, Uint1 code));

SeqPortPtr SeqPortFree PROTO((SeqPortPtr spp));

Int4 SeqPortTell PROTO((SeqPortPtr spp));

Int2 SeqPortSeek PROTO((SeqPortPtr spp, Int4 offset, Int2 origin));

Int4 SeqPortLen PROTO((SeqPortPtr spp));

Uint1 SeqPortGetResidue PROTO((SeqPortPtr spp));

Int2 SeqPortRead PROTO((SeqPortPtr spp, BytePtr buf, Int2 len));

/***

*

* ProteinFromCdRegion(sfp, include_stop)

*
produces a ByteStorePtr containing the protein sequence in

* ncbieaa code for the CdRegion sfp. If include_stop, will translate

* through stop codons. If NOT include_stop, will stop at first stop

* codon and return the protein sequence NOT including the terminating

* stop. Supports reading frame, alternate genetic codes, and code breaks

* in the CdRegion

*

***/

ByteStorePtr ProteinFromCdRegion PROTO((SeqFeatPtr sfp, Boolean include_stop));

#ifdef __cplusplus

}

#endif

#endif

Entrez Data Access

Introduction
Connecting To and Disconnecting From Data Sources
Scanning the List of Available Terms
Obtaining the UID Given an Accession Number
Obtaining the UIDs That Satisfy a Boolean Query
Loading a Sequence Record
Loading a MEDLINE Record
Streaming Through All of the Data Records
Converting to FASTA Format
Converting GenBank Format
Converting to MEDLARS Format
Loading a Document Summary
Loading a Set of Document Summaries
Retrieving Neighbors and Links
C Structures and Functions: accentr.h
C Structures and Functions: casn.h

 Introduction

The NCBI Software Development Kit provides functions to load Sequence and MEDLINE records from the Entrez: Sequences and Entrez: Citations CD-ROMs. Records can be accessed by specifying their unique ID (UID). UIDs for a sequence record can easily be obtained by supplying an accession number from a source database, or a full Boolean query on indexed terms can be evaluated to return a list of UIDs that satisfy the query. Given a UID, a single function call will load the record into a defined structure in memory, and return a pointer to the head of the memory object.

Alternatively, each record can be read in turn by a process called streaming, which does not require knowledge of a specific UID. A program can either use the Object Loader level, which loads a given record into the defined memory structure, or it can use the AsnLib level, allowing it to read each ASN.1 item as it streams by. The decision on which method to use depends upon the task being performed.

These memory object pointers can be passed to a number of utility functions. These include standard report generators, which can convert MEDLINE records to MEDLARS format and sequence records to FASTA or GenBank Flat File formats. A sequence port can be opened that gives a simple, linear view of a segmented sequence, converting alphabets, merging exon segments, and dealing with information on both strands of the DNA. There are also functions to explore the individual BioSeqs in an object, and to retrieve features from any level in the structure. These functions have been discussed in the Sequence Utilities chapter.

A demo program, getseq.c, in the \demo directory of the NCBI software toolkit takes any sequence identifier (e.g. accession number, locus name), finds the unique id, then retrieves the entry. Parts of this program are explained below. Also, all of the Entrez application itself can be found in the \browser directory. The access functions are in the \cdromlib directory and listed in accentr.h.

Connecting To and Disconnecting From Data Sources

The program must connect to the databases before attempting to access them, and must disconnect from the databases prior to exit. The Entrez application calls EntrezInit and EntrezFini. (Access to more complicated Sequence and MEDLINE services are obtained by calling AccSeqInit, AccMlInit, AccSeqFini and AccMlFini.) Many programs will also need to load the ASN.1 parse tables. These function calls require that the NCBI configuration file (ncbi.cnf, ncbi.ini, ncbi.cfg or .ncbirc, depending upon the computer platform) is properly set up to specify appropriate data paths:

 #include <accentr.h>

 #include <objall.h>

 #include <objcode.h>

 if (EntrezInit ()) {

 if (AllObjLoad () && SeqCodeSetLoad ()) {

 /* Main body of program goes here. */

 }

 EntrezFini ();

 }

Scanning the List of Available Terms

The list of terms can be obtained by a scanning procedure. This utilizes a callback function. If the Boolean return of the callback is FALSE, the scanning stops:

 #include <accentr.h>

 static Boolean ReadProc (CharPtr term, Int4 special, Int4 total)

 {

 Char str [32];

 /* Do something with the term. */

 MemFree (term);

 return TRUE;

 }

The term scanning can be started from a given string using EntrezTermListByTerm. The page on which the first term appears is returned via the last parameter. The return value is the number of complete pages read. Scanning will continue until the end of the term list or until the callback returns FALSE:

 EntrezTermListByTerm (TYPE, FIELD, str, TERMS, ReadProc, &startPage);

The term scanning can be started from a given page using EntrezTermListByPage. Scanning will continue until the end of the term list, until the specified number of pages has been read, or until the callback returns FALSE:

 EntrezTermListByPage (TYPE, FIELD, startPage, PAGES, ReadProc);

The special and total counts for a given term can be obtained by EntrezFindTerm. This will also perform a truncation if the term string ends in "...":

 EntrezFindTerm (TYPE, FIELD, str, &special, &total);

Obtaining the UID Given an Accession Number

The unique ID for the first record indexed under a given name or accession number from a particular source database can be obtained with FindSeqId. (To get all record UIDS, see the Boolean Query evaluation section below.) FindSeqId returns a single UID, even if the accession number points to multiple records:

 #include <accseq.h>

 SeqIdPtr sip;

 TextSeqIdPtr tsip;

 DocUid uid;

 tsip = TextSeqIdNew ();

 sip = ValNodeNew (NULL);

 sip->data.ptrvalue = tsip;

 switch (TYPE) {

 case GENBANK :

 sip->choice = SEQID_GENBANK;

 break;

 case PIR :

 sip->choice = SEQID_PIR;

 break;

 case SWISSPROT :

 sip->choice = SEQID_SWISSPROT;

 break;

 };

 switch (KIND) {

 case NAME :

 tsip->name = StringSave (TERM);

 break;

 case ACCESSION :

 tsip->accession = StringSave (TERM);

 break;

 }

 uid = FindSeqId (sip);

 if (uid != 0) {

 /* Do something with the uid. */

 }

 TextSeqIdFree (tsip);

 ValNodeFree (sip);

Obtaining the UIDs That Satisfy a Boolean Query

Boolean query evaluation is done by constructing a formula in memory andpassing it to an evaluation routine. A LinkSetPtr containing the satisfying UIDS is returned. All calls must define the data type and field of interest. A series of #defines are available in accentr.h for this purpose.

	#define
	Data Type

	TYP_ML
	MEDLINE

	TYP_AA
	Amino Acid Sequence

	TYP_NT
	Nucleotide Sequence

	TYP_SEQ
	Either Sequence Type

	#define
	Field

	FLD_WORD
	Text words

	FLD_MESH
	MeSH terms

	FLD_KYWD
	Keywords

	FLD_AUTH
	Author Names

	FLD_JOUR
	Journal Names

	FLD_ORGN
	Organism Names

	FLD_ACCN
	Accession numbers, locus names, patent ids...

	FLD_GENE
	Gene Symbols

	FLD_PROT
	Protein Names

	FLD_ECNO
	E.C. numbers

 #include <accentr.h>

 ValNodePtr elst;

 Int2 group;

 Int4 i;

 Int2 last;

 LinkSetPtr lsp;

 DocUid uid;

 group = 0;

 last = 0;

 while (MORE_QUERIES) {

 elst = EntrezTLNew (TYPE);

 while (GET_NEXT_TERM ()) {

 if (GROUP_SINGLE || GROUP_FIRST) {

 group++;

 }

 if (last == 0) {

 EntrezTLAddLParen (elst);

 } else if (last == group) {

 EntrezTLAddOR (elst);

 } else {

 EntrezTLAddRParen (elst);

 EntrezTLAddAND (elst);

 EntrezTLAddLParen (elst);

 }

 EntrezTLAddTerm (elst, TERM, TYPE, FIELD, STATE_SPECIAL);

 last = group;

 }

 lsp = EntrezTLEval (elst);

 EntrezTLFree (elst);

 for (i = 0; i < lsp->num; i++) {

 uid = lsp->uids [i];

 /* Do something with the uid. */

 }

 LinkSetFree (lsp);

 }

Loading a Sequence Record

Given a UID, SeqEntryGet will find the record on the CD-ROM, open an AsnIo channel at that location, call the object loader, and return a pointer to the SeqEntry. The retcode parameter determines the maximum level of complexity of the loaded sequence object (BioSeq, SegSet or NucProtSet).

 #include <accentr.h>

 #include <objsset.h>

 Int2 retcode;

 SeqEntryPtr sep;

 switch (complexity) {

 case BIOSEQ :

 retcode = SEQENTRY_READ_BIOSEQ;

 break;

 case SEGSET :

 retcode = SEQENTRY_READ_SEG_SET;

 break;

 case NUCPROT :

 retcode = SEQENTRY_READ_NUC_PROT;

 break;

 }

 sep = EntrezSeqEntryGet (uid, retcode);

 /* Do something with the sep. */

 SeqEntryFree (sep);

Loading a MEDLINE Record

Given a UID, MedlineEntryGet will find the record on the CD-ROM, open an AsnIo channel at that location, call the object loader, and return a pointer to the MedlineEntry:

 #include <accentr.h>

 #include <objmedli.h>

 MedlineEntryPtr mep;

 mep = EntrezMedlineEntryGet (uid);

 /* Do something with the mep. */

 MedlineEntryFree (mep);

Streaming Through All of the Data Records

All sequence or MEDLINE records can be examined by streaming through thedata files. Each data file in the sequence or medline directories on the CD-ROM need to be opened and read separately. The data on the Entrez CD-ROM has undergone Huffman compression. The casn routines used here do the Huffman decompression for you. A program in the \demo directory called asndhuff.c shows various was to decompress the data continuously. The data can be read a complete entry at a time into memory, as show below, or as an ASN.1 stream from which lower level data elements can be selected as shown in asndhuff.c.

 #include <casn.h>

 #include <objmedli.h>

 #include <objsset.h>

 CASN_Handle casnh;

 Char filename [FILENAME_MAX];

 Int2 i;

 MedlineEntryPtr mep;

 Char path [PATH_MAX];

 SeqEntryPtr sep;

 Int4 total;

 for (i = 1; i <= 21; i++) {

 if (i < 10) {

 sprintf (filename, "seqasn.00%d", (int) i);

 } else {

 sprintf (filename, "seqasn.0%d", (int) i);

 }

 StringCpy (path, "SEQDATA:sequence:");

 FileBuildPath (path, NULL, filename);

 if ((casnh= CASN_Open (path)) != NULL) {

 total = CASN_DocCount (casnh);

 if (CASN_DocType (casnh) == CASN_TypSeq) {

 while ((sep = CASN_NextSeqEntry (casnh)) != NULL) {

 /* Do something with the sep. */

 SeqEntryFree (sep);

 }

 }

 CASN_Close (casnh);

 }

 }

 for (i = 1; i <= 10; i++) {

 if (i < 10) {

 sprintf (filename, "medasn.00%d", (int) i);

 } else {

 sprintf (filename, "medasn.0%d", (int) i);

 }

 StringCpy (path, "REFDATA:medline:");

 FileBuildPath (path, NULL, filename);

 if ((casnh= CASN_Open (path)) != NULL) {

 total = CASN_DocCount (casnh);

 if (CASN_DocType (casnh) == CASN_TypMed) {

 while ((mep = CASN_NextMedlineEntry(casnh)) != NULL) {

 /* Do something with the mep. */

 MedlineEntryFree (mep);

 }

 }

 CASN_Close (casnh);

 }

 }

Converting to FASTA Format

A loaded sequence record can be converted to and saved in FASTA format:

 #include <tofasta.h>

 #include <sequtil.h>

 FILE *fp;

 fp = FileOpen (str, "w");

 SeqEntryConvert (sep, Seq_code_iupacna);

 SeqEntryToFasta (sep, fp, is_na);

 FileClose (fp);

Converting GenBank Format

A loaded sequence record can be converted to and saved in GenBank flat file format:

 #include <togenbnk.h>

 #include <asn.h>

 FILE *fp;

 AsnOptionPtr opt;

 DataVal val;

 fp = FileOpen (str, "w");

 optionHead = NULL;

 val.intvalue = TRUE;

 AsnOptionNew (&opt, OP_TOGENBNK, OP_TOGENBNK_QUIET, val, NULL);

 AsnOptionNew (&opt, OP_TOGENBNK, OP_TOGENBNK_NO_NCBI, val, NULL);

 val.ptrvalue = StringSave ("\?\?\?");

 AsnOptionNew (&opt, OP_TOGENBNK, OP_TOGENBNK_DIV, val,

 (AsnOptFreeFunc) MemFree);

 val.ptrvalue = StringSave ("\?\?-\?\?\?-\?\?\?\?");

 AsnOptionNew (&opt, OP_TOGENBNK, OP_TOGENBNK_DATE, val,

 (AsnOptFreeFunc) MemFree);

 AsnOptionNew (&opt, OP_TOGENBNK, OP_TOGENBNK_RELEASE, val, NULL);

 if (IsGenBank (sep)) {

 SeqEntryToGenbank (fp, sep, opt);

 }

 AsnOptionFree (&opt, OP_TOGENBNK, 0);

 FileClose (fp);

Converting to MEDLARS Format

A loaded MEDLINE record can be converted to and saved in MEDLARS format:

 #include <tomedlin.h>

 FILE *fp;

 fp = FileOpen (str, "w");

 MedlineEntryToDataFile (mep, fp);

 FileClose (fp);

Loading a Document Summary

Given a UID and a type, EntrezDocSum will return a document summary for a record. TYPE is TYP_ML, TYP_AA, TYP_NT, or TYP_SEQ:

 #include <accentr.h>

 DocSumPtr dsp;

 dsp = EntrezDocSum (TYPE, uid);

 /* Do something with the dsp. */

 DocSumFree (dsp);

Loading a Set of Document Summaries

Given a list of UIDs and a type, EntrezDocSumListGet will call a callback for each document summary. If the callback returns FALSE, then remaining DocSums may be cached locally for subsequent retrieval by EntrezDocSum:

 #include <accentr.h>

 static Boolean DocSumProc (DocSumPtr dsp, DocUid uid)

 {

 /* Do something with the docsum. */

 DocSumFree (dsp);

 return TRUE;

 }

For EntrezDocSumListGet, NUM is the number of DocSums desired, UIDs is a DocUid array of of length NUM, and TYPE is TYP_ML, TYP_AA, TYP_NT, or TYP_SEQ:

 EntrezDocSumListGet (NUM, TYPE, UIDs, DocSumProc);

Retreiving Neighbors and Links

Neighbors and links are precomputed and stored on the Entrez CD-ROM. See the Entrez documentation for an explanation of what neighbors and links are.

