1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
|
static char const rcsid[] = "$Id: pattern1.c,v 6.22 2006/08/04 21:11:17 papadopo Exp $";
/* $Id: pattern1.c,v 6.22 2006/08/04 21:11:17 papadopo Exp $
* ===========================================================================
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===========================================================================
*/
/*****************************************************************************
File name: pattern1.c
Original Author: Zheng Zhang
Contents: central pattern matching routines for PHI-BLAST and pseed3
$Revision: 6.22 $
$Log: pattern1.c,v $
Revision 6.22 2006/08/04 21:11:17 papadopo
refine check for end of line when parsing pattern string (fixes rt#15187012)
Revision 6.21 2005/07/28 14:57:10 coulouri
remove dead code
Revision 6.20 2005/07/22 14:24:22 coulouri
Incremented positions printed by the -p patternp option so that the first position is 1
Revision 6.19 2004/11/22 17:12:52 madden
From Alejandro Schaffer:
Changed use of startSeqMatch in procedure pat_output to accurately report word boundaries for matches of a multiword pattern in the output hit file.
Revision 6.18 2004/04/01 13:43:08 lavr
Spell "occurred", "occurrence", and "occurring"
Revision 6.17 2003/08/06 15:11:17 dondosha
Fixed search for pattern remainder when it starts from a base non-divisible by 4
Revision 6.16 2003/05/30 17:25:37 coulouri
add rcsid
Revision 6.15 2003/05/13 16:02:53 coulouri
make ErrPostEx(SEV_FATAL, ...) exit with nonzero status
Revision 6.14 2003/03/06 21:33:13 madden
Move big arrays from stack to heap
Revision 6.13 2002/08/28 13:37:29 madden
Fix memory leaks
Revision 6.12 2002/08/09 17:32:30 madden
Add warning if MAX_HIT is reached
Revision 6.11 1999/09/22 17:51:02 shavirin
Now functions will collect messages in ValNodePtr before printing out.
*****************************************************************************/
#include <ncbi.h>
#include <objseq.h>
#include <objsset.h>
#include <sequtil.h>
#include <seqport.h>
#include <tofasta.h>
#include <blast.h>
#include <blastpri.h>
#include <txalign.h>
#include <simutil.h>
#include <gapxdrop.h>
#include <posit.h>
#include <readdb.h>
#include <ncbithr.h>
#include <seed.h>
#ifdef __cplusplus
extern "C" {
#endif
#define MININT INT4_MIN/2
static Int4 expanding PROTO((Int4 *inputPatternMasked, Uint1 *inputPattern,
Int4 length, Int4 maxLength));
static Int4 packing PROTO((Uint1 *inputPattern, Int4 length));
static void longpacking PROTO((Int4 numPlaces, Uint1 *inputPattern, patternSearchItems *patternSearch));
static void longpacking2 PROTO((Int4 *inputPatternMasked, Int4 numPlacesInPattern, patternSearchItems *patternSearch));
static void init_pattern_DNA PROTO((patternSearchItems *patternSearch));
/*Initialize occurrence probabilities for each amino acid*/
void LIBCALL initProbs(seedSearchItems * seedSearch)
{
double totalCount; /*for Robinson frequencies*/
seedSearch->pchars[0] = '-';
seedSearch->pchars[1] = 'A';
seedSearch->pchars[2] = 'B';
seedSearch->pchars[3] = 'C';
seedSearch->pchars[4] = 'D';
seedSearch->pchars[5] = 'E';
seedSearch->pchars[6] = 'F';
seedSearch->pchars[7] = 'G';
seedSearch->pchars[8] = 'H';
seedSearch->pchars[9] = 'I';
seedSearch->pchars[10] = 'K';
seedSearch->pchars[11] = 'L';
seedSearch->pchars[12] = 'M';
seedSearch->pchars[13] = 'N';
seedSearch->pchars[14] = 'P';
seedSearch->pchars[15] = 'Q';
seedSearch->pchars[16] = 'R';
seedSearch->pchars[17] = 'S';
seedSearch->pchars[18] = 'T';
seedSearch->pchars[19] = 'V';
seedSearch->pchars[20] = 'W';
seedSearch->pchars[21] = 'X';
seedSearch->pchars[22] = 'Y';