 #include <accentr.h>

 #include <objacces.h>

 LinkSetPtr lsp;

 DocUid uid;

 lsp= EntrezUidLinks (FIELD, uid, LINK_TO_FIELD);

 for (i = 0; i < lsp->num; i++) {

 uid = lsp->uids [i];

 /* Do something with the uid. */

 }

 LinkSetFree (lsp);

C Structures and Functions: accentr.h

/* accentr.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: accentr.h

*

* Author: Ostell

*

* Version Creation Date: 4/23/92

*

* $Revision: 2.10 $

*

* File Description:

* entrez index access library for Entrez

*

* Modifications:

* --

* Date Name Description of modification

* ------- ---------- ---

*

* ==

*/

#ifndef _ACCENTR_

#define _ACCENTR_

#ifndef _NCBI_Seqset_

#include <objsset.h>

#endif

#ifndef _NCBI_Medline_

#include <objmedli.h>

#endif

#ifndef _NCBI_Access_

#include <objacces.h>

#endif

#ifdef __cplusplus

extern "C" {

#endif

/* --- Type Definitions --- */

typedef Int4 DocUid;

typedef Int4Ptr DocUidPtr;

typedef Int2 DocType;

typedef Int2 DocField;

typedef struct fielddata {

 Int4 num_terms; /* number of terms in this field */

 Int2 num_bucket; /* number of buckets of terms */

} EntrezFieldData, PNTR EntrezFieldDataPtr;

typedef struct typedata {

 Int4 num; /* number of entries */

 Int4 num_uids; /* number of uids */

 DocUid minuid; /* minimum uid for this type */

 DocUid maxuid; /* maxuid for this type */

 Int2 num_bucket; /* number of uid buckets */

 EntrezFieldDataPtr fields;

} EntrezTypeData, PNTR EntrezTypeDataPtr;

typedef struct _EntrezInfo {

 CharPtr volume_label;

 Int2 version;

 Int2 issue;

 Int2 format;

 CharPtr descr;

 Boolean no_compression;

 Int2 huff_count;

 Int2Ptr huff_left;

 Int2Ptr huff_right;

 Int2 type_count;

 CharPtr PNTR type_names;

 Int2 type_bucket_size;

 Int2 field_count;

 CharPtr PNTR field_names;

 Int2 field_bucket_size;

 EntrezTypeDataPtr types;

} EntrezInfo, PNTR EntrezInfoPtr;

/***

*

* PreDefined Entrez types and fields

*

***/

/* doc type codes */

#define NTYPE 3 /* number of types == 3 */

#define TYP_ML 0 /* Medline-entry */

#define TYP_AA 1 /* amino acid data */

#define TYP_NT 2 /* nucleic acid data */

#define TYP_SEQ 4 /* either aa or na used only for uid lookups */

/* field codes */

#define NFLD 10 /* number of fields == 10 */

#define FLD_WORD 0 /* Words */

#define FLD_MESH 1 /* MeSH terms */

#define FLD_KYWD 2 /* Keyword */

#define FLD_AUTH 3 /* Authors */

#define FLD_JOUR 4 /* Journal title */

#define FLD_ORGN 5 /* Organism */

#define FLD_ACCN 6 /* Accession number */

#define FLD_GENE 7 /* Gene Symbol */

#define FLD_PROT 8 /* Protein name */

#define FLD_ECNO 9 /* E.C. number */

typedef struct docsum {

 DocUid uid;

 Boolean no_abstract,

 translated_title,

 no_authors;

 CharPtr caption,

 title;

} DocSum, PNTR DocSumPtr;

typedef Boolean (*DocSumListCallBack) PROTO((DocSumPtr dsp, DocUid uid));

#define NULLSYM 0 /* for building booleans */

#define LPAREN 1

#define RPAREN 2

#define ANDSYMBL 3

#define ORSYMBL 4

#define BUTNOTSYMBL 5

#define SPECIALTERM 6

#define TOTALTERM 7

/**** Initialize and close session *********************/

/* Note: */

/* In October 1993, EntrezInit() will be replaced by the functionality of */

/* EntrezInitWithExtras(), and EntrezInitWithExtras(), in turn, will be */

/* temporarily defined as a macro version of EntrezInit(). */

/* I.e., in October 1993, this code will read as follows: */

/* #define EntrezInitWithExtras(a,b,c) EntrezInit(a,b,c) */

/* extern Boolean _cdecl EntrezInit PROTO((CharPtr appl_id, */

/* Boolean no_warnings, BoolPtr is_network)); */

/* */

/* In the Spring of 1994, the EntrezInitWithExtras() macro will be deleted. */

/* - J. Epstein, 8 June 1993 */

#define EntrezInit() EntrezInitWithExtras(NULL, FALSE, NULL)

Boolean LIBCALL EntrezInitWithExtras PROTO((CharPtr appl_id, Boolean no_warnings, BoolPtr is_network));

void LIBCALL EntrezFini PROTO((void));

/**** Get names and numbers of fields and types ********/

EntrezInfoPtr LIBCALL EntrezGetInfo PROTO((void));

EntrezInfoPtr LIBCALL EntrezInfoAsnRead PROTO((AsnIoPtr aip, AsnTypePtr orig));

EntrezInfoPtr LIBCALL EntrezInfoFree PROTO((EntrezInfoPtr cip));

/**** Creates a term node from the uid parameter ********/

void LIBCALL EntrezCreateNamedUidList PROTO((CharPtr term, DocType type, DocField field, Int4 num, DocUidPtr uids));

/**** Used only by Entrez network server ***************/

Boolean LIBCALL EntrezInfoAsnWrite PROTO((EntrezInfoPtr p, AsnIoPtr aip, AsnTypePtr orig));

/**** Get detailed text information about the current status *****/

CharPtr LIBCALL EntrezDetailedInfo PROTO((void));

/**** Get Links and Neighbors **************************/

Int4 LIBCALL EntrezGetMaxLinks PROTO((void));

Int4 LIBCALL EntrezSetUserMaxLinks PROTO((Int4 usermax));

Int4 LIBCALL EntrezGetUserMaxLinks PROTO((void));

LinkSetPtr LIBCALL EntrezUidLinks PROTO((DocType type, DocUid uid, DocType link_to_type));

Int2 LIBCALL EntrezLinkUidList PROTO((LinkSetPtr PNTR result, DocType type,

DocType link_to_type, Int2 numuid, Int4Ptr uids, Boolean mark_missing));

/**** Get Summaries ************************************/

DocSumPtr LIBCALL EntrezDocSum PROTO((DocType type, DocUid uid));

DocSumPtr LIBCALL DocSumFree PROTO((DocSumPtr dsp));

Int2 LIBCALL EntrezDocSumListGet PROTO((Int2 numuid, DocType type, DocUidPtr uids, DocSumListCallBack callback));

Int2 LIBCALL EntrezMlSumListGet PROTO((DocSumPtr PNTR result, Int2 numuid, Int4Ptr uids));

Int2 LIBCALL EntrezSeqSumListGet PROTO((DocSumPtr PNTR result, Int2 numuid, Int4Ptr uids));

/**** Get Term Lists ***********************************/

typedef Boolean (*TermListProc) PROTO((CharPtr term, Int4 special, Int4 total));

Int2 LIBCALL EntrezTermListByPage PROTO((DocType type, DocField field, Int2 page, Int2 numpage, TermListProc proc));

Int2 LIBCALL EntrezTermListByTerm PROTO((DocType type, DocField field, CharPtr term, Int2 numterms, TermListProc proc, Int2Ptr first_page));

Boolean LIBCALL EntrezFindTerm PROTO((DocType type, DocField field, CharPtr term, Int4Ptr spcl, Int4Ptr totl));

/**** Look up terms with Boolean operations ************/

ValNodePtr LIBCALL EntrezTLNew PROTO((DocType type));

ValNodePtr LIBCALL EntrezTLAddTerm PROTO((ValNodePtr elst, CharPtr term, DocType type, DocField field, Boolean special));

ValNodePtr LIBCALL EntrezTLAddLParen PROTO((ValNodePtr elst));

ValNodePtr LIBCALL EntrezTLAddRParen PROTO((ValNodePtr elst));

ValNodePtr LIBCALL EntrezTLAddAND PROTO((ValNodePtr elst));

ValNodePtr LIBCALL EntrezTLAddOR PROTO((ValNodePtr elst));

ValNodePtr LIBCALL EntrezTLAddBUTNOT PROTO((ValNodePtr elst));

ValNodePtr LIBCALL EntrezTLFree PROTO((ValNodePtr elst));

LinkSetPtr LIBCALL EntrezTLEval PROTO((ValNodePtr elst));

/**** Look Up a Uid from a SeqId using the Terms list ****/

Int4 LIBCALL EntrezFindSeqId PROTO((SeqIdPtr sip));

/**** Get Sequence or MEDLINE data **********************/

Int2 LIBCALL EntrezSeqEntryListGet PROTO((SeqEntryPtr PNTR result, Int2 numuid, Int4Ptr uids, Int2 retcode, Boolean mark_missing));

SeqEntryPtr LIBCALL EntrezSeqEntryGet PROTO((Int4 uid, Int2 retcode));

Int2 LIBCALL EntrezMedlineEntryListGet PROTO((MedlineEntryPtr PNTR result, Int2 numuid, Int4Ptr uids, Boolean mark_missing));

MedlineEntryPtr LIBCALL EntrezMedlineEntryGet PROTO((Int4 uid));

#ifdef __cplusplus

}

#endif

#endif

C Structures and Functions: casn.h

/* casn.h

* ===

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

*

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and

* thus cannot be copyrighted. This software/database is freely available

* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

*

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

*

* Please cite the author in any work or product based on this material.

*

* ===

*

* File Name: casn.h

*

* Author: Greg Schuler

*

* Version Creation Date: 9/23/92

*

* $Revision: 2.5 $

*

* File Description:

functions to decompress a compressed ASN,1 (CASN) file.

*

* Modifications:

* --

* Date Name Description of modification

* ------- ---------- ---

* 04-21-93 Schuler CASN_ReadBuff declared as LIBCALLBACK

* 06-28-93 Schuler New function: CASN_Seek()

*

* ==

*/

#ifndef __CompressedASN1__

#define __CompressedASN1__

#include <objsset.h>

#ifdef _cplusplus

extern "C" {

#endif

enum CASN_Error
{

CASN_ErrNone,

/* no error */

CASN_ErrGeneric,

/* general error, not one listed below */

CASN_ErrMemory,

/* memory allocation failed */

CASN_ErrBadHandle,

/* CASN_Handle is invalid or corrupt */

CASN_ErrFileOpen,

/* unable to open file for reading */

CASN_ErrFileCreate,

/* unable to open file for writing */

CASN_ErrFileRead,

/* unable to read from open file */

CASN_ErrFileWrite,

/* unable to write to open file */

CASN_ErrFileSeek,

/* either seek or tell failed */

CASN_ErrFileFormat };
/* file format not recognized, or file corrupt */

enum CASN_DocType
{

CASN_TypeMed
= 1,
/* MEDLINE record (ASN.1 type Medline-entry)*/

CASN_TypeSeq
= 2 };
/* Sequence record (ASN.1 type Seq-entry)*/

struct casn_ioblock;

typedef struct casn_ioblock *CASN_Handle;

/* ----- high-level ----- */

CASN_Handle LIBCALL CASN_Open PROTO((CharPtr fname));

void LIBCALL CASN_Close PROTO((CASN_Handle handle));

AsnIoPtr LIBCALL CASN_GetAsnIoPtr PROTO((CASN_Handle handle));

Int2 LIBCALL CASN_DocType PROTO((CASN_Handle handle));

Int4 LIBCALL CASN_DocCount PROTO((CASN_Handle handle));

MedlineEntryPtr LIBCALL CASN_NextMedlineEntry PROTO((CASN_Handle handle));

SeqEntryPtr LIBCALL CASN_NextSeqEntry PROTO((CASN_Handle handle));

int LIBCALL CASN_Seek PROTO((CASN_Handle,long offset,int origin));

/* ----- low-level ----- */

CASN_Handle LIBCALL CASN_New PROTO((Int2 doc_type, Int2 huff_count));

void LIBCALL CASN_Free PROTO((CASN_Handle));

#ifdef _cplusplus

}

#endif

#endif

Vibrant User Interface Tools

Introduction
Programming Example
Reference
Index
Acknowledgments
Trademarks

 Introduction

VIBRANT is a high-level, multi-platform user interface development library designed and implemented by Jonathan Kans at NCBI. Due to popular demand it is now being distributed as part of the NCBI Software Development Kit, but should not be considered a "supported product" the way tools more closely tied to the NCBI databases are. Vibrant is designed to act as an intermediary between an application program and the underlying windowing system toolkit. The philosophy behind Vibrant is that everything in the published user interface guidelines for the various windowing systems (i.e., the generic behavior of windows, menus, buttons, etc., to which all programs should conform) is taken care of automatically, without needing attention from the programmer. The programmer can concentrate on the specific behavior of the application in response to manipulation of control objects without worrying about unexpected and undesired interaction between objects. Vibrant frees the programmer from maintaining resource files, explicitly specifying the positions of objects, and writing an event loop.

A program written with Vibrant calls functions that create windows, menus, and the various graphical control objects that reside in them. Typically, the first parameter to the function that creates a control is the parent object for that control. The programmer may also write a "callback" function for a given object. The name of the callback is typically passed as the last parameter to the object creation procedure. When the user manipulates the object (and thus changes its "value"), the callback function is automatically executed. In addition to such standard interface objects as windows, menus, buttons, lists, and text boxes, Vibrant provides a universal drawing object called a "slate." A slate can contain one or more "panels." Each panel can have instance-specific callbacks for click, drag, hold, release, and draw functions. By using Vibrant's portable drawing functions in panels, an application can present arbitrarily complex drawings in a completely portable manner.

Modern graphical windowing interfaces have been largely responsible for the recent popularity of personal computers and workstations among the general public and in the business community. In contrast to traditional command-line- or prompt-driven programs, applications that run on a contemporary personal computer allow the user to decide the order of execution of computational tasks. The commands that are available under a given application are frequently displayed in a visible menu, so that the user does not need to remember esoteric acronyms or abbreviations or special function key codes. Graphical objects that represent relevant physical or mathematical entities appear in windows on the display screen, and these objects can respond to the movements of a pointing device (a "mouse") in a manner analogous to physical manipulation of material objects in the real world. The ease-of-use of these interfaces, in which learning a few skills allows the user to control many programs in a consistent manner, is especially important in molecular biology, where a given researcher may need to use many different programs on an occasional basis.

While windowing interfaces have made the user's job much easier, they have made the programmer's job much more difficult. Because the user is placed in charge of the work flow, the program must continually check to see what the user is doing, and must respond appropriately. Traditional programming for these interfaces requires the application developer to keep track of many interface implementation details. The programmer needs to place each object at a specific position, must draw each object correctly upon request, and must make sure that objects in general do not interfere with each other while allowing certain desired interactions to occur. This means that the cycle time for program development is long, and that even simple changes can require a lot of effort. In addition, programs written for one operating environment need to be extensively rewritten to run on another platform. Finally, the programmer must make the effort to become an expert in the use of the interface toolkits.

VIBRANT (Virtual Interface for Biological Research And Technology) is a portable user interface development library that has been written to allow new algorithms created by NCBI scientists to be quickly implemented and deployed to laboratory researchers as user-friendly computer programs. As part of the NCBI Software Development Kit, it is written in the C language, and can be built on a variety of computers with their most popular compilers. Programs written using the Vibrant interface will run on the graphically-oriented personal computers and workstations that are commonly found in many molecular biology laboratories. In addition, an interface written with Vibrant can be created quickly and changed easily. These features are particularly important in computer tools for molecular biology, since new problems suitable for computer solution and better algorithms for older problems appear rapidly as our understanding of the science progresses.

Vibrant is distinct from the native windowing systems or portable development toolkits in that it does not support the infinite variety of interface objects that could be created using those packages. Instead, control objects are created by function call from a small repertoire of standard objects that are in common use. Because of this compromise, Vibrant can internally handle all of the details necessary to fully implement its graphical control objects. For example, creating a push button, and completely specifying its appearance and behavior, is done with the following function call and parameters:

button = PushButton (parent, title, action);

The benefit of using Vibrant for building a program is that you can concentrate on writing code for the application functions, and need not worry about low-level interface messages or events. A choice group in a sub menu could be replaced by a set of radio buttons or a scrolling list simply by calling different functions to create the objects. With other packages such a program change would entail completely rewriting the code used to create the objects and detect and respond to user actions. The limitation in using Vibrant is that you must be satisfied with "standard" behavior for all of your graphical control objects. Some of the fancier interface techniques available only on one platform would generally not be available under Vibrant.

Since Vibrant is a functional interface, the programmer is no longer forced to pay attention to many low-level implementation details of visual interface objects (e.g., what radio button is set), and can simply be concerned with the values of the parameters these objects represent (e.g., what choice was made). From the user's point of view, objects appear to have a logical, hierarchical relationship to one another (e.g., radio buttons always "belong" to a particular group in a particular window), and Vibrant takes advantage of this functional hierarchy by having the programmer explicitly specify the relationships to be created. Objects are created with a single procedure call, and the call and its parameters are sufficient to make an object exist and define its generic behavior. Vibrant also automatically positions and sizes visual objects. Adding new objects to a program's interface imposes no extra burden in terms of code complexity. This means that the cycle time for program development is short, and it encourages a programmer to make even major changes to the look and feel of a program in order to make it as ergonomic and useful as possible, since such changes are substantially less difficult to implement using Vibrant.

A program written with Vibrant is designed around functional subunits that can be called upon user request. The programmer attaches such a "callback" function to a particular interface object, usually when the object is first created, and the callback is executed automatically when the user performs some appropriate action. Programs are thus divided into the procedure calls to create objects and the callback functions to give objects their specific behaviors. The callback structure of the interface is especially suited to user-driven programs. The callback functions in a program may also need to change the appearance and responsiveness of various interface objects (or create new ones). Several high-level procedures are available to manipulate objects, and include such self-explanatory functions as Show, Hide, Enable, Disable, Reset, SetTitle, and GetValue. Because of the object-oriented internal design of the interface, these procedures can be applied to any object, including text boxes, push buttons, and menu choices.

Since Vibrant is a portable interface, the programmer no longer needs to master the complicated underlying toolkits for each interface. Vibrant acts as a bridge between the high-level concepts of parameters (e.g., strings, numbers, choices, toggles) and the toolbox commands for the appropriate visual object on a particular machine. Portable memory, string and file manipulation procedures are provided by the NCBI Software Development Kit core library. Application programs using Vibrant currently run unchanged on the Macintosh, under Microsoft Windows on the PC, and on UNIX and VMS machines under OSF/Motif.

In addition to the standard interface objects (windows, menus, buttons, lists, and text boxes), Vibrant also supplies a universal drawing environment called a "slate." A slate allows an application to present arbitrarily complex drawings in a completely portable manner. Messages or events that are treated by other objects at the generic level (including drawing requests and mouse clicks) are converted by slates to application callback function calls in a platform-independent manner. A slate can have one or more panels, and each panel can have instance-specific callbacks for click, drag, hold, release, and draw functions. (The simplest version of a slate merges a slate and a panel in one object instance.) Vibrant provides a variety of drawing procedures that can be used inside slates regardless of the machine that is actually being used. A panel can be used to create a new object that solves a general problem (such as display of tabular text, or display of bitmap icons). Since the slate allows multiple panels, you can combine these general building blocks (even superimpose them) to create a complex slate from simpler components. This can be much more efficient than having to modify (and thus understand) a copy of the code for each component in order to make a custom object.

Programming Example

The simple application in this section illustrates programming techniques for Vibrant. Commentary on the use of Vibrant is interspersed with the code. For the purposes of illustration, the callbacks, which are referenced in the setup portion, are declared at the end of the program. Vibrant is built on top of the NCBI Software Development Kit core library.

The main application procedure in a Vibrant program is called Main. Vibrant itself contains the C main function, which initializes the windowing system before calling the application Main. The Main procedure should create the object hierarchy to be used for the program's interface, and should assign callback functions to appropriate objects. Once Vibrant objects are created they persist until explicitly removed or until program termination. A call to ProcessEvents should be at the end of Main, just before any cleanup and the return statement. ProcessEvents will handle all events or messages from the underlying windowing system, and will trigger the execution of application callback functions when appropriate. One callback function should call QuitProgram to allow the user to terminate the program. The remaining callbacks should respond by performing computational services that the user has requested.

Object Specification

The only header file that needs to be included is <vibrant.h>. This will automatically include <ncbi.h>, which in turn includes the <ncbilcl.h> header specific for the current platform:

#include <vibrant.h>

Interface object data types are variants of Handle types. Although these may be indirect pointers on the personal computers, they should only be used as parameters to Vibrant procedures, and should not be used with * or -> notation. The last letter of each Vibrant object type is capitalized for easy identification.

The names of many Vibrant object types are self explanatory. WindoW objects have no parents. GrouP objects go inside windows or other groups. Their main purpose is to automatically position their child objects, but they also allow a set of radio buttons to be referenced by an integer value (as are LisT, ChoicE and PopuP sets). ButtoN, IcoN, LisT, PopuP, PrompT, RepeaT, SlatE, SwitcH, and TexT objects can go inside of groups or windows. MenU objects belong to particular windows (or NULL on the Macintosh, in which case they are placed on the "desktop window"), and can contain IteM and ChoicE objects (as well as sub menus). There are also portable types for FonT, PoinT, RecT, and RegioN:

static ButtoN accept;
static GrouP category;
static PaneL drawing;
static GrouP features;
static TexT species;
static ButtoN check [4];
static PoinT lastPt;

Functions that are referenced before they are declared in a program must be prototyped by copying the function declaration and adding a semicolon to the end of the line. Vibrant uses the ANSI style of C, in which the parameter list includes the type of each parameter:

static void QuitProc (IteM i);
static void EnableProc (GraphiC g);
static void DrawProc (PaneL p);
static void ClickProc (PaneL p, PoinT pt);
static void DragProc (PaneL p, PoinT pt);
static void AcceptProc (ButtoN b);

The Main procedure returns an Int2, which is defined in <ncbilcl.h> as a 16-bit signed integer:

extern Int2 Main (void)

{
 GrouP g;
 IteM i;
 MenU m;
 PrompT p;
 WindoW w;

Menus are installed on the desktop (on the Macintosh) or inside a given window (under Windows or Motif) by determining whether the platform symbols WIN_MAC, WIN_MSWIN or WIN_MOTIF are defined. The first parameter to any object creation procedure (except for a window) is the parent object. Thus, the File menu is created first (with the NULL parent specifying the desktop window in the case of the Macintosh), and its child items are created later. The CommandItem procedure has its parent menu as its first parameter. Note that CommandItem objects take an item action procedure callback (typedef void (*ItmActnProc) (IteM)) as an explicit parameter. An action procedure is used to notify the program when the value of an object has changed, i.e., when the user has chosen the command item from the menu:

#ifdef WIN_MAC
 m = AppleMenu (NULL);
 DeskAccGroup (m);
 m = PulldownMenu (NULL, "File");
 i = CommandItem (m, "Quit/Q", QuitProc);
#endif

For the FixedWindow procedure, the "-50, -33" for left and top means that the window will be centered horizontally on the screen and one third of the way down the screen. The "-10, -10" for width and height mean that 10 pixels will separate objects on the window. The string parameter is the window title, and the NULL is the close callback. Whereas a DocumentWindow can be resized and dragged, a FixedWindow can only be dragged:

 w = FixedWindow (-50, -33, -10, -10, "Observed Organisms", NULL);

For non-Macintosh platforms, the menus go in a particular window, not on the desktop:

#ifndef WIN_MAC
 m = PulldownMenu (w, "File");
 i = CommandItem (m, "Quit/Q", QuitProc);
#endif

A StaticPrompt is a label that takes parameters for the parent group or window, text of the label, pixel width (0 will calculate the width of the string), pixel height (prompts are centered vertically if the height is greater than the line height), font, and justification ('l', 'c', or 'r' for left, centered, or right):

 p = StaticPrompt (w, "Species", 0, dialogTextHeight, systemFont, 'l');

The Advance function forces the next object to appear at the top of the next available column on the window. (A hidden group (discussed below) could also be used to arrange objects.) Objects are otherwise placed by default below the previous object:

 Advance (w);

A DialogText takes as parameters its parent group or window, the initial value of the edit text, the minimum number of character spaces to reserve, and a callback to be called whenever the text value of the edit box changes. (Objects that take "character space" parameters also usually add a border of 8 pixels. These functions will likely be changed to take pixel parameters, perhaps without automatically including additional border pixels.) Select makes species the active (highlighted) text object:

 species = DialogText (w, "", 15, (TxtActnProc) EnableProc);
 Select (species);
 Advance (w);