seedSearch->pchars[23] = 'Z';
seedSearch->pchars[24] = 'U';
seedSearch->pchars[25] = '*';
totalCount = 78.0 + 19.0 + 54.0 + 63.0 + 39.0 +
74.0 + 22.0 + 52.0 + 57.0 + 90.0 + 22.0 + 45.0 + 52.0 +
43.0 + 51.0 + 71.0 + 59.0 + 64.0 + 13.0 + 32.0;
seedSearch->standardProb[0] = 0.0;
seedSearch->standardProb[1] = 78.0/totalCount; /*A*/
seedSearch->standardProb[2] = 0.0;
seedSearch->standardProb[3] = 19.0/totalCount; /*C*/
seedSearch->standardProb[4] = 54.0/totalCount; /*D*/
seedSearch->standardProb[5] = 63.0/totalCount; /*E*/
seedSearch->standardProb[6] = 39.0/totalCount; /*F*/
seedSearch->standardProb[7] = 74.0/totalCount; /*G*/
seedSearch->standardProb[8] = 22.0/totalCount; /*H*/
seedSearch->standardProb[9] = 52.0/totalCount; /*I*/
seedSearch->standardProb[10] = 57.0/totalCount; /*K*/
seedSearch->standardProb[11] = 90.0/totalCount; /*L*/
seedSearch->standardProb[12] = 22.0/totalCount; /*M*/
seedSearch->standardProb[13] = 45.0/totalCount; /*N*/
seedSearch->standardProb[14] = 52.0/totalCount; /*P*/
seedSearch->standardProb[15] = 43.0/totalCount; /*Q*/
seedSearch->standardProb[16] = 51.0/totalCount; /*R*/
seedSearch->standardProb[17] = 71.0/totalCount; /*S*/
seedSearch->standardProb[18] = 59.0/totalCount; /*T*/
seedSearch->standardProb[19] = 64.0/totalCount; /*V*/
seedSearch->standardProb[20] = 13.0/totalCount; /*W*/
seedSearch->standardProb[21] = 0.0; /*X*/
seedSearch->standardProb[22] = 32.0/totalCount; /*Y*/
seedSearch->standardProb[23] = 0.0; /*Z*/
seedSearch->standardProb[24] = 0.0; /*U*/
}
/*pattern is a string describing the pattern to search for;
is_dna is a boolean describing the strings are DNA or protein*/
Int4 LIBCALL init_pattern(Uint1 *pattern, Boolean is_dna, patternSearchItems * patternSearch,
seedSearchItems *seedSearch, ValNodePtr * error_return)
{
Int4 i; /*index over string describing the pattern*/
Int4 j; /*index for position in pattern*/
Int4 charIndex; /*index over characters in alphabet*/
Int4 secondIndex; /*second index into pattern*/
Int4 numIdentical; /*number of consec. positions with identical specification*/
Int4 charSetMask; /*index over masks for specific characters*/
Int4 currentSetMask, prevSetMask ; /*mask for current and previous character positions*/
Int4 thisMask; /*integer representing a bit pattern for a
set of characters*/
Int4 minWildcard, maxWildcard; /*used for variable number of wildcard
positions*/
Int4 tj; /*temporary copy of j*/
Int4 tempInputPatternMasked[MaxP]; /*local copy of parts
of inputPatternMasked*/
Uint1 c; /*character occurring in pattern*/
Uint1 localPattern[MaxP]; /*local variable to hold
for each position whether it is
last in pattern (1) or not (0) */
Nlm_FloatHi positionProbability; /*probability of a set of characters
allowed in one position*/
Int4 currentWildcardProduct; /*product of wildcard lengths for
consecutive character positions that
overlap*/
patternSearch->flagPatternLength = ONE_WORD_PATTERN;
patternSearch->patternProbability = 1.0;
patternSearch->minPatternMatchLength = 0;
patternSearch->wildcardProduct = 1;
currentWildcardProduct = 1;
prevSetMask = 0;
currentSetMask = 0;
for (i = 0 ; i < MaxP; i++) {
patternSearch->inputPatternMasked[i] = 0;
localPattern[i] = 0;
}
for (i = 0, j = 0; i < strlen((Char *) pattern); i++) {
c = pattern[i];
if (c == '\0' || c == '\r' || c == '\n')
break;
if (c == '-' || c == '.' || c =='>' || c ==' ' || c == '<')
continue; /*spacers that mean nothing*/
if ( c != '[' && c != '{') { /*not the start of a set of characters*/
if (c == 'x' || c== 'X') { /*wild-card character matches anything*/
/*next line checks to see if wild card is for multiple positions*/