The DefaultButton triggers the callback when it is pressed, or when the Return key is hit, but Disable prevents this action from occurring for the present by graying out the button title:

 accept = DefaultButton (w, "Accept", AcceptProc);
 Disable (accept);

The Break function forces the next object to appear at the left on the next available row of the window, below all previously placed objects, and resets the new "top" used by Advance:

 Break (w);

A hidden group is created in order to nicely position the category and features groups and the drawing panel. The "0, 3" means that objects in the hidden group should be laid out vertically (Y axis comes after X axis in these layout specifications), and that after every third object the next position should advance to the top of the next available column. SetGroupMargins sets the horizontal and vertical pixel distances between the group boundary and its internal objects, and SetGroupSpacing sets the pixel distances between objects within a group:

 g = HiddenGroup (w, 0, 3, NULL);
 SetGroupMargins (g, 3, 3);
 SetGroupSpacing (g, 3, 2);

The RadioButton choices go into a group. The radio buttons must be inside of a group for them to behave as a mutually exclusive set of choices, and the current choice is an integer property of the group. The callback for the first group is the same as that for the dialog text box. The initial value of the group is 0, meaning that no radio buttons are set. The "5, 0" means that objects are laid out horizontally (X axis), and up to five objects may be placed on each line. The RadioButton function does return a handle to the button, but only so that individual buttons in a group can be disabled or hidden. The GetValue function should be used to determine which group member is set, rather than calling GetStatus for each button:

 category = NormalGroup (g, 5, 0, "Category", (GrpActnProc) EnableProc);
 RadioButton (category, "Amphibian");
 RadioButton (category, "Bird");
 RadioButton (category, "Fish");
 RadioButton (category, "Fungus");
 RadioButton (category, "Lichen");
 RadioButton (category, "Mammal");
 RadioButton (category, "Mold");
 RadioButton (category, "Plant");
 RadioButton (category, "Reptile");

The check boxes are inside of a group merely so that they will line up nicely by virtue of the group's automatic positioning of its children, and do not behave in a mutually exclusive manner. The check boxes are initially off. The SetStatus function can change the settings of check boxes:

 features = NormalGroup (g, 4, 0, "Features", NULL);
 check [0] = CheckBox (features, "Camouflaged", NULL);
 check [1] = CheckBox (features, "Motile", NULL);
 check [2] = CheckBox (features, "Nocturnal", NULL);
 check [3] = CheckBox (features, "Poisonous", NULL);

A simple panel is created to allow the user to sketch the organism, although this information will not be saved to a file. Since the panel is in the hidden group, its width will be adjusted to be the same as that of its sibling objects (i.e., the category and features groups, overriding the width specification). The simple panel contains a slate and a single panel in one object instance. The SimplePanel callback parameter specifies the draw function for that panel. Vibrant will call this application function whenever the drawing in the panel needs to be refreshed. The SetPanelClick function assigns callbacks for responding to click, drag, hold, and release mouse actions:

 drawing = SimplePanel (g, 100, 100, DrawProc);
 SetPanelClick (drawing, ClickProc, DragProc, NULL, NULL);

Finally, Main calls Show to make the window visible (and size it to its child objects if the window width and height parameters were negative), and calls ProcessEvents to give control to the user:

 Show (w);
 ProcessEvents ();
 return 0;
}

Callback Functions

The setup portion of this sample program referenced six callback procedures, QuitProc, EnableProc, AcceptProc, DrawProc, ClickProc, and DragProc, and then called ProcessEvents as its final act. The remainder of the life span of the program consists of these callbacks automatically being executed in response to particular actions by the user:

The QuitProc callback calls the Vibrant QuitProgram function, which terminates Vibrant execution and exits the ProcessEvents loop to return to the program's Main function. After Main returns, Vibrant will clean up its memory structures before returning to the operating system:

static void QuitProc (IteM i)

{
 QuitProgram ();
}

The EnableProc (used as the action procedure of the species text and the category group) enables the accept button only if the species text is not blank and if a category has been chosen. Since the procedure can be called with either a GrouP or a TexT parameter, the parameter is declared as a GraphiC, and the EnableProc name was cast to a GrpActnProc or a TxtActnProc when referenced:

static void EnableProc (GraphiC g)

{
 Char str [32];

 GetTitle (species, str, sizeof (str));
 if (StringLen (str) == 0 || GetValue (category) == 0) {
 Disable (accept);
 } else {
 Enable (accept);
 }
}

The panel draw callback is called whenever the drawing in the panel needs to be refreshed. The DrawProc example callback frames a border around the drawing panel and draws a text label. Since the draw callback may be triggered many times, the text label is drawn with DrawString rather than by creating a StaticPrompt object. Unless a new font is selected, DrawString will use the pre-defined systemFont. ObjectRect returns the bounding rectangle for any Vibrant object. The current implementation does not save and refresh the drawing:

static void DrawProc (PaneL p)

{
 RecT r;

 ObjectRect (p, &r);
 if (RectInRgn (&r, updateRgn)) {
 r.top += 6;
 FrameRect (&r);
 r.top -= 6;
 r.left += 4;
 r.right = r.left + StringWidth ("Picture") + 2;
 r.bottom = r.top + stdLineHeight;
 DrawString (&r, "Picture", 'l', FALSE);
 }
}

The ClickProc responds to double clicking on the panel by using EraseRect to erase the current drawing. The coordinates for the mouse position (pt parameter) is always relative to the parent window, with (0, 0) at the upper left of the window. ObjectRect will return the rectangle of the panel in the same window-based coordinate system:

static void ClickProc (PaneL p, PoinT pt)

{
 RecT r;

 if (dblClick) {
 ObjectRect (p, &r);
 r.top += stdLineHeight;
 InsetRect (&r, 2, 2);
 EraseRect (&r);
 }
 lastPt = pt;
}

The DragProc tracks the mouse on the panel, allowing the user to sketch an organism. Checking for PtInRect is necessary on some platforms that do not automatically clip to restrict drawing to be within a given panel (all platforms now perform this clipping):

static void DragProc (PaneL p, PoinT pt)

{
 RecT r;

 ObjectRect (p, &r);
 r.top += stdLineHeight;
 InsetRect (&r, 4, 4);
 if (PtInRect (lastPt, &r) && PtInRect (pt, &r)) {
 DrawLine (lastPt, pt);
 }
 lastPt = pt;
}

The AcceptProc callback, triggered by pressing the accept button once it has been enabled, opens a file using the core library FileOpen function:

static void AcceptProc (ButtoN b)

{
 FILE *f;
 Int2 i;
 RecT r;
 Char str [32];
 Int2 val;

 f = FileOpen ("Organism", "a");
 if (f != NULL) {

It then prints the species and category to the file. (The Motif version of Vibrant is not able to get the titles of buttons, list elements, or menu items.) Note that for a group, the value is 0 if no choice has been made, and is 1 through n if a choice item is currently selected:

 GetTitle (species, str, sizeof (str));
 StringNCat (str, "\t", sizeof (str) - 1);
 WriteString (f, str);
 val = GetValue (category);
 GetItemTitle (category, val, str, sizeof (str));
 WriteString (f, str););

Finally, it prints the chosen features to the file, and closes the file:

 for (i = 0; i < CountItems (features); i++) {
 if (GetStatus (check [i])) {
 WriteChar (f, '\t');
 GetTitle (check [i], str, sizeof (str));
 WriteString (f, str);
 }
 }
 WriteLn (f);
 FileClose (f);
 }

To reset for the next entry, it disables the accept button, clears and resets the species text, category group, and features check boxes, erases the drawing, and sets the input focus to the species text object:

 Disable (accept);
 SetValue (category, 0);
 for (i = 0; i < CountItems (features); i++) {
 SetStatus (check [i], FALSE);
 }
 Select (drawing);
 ObjectRect (drawing, &r);
 r.top += stdLineHeight;
 InsetRect (&r, 2, 2);
 EraseRect (&r);
 SetTitle (species, "");
 Select (species);
}

The actual dialog window, with the species, category and feature objects filled in, appears below:

[image: image1.png]bserved Organisms

species [Crotatus atro

Category
© Amphibian O Bird OFish O Fungus O Lichen
OMammal_OMold O Plant ® Reptile

Features
[camouflaged [Motile []Nocturnal [Poisonous

Picture

Reference

This section presents the various Vibrant graphic interface functions in some detail. Although there are quite a few procedures, a number of them are variants of one another. For example, all of the window creation functions are similar, differing only in the kinds of window controls generated (drag bars, grow regions, close boxes) and in their behavior (normal, modal dialog, or floating palette windows). Buttons also differ in their behavior, with push buttons used to trigger commands, check boxes used as Boolean toggles, and radio buttons used to select from a mutually exclusive set of choices. The visibility and functionality modifying functions (e.g., Show, Hide, Enable, Disable, Select) can be applied to any Vibrant graphic object.

Some procedures are menu item equivalents of similar button procedures. For example, a PushButton and CommandItem are equivalent, as are a CheckBox and a StatusItem. RadioButtons in a group are equivalent to ChoiceItems in a ChoiceGroup. The "value" of a given object is manipulated by certain functions. SetValue and GetValue use an integer value, and are appropriate for radio button groups, single choice lists, menu choice groups, and popup menu groups. (The value 0 means no choice is selected, and the choices are numbered 1 through n.) SetStatus and GetStatus use a Boolean value, and are appropriate for check boxes and status items. SetItemStatus and GetItemStatus are used for the item values of multiple choice lists, which do not have individual Vibrant object handles. SetTitle and GetTitle are used to manipulate the titles of windows, buttons, prompts, etc., and SetItemTitle and GetItemTitle are used to access list item titles. (Changing or obtaining the title of an item is not always possible for certain objects on certain platforms.)

In situations where a user is expected to make a choice among a small number of items, it is frequently appropriate either to implement the choice as a group of radio buttons, as a menu choice group, or as a popup menu group. If the number of choices can be quite large, or if the names of the actual choices can change each time the program is run, it may be wiser to implement the choice as a single choice list.

Certain design decisions will seem unnecessarily complex to people who are familiar with only one of the underlying windowing interfaces. A case in point is the description of fonts. On the Macintosh, selection of a font name, size, and style are independent operations. Under Windows, a different font descriptor must be created for each combination of name, size, and style. The portable solution in Vibrant was to create a FonT object that specifies one unique combination of name, size, and style, and to change fonts on each machine by calling SelectFont with the desired font object. In addition, Windows and Motif do not perform garbage collection among allocated fonts, whereas Vibrant will do so.

Other design decisions will seem impossibly simple. For example, by assigning one device context to each parent window in Windows, by having child windows use the parent's device context, and by keeping track of the "current" window and device context in static variables, the device context becomes the functional equivalent of the Macintosh port. This allows the creation of the slate, the universal drawing environment, on otherwise very different graphics systems. Vibrant's drawing functions do not need the current window as an explicit parameter, even though the underlying Windows toolbox calls do need to be told which device context to use. Under Motif, each slate is a separate DrawingArea, and the current Xlib-level Window is also a hidden context variable. Vibrant will perform garbage collection on Windows pens and brushes.

Be sure to read the appropriate declarations in <vibtypes.h>, <vibprocs.h> or <ncbidraw.h> to get a complete list of types, variables, functions and parameters when you are actually working with a particular section of the Vibrant library. Also, you should become familiar with the types defined in the <ncbilcl.h> header, such as Int2, CharPtr, VoidPtr, and NULL.

Object Data Types

All Vibrant objects are referenced, as far as the compiler is concerned, by pointers to hidden data structures. (In fact, on both the Macintosh and Microsoft Windows, these are in reality handles, which are pointers to pointers to data ("near" pointers to pointers on Windows). When accessing the data structures, Vibrant internally "locks" the handles to get a pointer to the data and "unlocks" the handles when done.) The base type is GraphiC, whose definition appears below:

typedef struct Nlm_graphic {
 Nlm_VoidPtr dummy;
} HNDL Nlm_GraphiC;

The standard object types are BaR, ButtoN, ChoicE, GrouP, IcoN, IteM, LisT, MenU, PaneL, PopuP, PrompT, RepeaT, SlatE, SwitcH, TexT and WindoW.

There are several important points to note. First, in order to avoid conflicts with type or function names in the various windowing systems, all NCBI core library and Vibrant symbols are prefixed with "Nlm_". For application programs, <vibrant.h> includes defines that add the prefix to every common symbol prior to compilation:

#define GraphiC Nlm_GraphiC

Second, note that for Vibrant objects, the last letter of each data type is capitalized. This is the evolutionary remnant of a less general attempt at collision avoidance that was ultimately superseded by the Nlm_ prefix. However, it does allow Vibrant objects to be identified at a glance.

Third, the HNDL symbol indicates that the object is a handle. This symbol is defined in the <ncbilcl.h> file specific for each platform. On the Macintosh it is simply "*", the general pointer definition. Under Windows it is "_near *", indicating that it is a 16 bit pointer, which is size compatible with the 16 bit int currently used for a handle. (The related symbol, PNTR, defines a 32 bit far pointer, which is returned by the core library MemNew memory allocation function. Under Win32 and Windows NT, both pointers and handles are 32 bits, but PNTR and HNDL should still be used at this time.) Although it is not safe practice to access the data to which the handle points by double indirection (or even single indirection), the definition of Vibrant object handles as (near) pointers to different dummy structures allows the compiler to distinguish, for example, a ButtoN from a ChoicE. This means that the compiler can prevent an attempt to place a ButtoN in a MenU, but will allow a ChoicE group to be placed in a MenU.