if (pattern[i+1] == '(') {
i++;
secondIndex = i;
/*find end of description of how many positions are wildcarded
will look like x(2) or x(2,5) */
while (pattern[secondIndex] != ',' && pattern[secondIndex] != ')')
secondIndex++;
if (pattern[secondIndex] == ')') { /*fixed number of positions wildcarded*/
i -= 1;
/*wildcard, so all characters are allowed*/
charSetMask=allone;
positionProbability = 1;
}
else { /*variable number of positions wildcarded*/
sscanf((Char*) &pattern[++i], "%d,%d", &minWildcard, &maxWildcard);
maxWildcard = maxWildcard - minWildcard;
currentWildcardProduct *= (maxWildcard + 1);
if (currentWildcardProduct > patternSearch->wildcardProduct)
patternSearch->wildcardProduct = currentWildcardProduct;
patternSearch->minPatternMatchLength += minWildcard;
while (minWildcard-- > 0) {
/*use one position each for the minimum number of
wildcard spaces required */
patternSearch->inputPatternMasked[j++] = allone;
if (j >= MaxP) {
BlastConstructErrorMessage("init_pattern", "pattern too long", 1, error_return);
/*ErrPostEx(SEV_FATAL, 1, 0, "pattern too long\n");*/
return(-1);
}
}
if (maxWildcard != 0) {
/*negative masking used to indicate variability
in number of wildcard spaces; e.g., if pattern looks
like x(3,5) then variability is 2 and there will
be three wildcard positions with mask allone followed
by a single position with mask -2*/
patternSearch->inputPatternMasked[j++] = -maxWildcard;
patternSearch->patternProbability *= maxWildcard;
}
/*now skip over wildcard description with the i index*/
while (pattern[++i] != ')') ;
continue;
}
}
else { /*wild card is for one position only*/
charSetMask=allone;
positionProbability =1;
}
}
else {
if (c == 'U') { /*look for special U character*/
charSetMask = allone*2+1;
positionProbability = 1;
}
else {
/*exactly one character matches*/
prevSetMask = currentSetMask;
currentSetMask = charSetMask = (1 << seedSearch->order[c]);
if (!(prevSetMask & currentSetMask)) /*character sets don't overlap*/
currentWildcardProduct = 1;
positionProbability = seedSearch->standardProb[seedSearch->order[c]];
}
}
}
else {
if (c == '[') { /*start of a set of characters allowed*/
charSetMask = 0;
positionProbability = 0;
/*For each character in the set add it to the mask and
add its probability to positionProbability*/
while ((c=pattern[++i]) != ']') { /*end of set*/
if ((c < 'A') || (c > 'Z') || (c == '\0')) {
/* ErrPostEx(SEV_FATAL, 1, 0, "your pattern description has a non-alphabetic character inside a bracket\n"); */
BlastConstructErrorMessage("init_pattern", "your pattern description has a non-alphabetic character inside a bracket", 1, error_return);
return(-1);
}
charSetMask = charSetMask | (1 << seedSearch->order[c]);
positionProbability += seedSearch->standardProb[seedSearch->order[c]];
}
prevSetMask = currentSetMask;
currentSetMask = charSetMask;
if (!(prevSetMask & currentSetMask)) /*character sets don't overlap*/
currentWildcardProduct = 1;
}
else { /*start of a set of characters forbidden*/
/*For each character forbidden remove it to the mask and
subtract its probability from positionProbability*/
charSetMask = allone;
positionProbability = 1;
while ((c=pattern[++i]) != '}') { /*end of set*/
charSetMask = charSetMask - (charSetMask & (1 << seedSearch->order[c]));
positionProbability -= seedSearch->standardProb[seedSearch->order[c]];
}
prevSetMask = currentSetMask;
currentSetMask = charSetMask;
if (!(prevSetMask & currentSetMask)) /*character sets don't overlap*/
currentWildcardProduct = 1;
}
}
/*handle a number of positions that are the same */
if (pattern[i+1] == '(') { /*read opening paren*/
i++;