Fourth, note that WindoW and GrouP are (handle-sized) pointers to the same dummy structure:

typedef struct Nlm_window {
 Nlm_VoidPtr dummy;
} HNDL Nlm_GrouP, HNDL Nlm_WindoW;

This allows ButtoN, GrouP, IcoN, LisT, PopuP, PrompT, RepeaT, SlatE, SwitcH and TexT objects to be placed either at the main level of a window, or in a group within a window (or within another group), without having the compiler complain. (A group has two major functions. One is that it is the parent object for a group of radio buttons, and gives the set of buttons mutual exclusivity. The other is that it automatically positions its child objects. The application rarely has to worry about object layout.)

A WindoW is a top level object, and has no parent. A MenU is placed inside a window (Vibrant considers the Macintosh desktop to be a window). IteM and ChoicE objects can only go inside menus. All other objects can go inside a window or inside a group within a window.

There are also other definitions for types that are not Vibrant graphic interface objects, but which may be used as parameters when creating such objects or when drawing using slates and panels. These include FonT, PoinT, RecT and RegioN, which are needed because the equivalent underlying concepts are incompatible between different windowing systems. FonT is defined as a handle to another dummy structure, and the other definitions are shown below:

typedef struct Nlm_point {
 Nlm_Int2 x;
 Nlm_Int2 y;
} Nlm_PoinT, PNTR Nlm_PointPtr;

typedef struct Nlm_rect {
 Nlm_Int2 left;
 Nlm_Int2 top;
 Nlm_Int2 right;
 Nlm_Int2 bottom;
} Nlm_RecT, PNTR Nlm_RectPtr;

typedef Nlm_Handle Nlm_RegioN;

The remainder of this document will omit the Nlm_ prefix. Function definitions will also omit the PROTO macro, which is used to allow compatibility with compilers that cannot accept parameter lists in prototypes.

Callback Types

The callback functions for various objects are strictly typed. The most used class, the action proc, has the handle to the calling object as the only parameter. (There are separate callback function type definitions for each kind of object, since some compilers check types of function parameters, so only the "generic" typedefs are shown.) The click proc is used by panels for the click, drag, hold and release callbacks, and includes the x and y coordinates of the mouse at the time of the call:

typedef void (*VoidProc) (void);
typedef void (*KeyProc) (Char);
typedef void (*ActnProc) (GraphiC);
typedef void (*ClckProc) (GraphiC, PoinT);
typedef void (*ScrlProc) (BaR, GraphiC, Int2, Int2);
typedef void (*ChngProc) (GraphiC, Int2, Int2);

The button action proc and panel click proc illustrate the actual specific callback types:

typedef void (*BtnActnProc) (ButtoN);
typedef void (*PnlClckProc) (PaneL, PoinT);

General Global Variables

There are a number of useful global variables that are available in Vibrant. screenRect holds the rectangular coordinates of the computer screen. systemFont and programFont are predefined font variables. stdAscent, stdDescent, stdLeading, stdFontHeight, stdLineHeight, and stdCharWidth are constants determined by applying the equivalent (capitalized) function to systemFont. dblClick and shftKey may be set during list and panel clicks. updateRgn and updateRect are set in response to panel draw (expose) events.

Window Objects

Windows are the top level objects in Vibrant. Document windows may be dragged and resized by the user. Fixed and Round windows may be dragged but not resized. Modal windows force the user to enter immediately needed information. The first two parameters of all of the window creation functions determine the x and y position of the window on the screen. If these parameters are negative, then the absolute value is used as the percentage of desktop space to be at the left of the window or above it. The next two parameters specify the width and height of the window. If these are negative, then the window form fits around its child objects when it is first shown, and the absolute value is the number of pixels to use as the border around and the spacing between the children. Remaining possible parameters include the window title, a callback for responding to clicking in the close box, and a callback for responding to resizing of the window. The full prototype for the FixedWindow function is shown below:

extern WindoW FixedWindow (Int2 left, Int2 top, Int2 width, Int2 height
 CharPtr title, WndActnProc close);

The remaining sections will omit the types of parameters except for the parent object. The full prototype declarations may be found in the <vibprocs.h> header. Other windows are:

WindoW DocumentWindow (left, top, width, height, title, close, resize);
WindoW FixedWindow (left, top, width, height, title, close);
WindoW FrozenWindow (left, top, width, height, title, close);
WindoW RoundWindow (left, top, width, height, title, close);
WindoW AlertWindow (left, top, width, height, close);
WindoW ModalWindow (left, top, width, height, close);
WindoW FloatingWindow (left, top, width, height, close);
WindoW ShadowWindow (left, top, width, height, close);
WindoW PlainWindow (left, top, width, height, close);

On some platforms a window becomes "active" and available for manipulation when it is moved to the front of the other windows. The SetActivate procedure assigns to a window a callback that is triggered when the window is activated, though this parameter may be added to the window creation functions:

void SetActivate (WindoW w, act);

Context Functions

Vibrant remembers the current window context of an application. The following functions can be used to get and set the current context. On Motif, setting the context for a panel in addition requires calling Select for that panel:

WindoW CurrentWindow (void);
void UseWindow (WindoW w);
WindoW ParentWindow (Handle obj);
WindoW SavePort (Handle obj);
void RestorePort (WindoW w);

Grouping Objects

Groups are used to control the positioning of objects within a window. Groups can be placed in windows, or can be nested inside other groups. In addition to positioning most classes of Vibrant interface objects, groups are used to reference a set of radio buttons and implement mutual exclusivity. The width and height parameters determine the layout of child objects. If the width parameter is positive and the height parameter is 0, objects are laid out horizontally, and the position Breaks to the next row after each set of n objects. If the height parameter is positive, objects are laid out vertically, and the position Advances to the next column after n objects. If width or height is negative, objects are laid out as above, but their borders are not aligned with one another. If both width and height are 0, successive objects are placed at the same position. In this case, you would typically hide all but one of the superimposed child objects at any given time, or you could call Advance or Break between objects, which would just give up the automatic alignment of items that the group would otherwise provide:

GrouP NormalGroup (GrouP prnt, width, height, title, actn);
GrouP HiddenGroup (GrouP prnt, width, height, actn);

SetGroupMargins and SetGroupSpacing specify the borders between a group and its objects and the spacing between internal objects. Measurements are in pixels:

void SetGroupMargins (GrouP g, xMargin, yMargin);
void SetGroupSpacing (GrouP g, xSpacing, ySpacing);

Button Objects

Buttons are created by PushButton, DefaultButton, CheckBox, or RadioButton. A default button is a push button with a visible border that also responds to the return key. The check box implements a Boolean toggle. Changing the radio button selection turns off the previously-selected radio button and triggers the action callback of the parent group:

ButtoN PushButton (GrouP prnt, title, actn);
ButtoN DefaultButton (GrouP prnt, title, actn);
ButtoN CheckBox (GrouP prnt, title, actn);
ButtoN RadioButton (GrouP prnt, title);

The CheckBox setting is manipulated with the GetStatus and SetStatus functions. Radio buttons should not be accessed in this manner, but instead with the GetValue and SetValue functions applied to the parent group, which guarantee mutual exclusivity.

List Objects

Scrolling lists may be single choice or multiple choice:

LisT SingleList (GrouP prnt, width, height, actn);
LisT MultiList (GrouP prnt, width, height, actn);

List elements are appended to the end of a list with the ListItem function:

void ListItem (LisT prnt, title);

The single choice list has an integer value accessed by GetValue and SetValue, and is the functional equivalent of a group of radio buttons. A multiple choice list is similar to a group of check boxes, but since each list item does not have its own handle, the settings are accessed with the GetItemStatus and SetItemStatus functions.

Menu Objects

Menus can reside in a window menu bar, in the Macintosh desktop menu bar, or as a sub menu in another menu. The Apple menu can be created on the Macintosh. A parent window parameter of NULL specifies the desktop menu bar on the Macintosh. SubMenu creates a menu item that controls a cascading sub menu, and takes a menu as its parent:

MenU PulldownMenu (WindoW prnt, title);
MenU AppleMenu (WindoW prnt);
MenU SubMenu (MenU prnt, title);

Menus can contain items or choice groups. The CommandItem is the equivalent of a push button, and the StatusItem is the equivalent of a check box:

IteM CommandItem (MenU prnt, title, actn);
IteM StatusItem (MenU prnt, title, actn);

Separator bars can be used to make the menu easier to read:

void SeparatorItem (MenU prnt);

A choice group acts like a group of radio buttons or a single choice list. As such, the value of the choice group should be accessed with GetValue and SetValue:

ChoicE ChoiceGroup (MenU prnt, actn);

Choice group items are appended to the end of a choice group with the ChoiceItem function. The return value can be used to disable a choice item, but should not be used to access the status of the choice item:

IteM ChoiceItem (ChoicE prnt, title);

Popup Object

The PopupList is a choice group that can appear anywhere in a window. On the Macintosh, the macLike parameter determines if the list drops down or pops up around the current selection, but this parameter may be eliminated in the future. As with other choice groups, the popup list value should be accessed with GetValue and SetValue:

PopuP PopupList (GrouP prnt, macLike, actn);

Popup menu items are appended to the end of a popup list with the PopupItem function. There is no return value, so the individual elements of a popup menu cannot be disabled:

void PopupItem (PopuP prnt, title);

Prompt Object

The StaticPrompt is generally used as a label for a dialog text or a popup menu. It can also be used to display a changing value on a window. If the pixwidth parameter is 0, the width of the title string (plus two pixels) is used. If the pixheight parameter is 0, the stdLineHeight value is used. If the font specification is NULL, systemFont is used. The just parameter is either 'l', 'c', or 'r', specifying the horizontal justification:

PrompT StaticPrompt (GrouP prnt, title, pixwidth, pixheight, font, just);

The prompt is centered vertically around the pixheight value. Passing the standard variables dialogTextHeight or popupMenuHeight ensures proper placement of the prompt next to these objects. SetTitle can be used to change the string displayed by the prompt.

Text Objects

DialogText and PasswordText procedures accept a single line of text, while ScrollText is used for entering multiple lines of text. The width, height, and charWidth parameters currently use stdCharWidth as their metric, but this may be changed to pixel values in the future:

TexT DialogText (GrouP prnt, dfault, charWidth, actn);
TexT PasswordText (GrouP prnt, dfault, charWidth, actn);
TexT ScrollText (GrouP prnt, width, height, font, actn);

SetTextSelect assigns callbacks to notify the application of changes in the selection range or focus, though this parameter may be added to the text creation functions in the future:

void SetTextSelect (TexT t, slct, dslct);

TextLength returns the number of characters currently in the text object:

Int2 TextLength (TexT t);

Knowledge of the active text and the selection range are useful for cutting and pasting:

TexT CurrentText (void);
void TextSelectionRange (TexT t, begin, end);

The cut, copy, paste and clear functions require the text object to be specified as a parameter:

void CutText (TexT t);
void CopyText (TexT t);
void PasteText (TexT t);
void ClearText (TexT t);

Scroll Bar Object

A scroll bar unconnected with a text or slate object can be placed on a window with the ScrollBar function. Vibrant does not currently create scroll bars in a document window, though this may be implemented in the future. If width is positive, the scroll bar is horizontal, and if height is positive, it is vertical. The width and height parameters currently use stdCharWidth as the metric, though this will likely be changed to use pixels:

BaR ScrollBar (GrouP prnt, width, height, actn);

Scroll bar values are manipulated with GetValue and SetValue, which access the actual scroll bar thumb position. In addition, a scroll bar must first be activated by calling the SetRange function, passing it the maximum value as well as the page up and page down values:

void SetRange (Handle obj, pgUp, pgDn, max);

The scroll bar callback is triggered when the application program calls SetValue. All other Vibrant objects call their callback only when the user, not the application, changes the value. This is because the scroll bar is assumed to be controlling some non-standard object, whose appearance is changed in an application-specific manner.

In order to adjust the value of the scroll bar without triggering the callback, the CorrectBarValue function is provided. The CorrectBarMax function changes the maximum value without needing to specify the page up and page down values, and CorrectBarPage changes the page up and down values:

void CorrectBarValue (BaR b, val);
void CorrectBarMax (BaR b, max);
void CorrectBarPage (BaR b, pgUp, pgDn);

The application also gets the scroll bar callbacks for the AutonomousPanel and GeneralSlate objects. The scroll callback for a panel will generally be written to call ScrollRect (to move lines that will remain visible, albeit in a different location in the panel), InvalRect (to flag as invalid any areas that need to be redrawn), and Update (to force the invalid areas to be immediately redrawn).

The application should take care that the scroll bar value is never greater than the maximum.