numIdentical = atoi((Char *) &pattern[++i]); /*get number of positions*/
patternSearch->minPatternMatchLength += numIdentical;
while (pattern[++i] != ')') ; /*skip over piece in pattern*/
while ((numIdentical--) > 0) {
/*set up mask for these positions*/
patternSearch->inputPatternMasked[j++] = charSetMask;
patternSearch->patternProbability *= positionProbability;
}
}
else { /*specification is for one posiion only*/
patternSearch->inputPatternMasked[j++] = charSetMask;
patternSearch->minPatternMatchLength++;
patternSearch->patternProbability *= positionProbability;
}
if (j >= MaxP) {
BlastConstructErrorMessage("init_pattern", "pattern too long", 1, error_return);
}
}
localPattern[j-1] = 1;
if (patternSearch->patternProbability > 1.0)
patternSearch->patternProbability = 1.0;
for (i = 0; i < j; i++) {
tempInputPatternMasked[i] = patternSearch->inputPatternMasked[i];
tj = j;
}
j = expanding(patternSearch->inputPatternMasked, localPattern, j, MaxP);
if ((j== -1) || ((j > BITS_PACKED_PER_WORD) && is_dna)) {
patternSearch->flagPatternLength = PATTERN_TOO_LONG;
longpacking2(tempInputPatternMasked, tj, patternSearch);
for (i = 0; i < tj; i++)
patternSearch->inputPatternMasked[i] = tempInputPatternMasked[i];
patternSearch->highestPlace = tj;
if (is_dna)
init_pattern_DNA(patternSearch);
return 1;
}
if (j > BITS_PACKED_PER_WORD) {
patternSearch->flagPatternLength = MULTI_WORD_PATTERN;
longpacking(j, localPattern, patternSearch);
return j;
}
/*make a bit mask out of local pattern of length j*/
patternSearch->match_mask = packing(localPattern, j);
/*store for each character a bit mask of which positions
that character can occur in*/
for (charIndex = 0; charIndex < ALPHABET_SIZE; charIndex++) {
thisMask = 0;
for (charSetMask = 0; charSetMask < j; charSetMask++) {
if ((1<< charIndex) & patternSearch->inputPatternMasked[charSetMask])
thisMask |= (1 << charSetMask);
}
patternSearch->whichPositionsByCharacter[charIndex] = thisMask;
}
patternSearch->whichPositionPtr = patternSearch->whichPositionsByCharacter;
if (is_dna)
init_pattern_DNA(patternSearch);
return j; /*return number of places for pattern representation*/
}
/*Looks for 1 bits in the same position of s and mask
Let rightOne be the rightmost position where s and mask both have
a 1.
Let rightMaskOnly < rightOne be the rightmost position where mask has a 1, if any
or -1 otherwise
returns (rightOne - rightMaskOnly) */
static Int4 lenof(Int4 s, Int4 mask)
{
Int4 checkingMatches = s & mask; /*look for 1 bits in same position*/
Int4 rightOne; /*loop index looking for 1 in checkingMatches*/
Int4 rightMaskOnly; /*rightnost bit that is 1 in the mask only*/
rightMaskOnly = -1;
/*AAS Changed upper bound on loop here*/
for (rightOne = 0; rightOne < BITS_PACKED_PER_WORD; rightOne++) {
if ((checkingMatches >> rightOne) % 2 == 1)
return rightOne - rightMaskOnly;
if ((mask >> rightOne) %2 == 1)
rightMaskOnly = rightOne;
}
ErrPostEx(SEV_FATAL, 1, 0, "wrong\n");
return(-1);
}
/* routine to find hits of pattern to sequence when sequence is proteins
hitArray is an array of matches to pass back
seq is the input sequence
len1 is the length of the input sequence
patternSearch carries variables that keep track of
search parameters
returns the number of matches*/
static Int4 find_hitsS(Int4 *hitArray, Uint1Ptr seq, Int4 len1,
patternSearchItems *patternSearch)
{
Int4 i; /*loop index on sequence*/
Int4 prefixMatchedBitPattern = 0; /*indicates where pattern aligns
with seq; e.g., if value is 9 = 0101 then
last 3 chars of seq match first 3 positions in pattern
and last 1 char of seq matches 1 position of pattern*/
Int4 numMatches = 0; /*number of matches found*/
Int4 mask; /*mask of input pattern positions after which
a match can be declared*/
Int4 maskShiftPlus1; /*mask shifted left 1 plus 1 */
mask = patternSearch->match_mask;
maskShiftPlus1 = (mask << 1) + 1;
for (i = 0; i < len1; i++) {
/*shift the positions matched by 1 and try to match up against
the next character, also allow next character to match the
first position*/
prefixMatchedBitPattern =
((prefixMatchedBitPattern << 1) | maskShiftPlus1) &
patternSearch->whichPositionPtr[seq[i]];
if (prefixMatchedBitPattern & mask) {
/*first part of pair is index of place in seq where match
ends; second part is where match starts*/
hitArray[numMatches++] = i;
hitArray[numMatches++] = i - lenof(prefixMatchedBitPattern, mask)+1;
if (numMatches == MAX_HIT)
{
ErrPostEx(SEV_WARNING, 0, 0, "%ld matches saved, discarding others", numMatches);
break;
}
}
}
return numMatches;
}
/*set uo matches for words that encode 4 DNA characters; figure out
for each of 256 possible DNA 4-mers, where a prefix matches the pattern
and where a suffix matches the pattern; store in prefixPos and
suffixPos; mask has 1 bits for whatever lengths of string
the pattern can match, mask2 has 4 1 bits corresponding to
the last 4 positions of a match; they are used to
do the prefixPos and suffixPos claculations with bit arithmetic*/
static void setting_tt(Int4Ptr S, Int4 mask, Int4 mask2, Uint4Ptr prefixPos,
Uint4Ptr suffixPos)
{
Int4 i; /*index over possible DNA encoded words, 4 bases per word*/
Int4 tmp; /*holds different mask combinations*/
Int4 maskLeftPlusOne; /*mask shifted left 1 plus 1; guarantees 1
1 character match effectively */
Uint1 a1, a2, a3, a4; /*four bases packed into an integer*/
maskLeftPlusOne = (mask << 1)+1;
for (i = 0; i < ASCII_SIZE; i++) {
/*find out the 4 bases packed in integer i*/
a1 = READDB_UNPACK_BASE_1(i);
a2 = READDB_UNPACK_BASE_2(i);
a3 = READDB_UNPACK_BASE_3(i);
a4 = READDB_UNPACK_BASE_4(i);
/*what positions match a prefix of a4 followed by a3*/
tmp = ((S[a4]>>1) | mask) & S[a3];
/*what positions match a prefix of a4 followed by a3 followed by a2*/
tmp = ((tmp >>1) | mask) & S[a2];
/*what positions match a prefix of a4, a3, a2,a1*/
prefixPos[i] = mask2 & ((tmp >>1) | mask) & S[a1];
/*what positions match a suffix of a2, a1*/
tmp = ((S[a1]<<1) | maskLeftPlusOne) & S[a2];
/* what positions match a suffix of a3, a2, a1*/
tmp = ((tmp <<1) | maskLeftPlusOne) & S[a3];
/*what positions match a suffix of a4, a3, a2, a1*/
suffixPos[i] = ((((tmp <<1) | maskLeftPlusOne) & S[a4]) << 1) | maskLeftPlusOne;
}
}
/*find hits when sequence is DNA and pattern is short
returns twice the number of hits
pos indicates the starting position
len is length of sequence seq
hitArray stores the results*/
static Int4 find_hitsS_DNA(Int4Ptr hitArray, Uint1Ptr seq, Char pos, Int4 len,
patternSearchItems *patternSearch)
{
/*Some variables and the algorithm are similar to what is
used in find_hits() above; see more detailed comments there*/
Uint4 prefixMatchedBitPattern; /*indicates where pattern aligns
with sequence*/
Uint4 mask2; /*mask to match agaist*/
Int4 maskShiftPlus1; /*mask2 shifted plus 1*/
Uint4 tmp; /*intermediate result of masked comparisons*/
Int4 i; /*index on seq*/
Int4 end; /*count of number of 4-mer iterations needed*/
Int4 remain; /*0,1,2,3 DNA letters left over*/
Int4 j; /*index on suffixRemnant*/
Int4 twiceNumHits = 0; /*twice the number of hits*/
mask2 = patternSearch->match_mask*BITS_PACKED_PER_WORD+15;
maskShiftPlus1 = (patternSearch->match_mask << 1)+1;
if (pos != 0) {
pos = 4 - pos;
prefixMatchedBitPattern = ((patternSearch->match_mask * ((1 << (pos+1))-1)*2) +
(1 << (pos+1))-1)& patternSearch->DNAwhichSuffixPosPtr[seq[0]];