Slate and Panel Objects

The slate is a universal drawing object. A slate can contain one or more panels. Each panel has an instance-specific callback for drawing, and can be assigned instance-specific callbacks for responding to mouse click, drag, hold, and release events. A slate comes in two flavors. One is a combination of a slate and a panel in a single object instance. These panels are created with the following commands:

PaneL SimplePanel (GrouP prnt, pixwidth, pixheight, draw);
PaneL AutonomousPanel (GrouP prnt, pixwidth, pixheight, draw,
 vscrl, hscrl, extra, reset, classPtr);

The mouse response callbacks are assigned by SetPanelClick:

void SetPanelClick (PaneL p, click, drag, hold, release);

For the autonomous panel, extra instance data can be appended to the object. For example, the repeat button is implemented as an autonomous panel, and stores the button title and repeat action callback as extra data specific to each instance of a repeat button. The extra data is retrieved and set by the GetPanelExtra and SetPanelExtra functions:

void GetPanelExtra (PaneL p, VoidPtr sptr);

void SetPanelExtra (PaneL p, VoidPtr sptr);

The other flavor of a slate has (usually multiple) panels as the children of a slate:

SlatE ScrollSlate (GrouP prnt, width, height);
SlatE NormalSlate (GrouP prnt, width, height);
SlatE HiddenSlate (GrouP prnt, width, height);
SlatE GeneralSlate (GrouP prnt, width, height, scrl, extra, classPtr);

The VirtualSlate function fools the vertical scroll bar into acting as if it has a large range:

void VirtualSlate (SlatE s, before, after, actn);

Panels inside these slates are created with CustomPanel or GeneralPanel:

PaneL CustomPanel (SlatE prnt, draw, extra, reset);
PaneL GeneralPanel (SlatE prnt, draw, extra, reset, classPtr);

Panels must register their rectangles to let the parent slate know their dimensions:

void RegisterRect (PaneL p, r);

Panels should also register rows and columns to the parent slate scroll bars. The slate remembers the line offsets and line heights, calls SetRange to the slate scroll bars, and the default slate scroll callback issues ScrollRect and InvalRect commands as appropriate when the user scrolls:

void RegisterRow (SlatE s, position, height, count);
void RegisterColumn (SlatE s, position, width, count);

Slates may obtain the first line shown by calling GetOffset to the slate. Panels may obtain the current pixel offset by calling GetOffset to the child panel:

void GetOffset (Handle obj, horiz, vert);

Finally, the vertical and horizontal scroll bars may be obtained from the slate. The slate passes SetRange commands to its vertical scroll bar, but this became insufficient when horizontal scroll bars were added:

BaR GetSlateVScrollBar (SlatE s);
BaR GetSlateHScrollBar (SlatE s);

Child panels (CustomPanel or GeneralPanel) can be used to build higher level reusable objects. (TablE and PalettE objects have been built to allow text and pictures to be easily displayed inside a slate.) The panels can be superimposed to build complex behaviors out of simpler panels, without disrupting the code of the individual panels. Panels are drawn first to last, so that the first one added to a slate appears at the rear of the slate. Panels are checked for click responsiveness from last to first, so that the last one added behaves as if it were in front.

Repeat Object

RepeatButton takes a click proc as its callback, which is called for click and hold. Even though it is implemented as a panel, and its callback has a mouse location parameter, it is otherwise close to a button in behavior. The title can be changed with SetTitle:

RepeaT RepeatButton (GrouP prnt, title, actn);

Switch Object

The switch object is used as a miniature scroll bar, with up and down arrows but no thumb or page areas. It can optionally display a (non-editable) text representation of the value (e.g., "5/15"):

SwitcH UpDownSwitch (GrouP prnt, text, actn);
SwitcH LeftRightSwitch (GrouP prnt, text, actn);

The value is manipulated with SetValue and GetValue. The arrows will allow the user to set values from 1 through max. SetSwitchParams will set both the max and the value at once, to avoid flickering by multiple redraws:

void SetSwitchMax (SwitcH s, Int2 max);
Int2 GetSwitchMax (SwitcH s);
void SetSwitchParams (SwitcH s, Int2 value, Int2 max);

Icon Object

The IconButton is used to display arbitrary bitmap and drawing controls. The draw callback should get the value of the icon button (with GetValue) to determine what to display, and should call ObjectRect to determine the rectangle of the icon object (in which it should draw). The click, drag, hold and release mouse callbacks may use SetValue to change the appearance:

IcoN IconButton (GrouP prnt, pixwidth, pixheight, draw, inval,
 click, drag, hold, release);

Whenever SetValue is called, the inval callback is triggered. If this parameter is NULL, the default invalidation procedure is called. This obtains the object rectangle, insets it by one pixel, and invalidates the resulting rectangle. The inval parameter is provided to allow the application to invalidate a different region or to scroll the drawing, if that is more appropriate. After the inval procedure is called, an Update is forced, calling the draw procedure if any part of the icon has been marked as invalid.

Graphical Viewer Object

This is a high level object written with an autonomous panel. There are two header files that contain the typedefs and function prototypes for this package:

#include <picture.h>
#include <viewer.h>

You should read these header files to see the typedefs for the various callbacks. The mouse responsiveness callbacks, in particular, take an extra parameter from those used directly with panels.

A picture is created as a tree of segment objects. Picture segments are not Vibrant graphical objects, in that they cannot be placed into windows, groups, menus, etc., though their philosophy is very similar to the Vibrant group. A segment can be given an integer ID that can refer to the program object which it represents. It can also be told the maximum scale factor at which it will be visible (0 means always visible). Given any segment, you can find its parent segment, and traverse up the hierarchy to the parent picture.

SegmenT CreatePicture (void);
SegmenT DeletePicture (SegmenT picture);

SegmenT CreateSegment (SegmenT parent, segID, maxScale);
SegmenT ResetSegment (SegmenT segment);

SegmenT ParentSegment (SegmenT segment);
Int2 SegmentID (SegmenT segment);
Boolean SegmentVisible (SegmenT segment);
Int1 SegmentStyle (SegmenT segment);
void SegmentBox (SegmenT segment, box, mrg);

Picture items of various types (rectangles, lines, annotation objects such as symbols and labels, and attribute items that change color, shading, line width and style) are added to segments. (Segments can also be added to other segments.) Items are placed in a picture in "world coordinates", which are integer numbers that make sense to the domain being modeled. The primitive items can contain an integer ID to be returned by FindSegment.

Rectangles and lines have must specify their full dimensions in world coordinates. These items will change size when the picture is scaled in a viewer:

void AddRectangle (SegmenT parent, left, top, right, bottom,
 arrow, fill, primID);
void AddLine (SegmenT parent, pnt1X, pnt1Y, pnt2X, pnt2Y, arrow, primID);

Annotation objects are attached to a particular point in world coordinates. They do not change size when the picture is scaled in a viewer, but their position changes depending upon where the point is mapped. This means that label text will remain a constant font size even when the picture is scaled:

void AddSymbol (SegmenT parent, pntX, pntY, symbol, fill, align, primID);
void AddBitmap (SegmenT parent, pntX, pntY, width, height,
 data, align,primID);
void AddCustom (SegmenT parent, pntX, pntY, width, height,
 proc, align, primID);
void AddMarker (SegmenT parent, pntX, pntY, length, orient, primID);
void AddLabel (SegmenT parent, pntX, pntY, string,

 size, offset, align, primID);

The attribute item changes the color, line style, shading, pen width and drawing mode for subsequent items within a given segment. The attributes do not affect subsequent items in any parent segments:

void AddAttribute (SegmenT parent, flags, color,
 linestyle, shading, penwidth, mode);

A viewer is created on a window or in a group. A picture is then attached to the viewer. The viewer is responsible for scaling (zooming) and panning (scrolling) the picture on the screen. It converts from world coordinates to screen coordinates. It also responds to mouse events, and can return the deepest segment that contains the item upon which the mouse was clicked. The viewer width and height parameters are in pixels:

VieweR CreateViewer (GrouP prnt, width, height, vscroll, hscroll);
void ResetViewer (VieweR viewer);
VieweR DeleteViewer (VieweR viewer)

A picture is connected to a viewer by AttachPicture. This function also specifies where a particular point in world coordinates should initially go on the screen, the scale factors (what number to divide a world coordinate by to get a pixel coordinate), and a draw procedure (for drawing on top of the viewer picture). A scale parameter of 0 will cause the viewer to calculate the scale needed to show the entire picture at once. You can also set the click, drag, release, and scrolling pan procedures, and attach extra instance data to the viewer:

void AttachPicture (VieweR viewer, picture, pntX, pntY,
 align, scaleX, scaleY, draw);
void SetViewerProcs (VieweR viewer, click, drag, release, pan);

void SetViewerData (VieweR viewer, data, cleanup);
VoidPtr GetViewerData (VieweR viewer);

If you wish to respond to the user's scrolling, you should set the pan parameter to a callback in your program. You can then call ViewerBox to get the current view parameters, including the world boundaries, the port boundaries, the view rectangle, and the X and Y scaling factors. The port is the view rectangle (pixel rectangle in the viewer) mapped up onto world coordinates, and is always contained within the world boundaries:

void ViewerBox (VieweR viewer, world, port, view, scaleX, scaleY);

Printing the picture associated with a viewer is only partially implemented at this time:

void PrintViewer (VieweR viewer);

During a click, drag, or release callback, FindSegment will return the deepest segment containing an object in which the mouse resides, and can return the integer segment ID and primitive ID assigned when the segment and its primitive item were created. You can also show, hide, or highlight a segment:

void FindSegment (VieweR viewer, pt, segID, primID);
void ShowSegment (VieweR viewer, segment);
void HideSegment (VieweR viewer, segment);
void HighlightSegment (VieweR viewer, SegmenT segment, Int1 highlight);

World and viewer coordinates can be interconverted with the following functions:

void MapWorldToViewer (VieweR viewer, pnt, pt);
void MapViewerToWorld (VieweR viewer, pt, pnt);

When you want to zoom, you call AttachPicture, passing the old viewer and picture, but giving new values for scaleX and scaleY. This will recalculate boundary and scaling information, and display the picture at a new level of magnification.

Doc Object

This is a high level object written with an autonomous panel. It is meant as a (partial) general solution to the problems of displaying text and graphics. You should read the header to see the callback typedefs and the column and paragraph data structures:

#include <document.h>

When a document is created you give it the width and height in pixels. This does not include the vertical scroll bar that is automatically created:

DoC DocumentPanel (GrouP prnt, pixwidth, pixheight);

void PrintDocument (DoC d);

void SaveDocument (DoC d, f);

Paragraph items are appended to the document with AppendItem or AppendText. AppendText is a special case that takes a pre-formatted text pointer. AppendItem is a more general function that takes a data pointer and a print procedure. The print procedure is called when the given paragraph needs to be displayed, printed, or saved:

void AppendItem (DoC d, proc, data, docOwnsData, lines, parFmt, colFmt, font);

void AppendText (DoC, text, parFmt, colFmt, font);

Document callback procedures are set in a similar manner to the graphical viewer object:

void SetDocProcs (DoC d, click, drag, release, pan, draw, gray, invert);

void SetDocData (DoC d, data, cleanup);

VoidPtr GetDocData (DoC d);

The mouse point can be mapped to a paragraph item, row, and column, and parameters can be returned that apply to the document, item, or column levels:

void MapDocPoint (DoC d, pt, item, row, col);

void GetDocParams (DoC d, numItems, numLines);

void GetItemParams (DoC d, item, startsAt, numRows, numCols, lineHeight);

void GetColParams (DoC d, item, col, pixPos, pixWidth, pixInset, just);

Two simple functions can be used to display a text file in a document object:

void DisplayFile (DoC d, file, font);

void DisplayFancy (DoC d, file, parFmt, colFmt, font, tabStops);

Class Functions

Class functions can be applied to any Vibrant graphical object. (This does not include the FonT or SegmenT objects. Even though each FonT or SegmenT refers to an element of a linked list maintained by Vibrant, the structures of these elements is different than Vibrant graphic control objects. Class functions also cannot be applied to PoinT, RecT, or RegioN, which are simply descriptions of areas in a window.) Several functions are used to control visibility and responsiveness of an object. All objects except windows are set to be visible and enabled at the time of their creation. A window must be explicitly shown in order for it and its children to become visible:

void Show (Handle obj);
void Hide (Handle obj);
void Enable (Handle obj);
void Disable (Handle obj);
void Select (Handle obj);

The program parameters that objects represent can have string, integer, or Boolean values:

void SetTitle (Handle obj, title);
void GetTitle (Handle obj, title, maxsize);
void SetValue (Handle obj, value);
Int2 GetValue (Handle obj);
void SetStatus (Handle obj, status);
Boolean GetStatus (Handle obj);

SetRange controls a scroll bar (or slate vertical scroll bar) range. SetValue and GetValue will access the actual scroll bar thumb position:

void SetRange (Handle obj, pgUp, pgDn, max);

SetOffset and GetOffset of a slate, list, or scrolling text access the scroll bar values. GetOffset of a slate returns the integer setting of the scroll bar (generally representing the number of the first line in view). GetOffset of a panel child of a slate returns the pixel offset of the line, which is maintained by the slate:

void SetOffset (Handle obj, horiz, vert);
void GetOffset (Handle obj, horiz, vert);

Reset and Remove reinitialize and delete objects. These functions are automatically called for all objects at the end of the program:

void Reset (Handle obj);
void Remove (Handle obj);