seq++;
end = (len-pos)/4;
remain = (len-pos) % 4;
}
else {
prefixMatchedBitPattern = maskShiftPlus1;
end = len/4;
remain = len % 4;
}
for (i = 0; i < end; i++) {
if (tmp = (prefixMatchedBitPattern & patternSearch->DNAwhichPrefixPosPtr[seq[i]])) {
for (j = 0; j < 4; j++) {
if (tmp & patternSearch->match_mask) {
hitArray[twiceNumHits++] = i*4+j + pos;
hitArray[twiceNumHits++] = i*4+j + pos -lenof(tmp & patternSearch->match_mask,
patternSearch->match_mask)+1;
}
tmp = (tmp << 1);
}
}
prefixMatchedBitPattern = (((prefixMatchedBitPattern << 4) | mask2) & patternSearch->DNAwhichSuffixPosPtr[seq[i]]);
}
/* In the last byte check bits only up to 'remain' */
if (tmp = (prefixMatchedBitPattern & patternSearch->DNAwhichPrefixPosPtr[seq[i]])) {
for (j = 0; j < remain; j++) {
if (tmp & patternSearch->match_mask) {
hitArray[twiceNumHits++] = i*4+j + pos;
hitArray[twiceNumHits++] = i*4+j + pos - lenof(tmp & patternSearch->match_mask, patternSearch->match_mask)+1;
}
tmp = (tmp << 1);
}
}
return twiceNumHits;
}
/*Top level routine when pattern has a short description
hitArray is to return the hits
seq is the input sequence
start is what position to start at in seq
len is the length of seq
is_dna is 1 if and only if seq is a DNA sequence
the return value from the appropriate lower level routine is passed
back*/
static Int4 find_hitsS_head(Int4Ptr hitArray, Uint1Ptr seq, Int4 start, Int4 len,
Uint1 is_dna, patternSearchItems *patternSearch)
{
if (is_dna)
return find_hitsS_DNA(hitArray, &seq[start/4], start % 4, len, patternSearch);
return find_hitsS(hitArray, &seq[start], len, patternSearch);
}
/*length is the length of inputPattern, maxLength is a limit on
how long inputPattern can get;
return the final length of the pattern or -1 if too long*/
static Int4 expanding(Int4 *inputPatternMasked, Uint1 *inputPattern,
Int4 length, Int4 maxLength)
{
Int4 i, j; /*pattern indices*/
Int4 numPos; /*number of positions index*/
Int4 k, t; /*loop indices*/
Int4 recReturnValue1, recReturnValue2; /*values returned from
recursive calls*/
Int4 thisPlaceMasked; /*value of one place in inputPatternMasked*/
Int4 tempPatternMask[MaxP]; /*used as a local representation of
part of inputPatternMasked*/
Uint1 tempPattern[MaxP]; /*used as a local representation of part of
inputPattern*/
for (i = 0; i < length; i++) {
thisPlaceMasked = -inputPatternMasked[i];
if (thisPlaceMasked > 0) { /*represented variable wildcard*/
inputPatternMasked[i] = allone;
for (j = 0; j < length; j++) {
/*use this to keep track of pattern*/
tempPatternMask[j] = inputPatternMasked[j];
tempPattern[j] = inputPattern[j];
}
recReturnValue2 = recReturnValue1 =
expanding(inputPatternMasked, inputPattern, length, maxLength);
if (recReturnValue1 == -1)
return -1;
for (numPos = 0; numPos <= thisPlaceMasked; numPos++) {
if (numPos == 1)
continue;
for (k = 0; k < length; k++) {
if (k == i) {
for (t = 0; t < numPos; t++) {
inputPatternMasked[recReturnValue1++] = allone;
if (recReturnValue1 >= maxLength)
return(-1);
}
}
else {
inputPatternMasked[recReturnValue1] = tempPatternMask[k];
inputPattern[recReturnValue1++] = tempPattern[k];
if (recReturnValue1 >= maxLength)
return(-1);
}
if (recReturnValue1 >= maxLength)
return (-1);
}
recReturnValue1 =
expanding(&inputPatternMasked[recReturnValue2],
&inputPattern[recReturnValue2],
length + numPos - 1,
maxLength - recReturnValue2);
if (recReturnValue1 == -1)
return -1;
recReturnValue2 += recReturnValue1;
recReturnValue1 = recReturnValue2;
}
return recReturnValue1;
}
}
return length;
}
/*Pack the next length bytes of inputPattern into a bit vector
where the bit is 1 if and only if the byte is non-0
Returns packed bit vector*/
static Int4 packing(Uint1 *inputPattern, Int4 length)
{
Int4 i; /*loop index*/
Int4 returnValue = 0; /*value to return*/
for (i = 0; i < length; i++) {
if (inputPattern[i])
returnValue += (1 << i);
}
return returnValue;
}
/*Pack the bit representation of the inputPattern into
the array patternSearch->match_maskL
numPlaces is the number of positions in
inputPattern
Also packs patternSearch->bitPatternByLetter */
static void longpacking(Int4 numPlaces, Uint1 *inputPattern, patternSearchItems *patternSearch)
{
Int4 charIndex; /*index over characters in alphabet*/
Int4 bitPattern; /*bit pattern for one word to pack*/
Int4 i; /*loop index over places*/
Int4 wordIndex; /*loop counter over words to pack into*/
patternSearch->numWords = (numPlaces-1) / BITS_PACKED_PER_WORD +1;
for (wordIndex = 0; wordIndex < patternSearch->numWords; wordIndex++) {
bitPattern = 0;
for (i = 0; i < BITS_PACKED_PER_WORD; i++) {
if (inputPattern[wordIndex*BITS_PACKED_PER_WORD+i])
bitPattern += (1 << i);
}
patternSearch->match_maskL[wordIndex] = bitPattern;
}
for (charIndex = 0; charIndex < ALPHABET_SIZE; charIndex++) {
for (wordIndex = 0; wordIndex < patternSearch->numWords; wordIndex++) {
bitPattern = 0;
for (i = 0; i < BITS_PACKED_PER_WORD; i++) {
if ((1<< charIndex) & patternSearch->inputPatternMasked[wordIndex*BITS_PACKED_PER_WORD + i])
bitPattern = bitPattern | (1 << i);
}
patternSearch->bitPatternByLetter[charIndex][wordIndex] =
bitPattern;
}
}
}
/*Let F be the number of the first bit in s that is 1
Let G be the first bit in mask that is one such that G < F;
Else let G = -1;
Returns F - G*/
static Int4 lenofL(Int4 *s, Int4 *mask, patternSearchItems *patternSearch)
{
Int4 bitIndex; /*loop index over bits in a word*/
Int4 wordIndex; /*loop index over words*/
Int4 firstOneInMask;
firstOneInMask = -1;
for (wordIndex = 0; wordIndex < patternSearch->numWords; wordIndex++) {
for (bitIndex = 0; bitIndex < BITS_PACKED_PER_WORD; bitIndex++) {
if ((s[wordIndex] >> bitIndex) % 2 == 1)
return wordIndex*BITS_PACKED_PER_WORD+bitIndex-firstOneInMask;
if ((mask[wordIndex] >> bitIndex) %2 == 1)
firstOneInMask = wordIndex*BITS_PACKED_PER_WORD+bitIndex;
}
}
ErrPostEx(SEV_FATAL, 1, 0, "wrong\n");
return(-1);
}
/*Shift each word in the array left by 1 bit and add bit b,
if the new values is bigger that OVERFLOW1, then subtract OVERFLOW1 */
static void lmove(Int4 *a, Uint1 b, patternSearchItems *patternSearch)
{
Int4 x;
Int4 i; /*index on words*/
for (i = 0; i < patternSearch->numWords; i++) {
x = (a[i] << 1) + b;
if (x >= OVERFLOW1) {
a[i] = x - OVERFLOW1;
b = 1;
}
else {
a[i] = x;
b = 0;
}
}
}
/*Do a word-by-word bit-wise or of a and b and put the result back in a*/
static void or(Int4 *a, Int4 *b, patternSearchItems *patternSearch)
{
Int4 i; /*index over words*/
for (i = 0; i < patternSearch->numWords; i++)
a[i] = (a[i] | b[i]);
}
/*Do a word-by-word bit-wise or of a and b and put the result in
result; return 1 if there are any non-zero words*/
static Int4 and(Int4 *result, Int4 *a, Int4 *b,
patternSearchItems *patternSearch)
{
Int4 i; /*index over words*/
Int4 returnValue = 0;
for (i = 0; i < patternSearch->numWords; i++)
if (result[i] = (a[i] & b[i]))
returnValue = 1;
return returnValue;
}
/* Finds places where pattern matches seq and returns them as
pairs of positions in consecutive entries of hitArray;
similar to find_hitsS
hitArray is array of hits to return
seq is the input sequence and len1 is its length
patternSearch carries all the pattern variables
return twice the number of hits*/
static Int4 find_hitsL(Int4 *hitArray, Uint1Ptr seq, Int4 len1,