Miscellaneous Functions

Positioning of objects can be influenced with Advance and Break. These are called automatically by the group layout function:

void Advance (Handle obj);
void Break (Handle obj);

The position in which the next object will be placed can be explicitly set and obtained controlled with the following commands:

void GetNextPosition (Handle obj, pt);
void SetNextPosition (Handle obj, pt);

The bounding rectangle of any Vibrant graphical object is obtained with ObjectRect:

void ObjectRect (Handle obj, rct);

The number of items in a list or menu choice group can be obtained with CountItems:

Int2 CountItems (Handle obj);

Whether an object is enabled or visible can be determined with Enabled or Visible. An object will be unresponsive or invisible if it or any of its parent objects are disabled or hidden, even if it is flagged as visible and enabled:

Boolean Enabled (Handle obj);
Boolean Visible (Handle obj);

The cursor can be set with the following commands:

void ArrowCursor (void);
void CrossCursor (void);
void IBeamCursor (void);
void PlusCursor (void);
void WatchCursor (void);

An application timer can be set with the Metronome function:

void Metronome (actn);

The parent of an object can be traversed up the hierarchy. The parent of a window is NULL:

Handle Parent (Handle obj);

ProcessEvents calls the main Vibrant event loop, and Update forces immediate redrawing:

void ProcessEvents (void);
void Update (void);

AlignObjects may be used for objects within a window (or within a group that does not do automatic repositioning). Objects should be cast to (HANDLE) (which is different than Handle), and the list must be terminated with NULL. Alignment will adjust the margins of the target objects so that they line up vertically, by moving the appropriate margins to the maximum value of all margins. ALIGN_LEFT will move the left margins, ALIGN_RIGHT will move the right margins, ALIGN_JUSTIFY will move both margins, and ALIGN_CENTER will center all objects:

void AlignObjects (Int2 align, ...);

Vibrant adds the following functions for file path manipulation. These display file open and file save dialogs:

Boolean GetInputFileName (fileName, maxsize, extType, macType);
Boolean GetOutputFileName (fileName, maxsize, dfault);

Graphical Drawing Functions

Drawing functions are provided for displaying graphics in a Vibrant panel. (These may now also be used to draw on top of a viewer object.) Most of these functions simply front-end for the equivalent procedures in the underlying toolkits. However, some (e.g., CopyBits and ScrollRect) are quite complicated internally, doing much more than the toolkits provide.

Procedures for specifying the drawing mode, the color, the pen and brush patterns, and for framing or painting objects, are all independent, even if some of the underlying toolkits combine functions. Drawing parameters are reset prior to each call to the panel drawing callback. Coordinates are in pixels, with (0, 0) being the upper left corner of the parent window (not including the window border or frame).

There are four modes for drawing. CopyMode and MergeMode are implemented on all platforms. Copy mode will overwrite a destination area with the source data. Drawing text in copy mode will show the text in foreground color on top of a rectangle in background color, regardless of what color had been there before. MergeMode can be used to superimpose bitmaps of different colors (using CopyBits) to form a multicolored iconic picture. Drawing text in merge mode will show the text in foreground color but won't change the background. InvertMode can be used along with a Dotted pen for drawing "rubber band" lines:

void CopyMode (void);
void MergeMode (void);
void InvertMode (void);
void EraseMode (void);

Standard colors for drawing can be set, or an arbitrary color can be selected with one-byte values for red, green, and blue intensity. InvertColors swaps foreground and background colors, to allow predictable highlighting to occur under various color models:

void Black (void);
void Red (void);
void Green (void);
void Blue (void);
void Cyan (void);
void Magenta (void);
void Yellow (void);
void White (void);
void Gray (void);
void LtGray (void);
void DkGray (void);
void SelectColor (red, green, blue);
void InvertColors (void);

The drawing pattern or dithering can be specified for brushes (painting functions), as can the width and style of a pen (framing functions). Solid will restore the pen and brush patterns:

void Solid (void);
void Dark (void);
void Medium (void);
void Light (void);
void Empty (void);
void Dotted (void);
void Dashed (void);
void WidePen (width);

Fonts are created with GetFont (passing individual parameters) or with ParseFont (passing a string that is parsed and then sent to GetFont). This returns a handle to an element of a font list maintained by Vibrant. SelectFont sets that font for use in drawing text. Vibrant will clean up the memory used for fonts after the application Main exits:

FonT GetFont (name, size, bld, itlc, undrln, fmly);
FonT ParseFont (spec);
void SelectFont (font);

Available fonts differ between different windowing systems. Typically, #ifdefs are used to specify fonts within the program code. The string sent to ParseFont has the font name, the font size, and any of the characters 'b', 'i', or 'u', for bold, italic, or underline:

#ifdef WIN_MAC
 headingFont = ParseFont ("Monaco,9,b");
 sequenceFont = ParseFont ("Monaco,9");
#endif
#ifdef WIN_MSWIN
 headingFont = ParseFont ("Arial,11,b");
 sequenceFont = ParseFont ("Courier,9");
#endif
#ifdef WIN_MOTIF
 headingFont = ParseFont ("Helvetica,14,b");
 sequenceFont = ParseFont ("Courier,12");
#endif

Points and rectangles can be loaded, compared, and manipulated. OffsetRect will add dx to the left and right coordinates, and add dy to the top and bottom coordinates. InsetRect will add dx to the left, subtract dx from the right, add dy to the top, and subtract dy from the bottom. SectRect and UnionRect return the intersection and union, respectively, between two source rectangles. Drawing functions may want to check RectInRgn against the updateRgn to determine if an object needs to be redrawn:

void LoadPt (pt, x, y);
void AddPt (src, dst);
void SubPt (src, dst);
Boolean EqualPt (pt1, pt2);
void LoadRect (rct, lf, tp, rt, bt);
void OffsetRect (rct, dx, dy);
void InsetRect (rct, dx, dy);
Boolean SectRect (src1, src2, dst);
Boolean UnionRect (src1, src2, dst);
Boolean EqualRect (r1, r2);
Boolean EmptyRect (rct);
Boolean PtInRect (pt, rct);
Boolean PtInRgn (pt, rgn);
Boolean RectInRect (r1, r2);
Boolean RectInRgn (rct, rgn);

Text metrics are returned for the currently selected font by the following functions:

Int2 CharWidth (ch);
Int2 StringWidth (text);
Int2 TextWidth (text, len);
Int2 Ascent (void);
Int2 Descent (void);
Int2 Leading (void);
Int2 FontHeight (void);
Int2 LineHeight (void);
Int2 MaxCharWidth (void);

The pen position can be set and lines can be drawn with the following functions:

void SetPen (pt);
void GetPen (pt);
void MoveTo (x, y);
void LineTo (x, y);
void DrawLine (pt1, pt2);

Text strings may be painted (at the current pen location) or drawn (in a specified rectangle). The minimum width of the rectangle should be StringWidth (text) + 2 pixels. The justification parameter is 'l', 'c' or 'r' for left, centered, or right:

void PaintChar (ch);
void PaintString (text);
void PaintText (format, ...);
void DrawString (rct, text, jst, gray);
void DrawText (rct, text, len, jst, gray);

Rectangles, ovals, round rectangles, arcs, and polygons may generally be framed (drawn in outline) and painted (filled in), and on some platforms can also be erased and inverted.

Rectangles are drawn with the following functions:

void EraseRect (rct);
void FrameRect (rct);
void PaintRect (rct);
void InvertRect (rct);

Ovals or ellipses are fitted to the bounding rectangle:

void EraseOval (rct);
void FrameOval (rct);
void PaintOval (rct);
void InvertOval (rct);

Round rectangles are not implemented on all systems:

void EraseRoundRect (rct, ovlWid, ovlHgt);
void FrameRoundRect (rct, ovlWid, ovlHgt);
void PaintRoundRect (rct, ovlWid, ovlHgt);
void InvertRoundRect (rct, ovlWid, ovlHgt);

Arcs take a rectangle and draw counter clockwise from the line between the starting point and the center to the line between the ending point and the center:

void EraseArc (rct, start, end);
void FrameArc (rct, start, end);
void PaintArc (rct, start, end);
void InvertArc (rct, start, end);

Polygons take a pointer to an array of PoinTs, and will always form a closed polygon. Painting is done using the Even-Odd Rule (as opposed to the Winding Rule, which is not available on all platforms). This means that if the lines connecting the points cross, some areas will be painted and other adjacent areas will not be painted:

void ErasePoly (num, pts);
void FramePoly (num, pts);
void PaintPoly (num, pts);
void InvertPoly (num, pts);

Regions, lists of rectangular areas treated as a group, are manipulated and drawn with the following functions. Functions that take a destination region (e.g., SectRgn, UnionRgn) must be passed an existing region, and will not create one if NULL is supplied. Most programs will not need to be concerned with regions, other than to check RectInRgn against the updateRgn:

RegioN CreateRgn (void);
RegioN DestroyRgn (rgn);
void ClearRgn (rgn);
void LoadRectRgn (rgn, lf, tp, rt, bt);
void OffsetRgn (rgn, dx, dy);
void SectRgn (src1, src2, dst);
void UnionRgn (src1, src2, dst);
void DiffRgn (src1, src2, dst);
void XorRgn (src1, src2, dst);
Boolean EqualRgn (rgn1, rgn2);
Boolean EmptyRgn (rgn);
void EraseRgn (rgn);
void FrameRgn (rgn);
void PaintRgn (rgn);
void InvertRgn (rgn);

Clipping restricts the area on the window in which drawing commands will be honored. Invalidation marks areas of the window to be erased and redrawn at the next update:

void ClipRect (rct);
void ClipRgn (rgn);
void ResetClip (void);
void ValidRect (rct);
void InvalRect (rct);
void ValidRgn (rgn);
void InvalRgn (rgn);

A rectangular area can be scrolled with the ScrollRect function. The area of the rectangle that will need to be updated is automatically invalidated, but if an application does not draw objects that would be partially visible, it may need to invalidate the (scrolled) areas that would have contained parts of objects when the objects in those areas become fully visible:

void ScrollRect (rct, dx, dy);

Bitmaps (icons) can be displayed with the CopyBits function (which performs a toolbox BitBlt operation). The source is a VoidPtr to an array of bits in memory, where 1 means foreground color and 0 means background color. Under Windows, a copy is made, and the bits are inverted. Under Motif, a copy is made, and the bytes are rotated so that the last significant and most significant bits are reversed:

void CopyBits (rct, source);

The following bitmap represents a 16-bit-wide downward arrow. The 1 bits specify foreground color, the 0 bits background color, and the most significant bit in a byte is drawn at the left. Bitmaps should be declared as Uint1s (to avoid byte order problems between different machines), and the width should be in multiples of 2 bytes, even though the CopyBits rectangle can clip to less than 8 bits. Bitmaps should be declared outside of functions, since some compilers hang when trying to initialize large internal arrays:

static Uint1 downArrow [] = {
 0x1C, 0x00, 0x1C, 0x00,
 0x1C, 0x00, 0x1C, 0x00,
 0x1C, 0x00, 0x1C, 0x00,
 0x7F, 0x00, 0x3E, 0x00,
 0x1C, 0x00, 0x08, 0x00
};

The following function will draw the downward arrow in the center of a panel. The arrow will be drawn in the currently selected foreground color, and using the current mode:

static void DrawDownArrow (PaneL p)

{
 RecT r;

 ObjectRect (p, &r);
 r.left = (r.left + r.right) / 2 - 8;
 r.right = r.left + 16;
 r.top = (r.top + r.bottom) / 2 - 5;
 r.bottom = r.top + 10;
 CopyBits (&r, downArrow);
}

Complex iconic pictures can be drawn by repeated calls to CopyBits using the same target rectangle and using MergeMode to superimpose different bitmaps in different colors.

Index

Vibrant types are listed below:

typedef struct point {
 Int2 x;
 Int2 y;
} PoinT, PNTR PointPtr;

typedef struct rect {
 Int2 left;
 Int2 top;
 Int2 right;
 Int2 bottom;
} RecT, PNTR RectPtr;

typedef Handle RegioN;

typedef struct font {} HNDL FonT;

Types of Vibrant graphic objects that can be created are as follows:

BaR
ButtoN
ChoicE
DoC
GrouP
IcoN
IteM
LisT
MenU
PaneL
PopuP
PrompT
RepeaT
SlatE
SwitcH
TexT
VieweR
WindoW

Generic callback types are shown below:

typedef void (*VoidProc) (void);
typedef void (*KeyProc) (Char);
typedef void (*ActnProc) (GraphiC);
typedef void (*ClckProc) (GraphiC, PoinT);
typedef void (*ScrlProc) (BaR, GraphiC, Int2, Int2);
typedef void (*ChngProc) (GraphiC, Int2, Int2);

The section lists all of the functions presented above in alphabetical order:

void AddAttribute (SegmenT parent, flags, color,
 linestyle, shading, penwidth, mode);

void AddBitmap (SegmenT parent, pntX, pntY, width,
 height, data, align, primID);

void AddCustom (SegmenT parent, pntX, pntY, width,
 height, proc, align, primID);

void AddLabel (SegmenT parent, pntX, pntY, string,
 size, offset, align, primID);

void AddLine (SegmenT parent, pnt1X, pnt1Y,
 pnt2X, pnt2Y, arrow, primID);

void AddMarker (SegmenT parent, pntX, pntY,
 length, orient, primID);

void AddPt (src, dst);

void AddRectangle (SegmenT parent, left, top, right,
 bottom, arrow, fill, primID);

void AddSymbol (SegmenT parent, pntX, pntY,
 symbol, fill, align, primID);

void Advance (Handle obj);

WindoW AlertWindow (left, top, width, height, close);

void AlignObjects (Int2 align, ...);

void AppendItem (DoC d, proc, data, docOwnsData, lines,
 parFmt, colFmt, font);

void AppendText (DoC, text, parFmt, colFmt, font);

MenU AppleMenu (WindoW prnt);

void ArrowCursor (void);

Int2 Ascent (void);

void AttachPicture (VieweR viewer, picture, pntX, pntY,

 align, scaleX, scaleY, draw);

PaneL AutonomousPanel (GrouP prnt, pixwidth, pixheight, draw,
 vscrl, hscrl, extra, reset, classPtr);

void Black (void);

void Blue (void);

void Break (Handle obj);

Int2 CharWidth (ch);

ButtoN CheckBox (GrouP prnt, title, actn);

ChoicE ChoiceGroup (MenU prnt, actn);

IteM ChoiceItem (ChoicE prnt, title);

void ClearRgn (rgn);

void ClearText (TexT t);

void ClipRect (rct);

void ClipRgn (rgn);

IteM CommandItem (MenU prnt, title, actn);

void CopyBits (rct, source);

void CopyMode (void);

void CopyText (TexT t);

void CorrectBarMax (BaR b, max);

void CorrectBarPage (BaR b, pgUp, pgDn);

void CorrectBarValue (BaR b, val);

Int2 CountItems (Handle obj);

SegmenT CreatePicture (void);

RegioN CreateRgn (void);

SegmenT CreateSegment (SegmenT parent, segID, maxScale);

VieweR CreateViewer (GrouP prnt, width, height, vscroll, hscroll);

void CrossCursor (void);

TexT CurrentText (void);

WindoW CurrentWindow (void);

PaneL CustomPanel (SlatE prnt, draw, extra, reset);

void CutText (TexT t);

void Cyan (void);

void Dark (void);

void Dashed (void);

ButtoN DefaultButton (GrouP prnt, title, actn);

SegmenT DeletePicture (SegmenT picture);

VieweR DeleteViewer (VieweR viewer)

Int2 Descent (void);

RegioN DestroyRgn (rgn);

TexT DialogText (GrouP prnt, dfault, charWidth, actn);

void DiffRgn (src1, src2, dst);

void Disable (Handle obj);

void DisplayFancy (DoC d, file, parFmt, colFmt, font, tabStops);

void DisplayFile (DoC d, file, font);

void DkGray (void);

DoC DocumentPanel (GrouP prnt, pixwidth, pixheight);

WindoW DocumentWindow (left, top, width, height, title, close, resize);

void Dotted (void);

void DrawLine (pt1, pt2);

void DrawString (rct, text, jst, gray);

void DrawText (rct, text, len, jst, gray);

void Empty (void);

Boolean EmptyRect (rct);

Boolean EmptyRgn (rgn);

void Enable (Handle obj);

Boolean Enabled (Handle obj);

Boolean EqualPt (pt1, pt2);

Boolean EqualRect (r1, r2);

Boolean EqualRgn (rgn1, rgn2);

void EraseArc (rct, start, end);

void EraseMode (void);

void EraseOval (rct);

void ErasePoly (num, pts);

void EraseRect (rct);

void EraseRgn (rgn);

void EraseRoundRect (rct, ovlWid, ovlHgt);

void FindSegment (VieweR viewer, pt, segID, primID);

WindoW FixedWindow (left, top, width, height, title, close);

WindoW FloatingWindow (left, top, width, height, close);

Int2 FontHeight (void);

void FrameArc (rct, start, end);

void FrameOval (rct);

void FramePoly (num, pts);

void FrameRect (rct);

void FrameRgn (rgn);

void FrameRoundRect (rct, ovlWid, ovlHgt);

WindoW FrozenWindow (left, top, width, height, title, close);

PaneL GeneralPanel (SlatE prnt, draw, extra, reset, classPtr);

SlatE GeneralSlate (GrouP prnt, width, height, scrl, extra, classPtr);

FonT GetFont (name, size, bld, itlc, undrln, fmly);

void GetColParams (DoC d, item, col, pixPos, pixWidth,
 pixInset, just);

VoidPtr GetDocData (DoC d);

void GetDocParams (DoC d, numItems, numLines);

void GetItemParams (DoC d, item, startsAt, numRows,
 numCols, lineHeight);

Boolean GetInputFileName (fileName, maxsize, extType, macType);

void GetNextPosition (Handle obj, pt);

void GetOffset (Handle obj, horiz, vert);

Boolean GetOutputFileName (fileName, maxsize, dfault);

void GetPanelExtra (PaneL p, VoidPtr sptr);

void GetPen (pt);

BaR GetSlateHScrollBar (SlatE s);

BaR GetSlateVScrollBar (SlatE s);

Boolean GetStatus (Handle obj);

Int2 GetSwitchMax (SwitcH s);

void GetTitle (Handle obj, title, maxsize);

Int2 GetValue (Handle obj);

VoidPtr GetViewerData (VieweR viewer);

void Gray (void);

void Green (void);

GrouP HiddenGroup (GrouP prnt, width, height, actn);

SlatE HiddenSlate (GrouP prnt, width, height);

void Hide (Handle obj);

void HideSegment (VieweR viewer, segment);

void HighlightSegment (VieweR viewer, SegmenT segment, Int1 highlight);

void IBeamCursor (void);

IcoN IconButton (GrouP prnt, pixwidth, pixheight, draw, inval,
 click, drag, hold, release);

void InsetRect (rct, dx, dy);

void InvalRect (rct);

void InvalRgn (rgn);

void InvertArc (rct, start, end);

void InvertColors (void);

void InvertMode (void);

void InvertOval (rct);

void InvertPoly (num, pts);

void InvertRect (rct);

void InvertRgn (rgn);

void InvertRoundRect (rct, ovlWid, ovlHgt);

Int2 Leading (void);

SwitcH LeftRightSwitch (GrouP prnt, text, acrn);

void Light (void);

Int2 LineHeight (void);

void LineTo (x, y);

void ListItem (LisT prnt, title);

void LoadPt (pt, x, y);

void LoadRect (rct, lf, tp, rt, bt);

void LoadRectRgn (rgn, lf, tp, rt, bt);

void LtGray (void);

void Magenta (void);

void MapDocPoint (DoC d, pt, item, row, col);

void MapViewerToWorld (VieweR viewer, pt, pnt);

void MapWorldToViewer (VieweR viewer, pnt, pt);

Int2 MaxCharWidth (void);

void Medium (void);

void MergeMode (void);

void Metronome (actn);

WindoW ModalWindow (left, top, width, height, close);

void MoveTo (x, y);

LisT MultiList (GrouP prnt, width, height, actn);

GrouP NormalGroup (GrouP prnt, width, height, title, actn);

SlatE NormalSlate (GrouP prnt, width, height);

void ObjectRect (Handle obj, rct);

void OffsetRect (rct, dx, dy);

void OffsetRgn (rgn, dx, dy);

void PaintArc (rct, start, end);

void PaintChar (ch);

void PaintOval (rct);

void PaintPoly (num, pts);

void PaintRect (rct);

void PaintRgn (rgn);

void PaintRoundRect (rct, ovlWid, ovlHgt);

void PaintString (text);

void PaintText (format, ...);

Handle Parent (Handle obj);

SegmenT ParentSegment (SegmenT segment);

WindoW ParentWindow (Handle obj);

FonT ParseFont (spec);

TexT PasswordText (GrouP prnt, dfault, charWidth, actn);

void PasteText (TexT t);

WindoW PlainWindow (left, top, width, height, close);

void PlusCursor (void);

void PopupItem (PopuP prnt, title);

PopuP PopupList (GrouP prnt, macLike, actn);

void PrintDocument (DoC d);

void PrintViewer (VieweR viewer);

void ProcessEvents (void);

Boolean PtInRect (pt, rct);

Boolean PtInRgn (pt, rgn);

MenU PulldownMenu (WindoW prnt, title);

ButtoN PushButton (GrouP prnt, title, actn);

ButtoN RadioButton (GrouP prnt, title);

Boolean RectInRect (r1, r2);

Boolean RectInRgn (rct, rgn);

void Red (void);

void RegisterColumn (SlatE s, position, width, count);

void RegisterRect (PaneL p, r);

void RegisterRow (SlatE s, position, height, count);

void Remove (Handle obj);

RepeaT RepeatButton (GrouP prnt, title, actn);

void Reset (Handle obj);

void ResetClip (void);

SegmenT ResetSegment (SegmenT segment);

void ResetViewer (VieweR viewer);

void RestorePort (WindoW w);

WindoW RoundWindow (left, top, width, height, title, close);

void SaveDocument (DoC d, f);

WindoW SavePort (Handle obj);

BaR ScrollBar (GrouP prnt, width, height, actn);

void ScrollRect (rct, dx, dy);

SlatE ScrollSlate (GrouP prnt, width, height);

TexT ScrollText (GrouP prnt, width, height, font, actn);

Boolean SectRect (src1, src2, dst);

void SectRgn (src1, src2, dst);

void SegmentBox (SegmenT segment, box, mrg);

Int2 SegmentID (SegmenT segment);

Int1 SegmentStyle (SegmenT segment);
Boolean SegmentVisible (SegmenT segment);
void Select (Handle obj);

void SelectColor (red, green, blue);

void SelectFont (font);

void SeparatorItem (MenU prnt);

void SetActivate (WindoW w, act);

void SetDocData (DoC d, data, cleanup);

void SetDocProcs (DoC d, click, drag, release, pan,
 draw, gray, invert);

void SetGroupMargins (GrouP g, xMargin, yMargin);

void SetGroupSpacing (GrouP g, xSpacing, ySpacing);

void SetNextPosition (Handle obj, pt);

void SetOffset (Handle obj, horiz, vert);

void SetPanelClick (PaneL p, click, drag, hold, release);

void SetPanelExtra (PaneL p, VoidPtr sptr);

void SetPen (pt);

void SetRange (Handle obj, pgUp, pgDn, max);

void SetStatus (Handle obj, status);

void SetSwitchMax (SwitcH s, max);

void SetSwitchParams (SwitcH s, value, max);

void SetTextSelect (TexT t, slct, dslct);

void SetTitle (Handle obj, title);

void SetValue (Handle obj, value);

void SetViewerData (VieweR viewer, data, cleanup);

void SetViewerProcs (VieweR viewer, click, drag, release, pan);

WindoW ShadowWindow (left, top, width, height, close);

void Show (Handle obj);

void ShowSegment (VieweR viewer, segment);

PaneL SimplePanel (GrouP prnt, pixwidth, pixheight, draw);

LisT SingleList (GrouP prnt, width, height, actn);

void Solid (void);

PrompT StaticPrompt (GrouP prnt, title, pixwidth, pixheight,
 font, just);

IteM StatusItem (MenU prnt, title, actn);

Int2 StringWidth (text);

MenU SubMenu (MenU prnt, title);

void SubPt (src, dst);

Int2 TextLength (TexT t);

void TextSelectionRange (TexT t, begin, end);

Int2 TextWidth (text, len);

Boolean UnionRect (src1, src2, dst);

void UnionRgn (src1, src2, dst);

void Update (void);

SwitcH UpDownSwitch (GrouP prnt, text, acrn);

void UseWindow (WindoW w);

void ValidRect (rct);

void ValidRgn (rgn);

void ViewerBox (VieweR viewer, world, port, view, scaleX, scaleY);

void VirtualSlate (SlatE s, before, after, actn);

Boolean Visible (Handle obj);

void WatchCursor (void);

void White (void);

void WidePen (width);

void XorRgn (src1, src2, dst);

void Yellow (void);

Acknowledgments

I wish to thank a number of colleagues at the National Center for Biotechnology Information who have contributed critical ideas to this interface. Jim Ostell proposed the ideas of portability and of dealing with objects at a high level, as close to the level of the desired parameters as is possible. He also made suggestions that led to the concept of automatically positioning objects on the window and within groups. Warren Gish, Greg Schuler, Tim Clark, Peter Karp, and several others also made numerous useful suggestions and constructive criticisms. Early applications in Vibrant, written by or for John Spouge, Jill Shermer, Charlie Beatty, Jonathan Epstein and Kenn Rudd, uncovered design limitations that were quickly remedied. Jill Shermer assisted in porting Vibrant to Motif.

Vibrant will be published separately in the near future. You should reference J. Kans (manuscript in preparation). Details on the internal organization of Vibrant will be published as an NCBI technical report in the future. Vibrant is supplied as-is, and is currently not being supported. Questions or comments can be directed to toolbox@ncbi.nlm.nih.gov.

Trademarks

The mention of trade names, commercial products, or organizations does not imply endorsement by the NCBI or the U.S. Government.

Apple and Macintosh are registered trademarks of Apple Computer, Inc.

Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation.

Motif is a registered trademark of the Open Software Foundation.

NCBI Software Development ToolKit - Version 1.8

NCBI Software Development ToolKit - Version 1.9

_1216118444

_1249911411.unknown

_1216118446

_1216118442