patternSearchItems *patternSearch)
{
Int4 wordIndex; /*index on words in mask*/
Int4 i; /*loop index on seq */
Int4 *prefixMatchedBitPattern; /*see similar variable in
find_hitsS*/
Int4 twiceNumHits = 0; /*counter for hitArray*/
Int4 *mask; /*local copy of match_maskL version of pattern
indicates after which positions a match can be declared*/
Int4 *matchResult; /*Array of words to hold the result of the
final test for a match*/
matchResult = (Int4 *) ckalloc(sizeof(Int4)*patternSearch->numWords);
mask = (Int4 *) ckalloc(sizeof(Int4)*patternSearch->numWords);
prefixMatchedBitPattern = (Int4 *) ckalloc(sizeof(Int4)*patternSearch->numWords);
for (wordIndex = 0; wordIndex < patternSearch->numWords; wordIndex++) {
mask[wordIndex] = patternSearch->match_maskL[wordIndex];
prefixMatchedBitPattern[wordIndex] = 0;
}
/*This is a multiword version of the algorithm in find_hitsS*/
lmove(mask, 1, patternSearch);
for (i = 0; i < len1; i++) {
lmove(prefixMatchedBitPattern, 0, patternSearch);
or(prefixMatchedBitPattern, mask, patternSearch);
and(prefixMatchedBitPattern, prefixMatchedBitPattern, patternSearch->bitPatternByLetter[seq[i]], patternSearch);
if (and(matchResult, prefixMatchedBitPattern, patternSearch->match_maskL, patternSearch)) {
hitArray[twiceNumHits++] = i;
hitArray[twiceNumHits++] = i-lenofL(matchResult, patternSearch->match_maskL, patternSearch)+1;
}
}
MemFree(prefixMatchedBitPattern);
MemFree(matchResult);
MemFree(mask);
return twiceNumHits;
}
/*initialize mask and other arrays for DNA patterns*/
static void init_pattern_DNA(patternSearchItems *patternSearch)
{
Int4 mask1; /*mask for one word in a set position*/
Int4 compositeMask; /*superimposed mask1 in 4 adjacent positions*/
Int4 wordIndex; /*index over words in pattern*/
if (patternSearch->flagPatternLength != ONE_WORD_PATTERN) {
for (wordIndex = 0; wordIndex < patternSearch->numWords; wordIndex++) {
mask1 = patternSearch->match_maskL[wordIndex];
compositeMask = mask1 + (mask1>>1)+(mask1>>2)+(mask1>>3);
setting_tt(patternSearch->SLL[wordIndex],
patternSearch->match_maskL[wordIndex],
compositeMask, patternSearch->DNAprefixSLL[wordIndex], patternSearch->DNAsuffixSLL[wordIndex]);
}
}
else {
compositeMask = patternSearch->match_mask +
(patternSearch->match_mask>>1) +
(patternSearch->match_mask>>2) + (patternSearch->match_mask>>3);
patternSearch->DNAwhichPrefixPosPtr = patternSearch->DNAwhichPrefixPositions;
patternSearch->DNAwhichSuffixPosPtr = patternSearch->DNAwhichSuffixPositions;
setting_tt(patternSearch->whichPositionsByCharacter,
patternSearch->match_mask, compositeMask,
patternSearch->DNAwhichPrefixPositions, patternSearch->DNAwhichSuffixPositions);
}
}
/*Return the number of 1 bits in the base 2 representation of a*/
static Int4 num_of_one(Int4 a)
{
Int4 returnValue;
returnValue = 0;
while (a > 0) {
if (a % 2 == 1)
returnValue++;
a = (a >> 1);
}
return returnValue;
}
/*Sets up field in patternSearch when pattern is very long*/
static void longpacking2(Int4 *inputPatternMasked, Int4 numPlacesInPattern, patternSearchItems *patternSearch)
{
Int4 placeIndex; /*index over places in pattern rep.*/
Int4 wordIndex; /*index over words*/
Int4 placeInWord, placeInWord2; /*index for places in a single word*/
Int4 charIndex; /*index over characters in alphabet*/
Int4 oneWordMask; /*mask of matching characters for one word in
pattern representation*/
Nlm_FloatHi patternWordProbability;
Nlm_FloatHi most_specific; /*lowest probability of a word in the pattern*/
Int4 *oneWordSLL; /*holds patternSearch->SLL for one word*/
most_specific = 1.0;
patternSearch->whichMostSpecific = 0;
patternWordProbability = 1.0;
for (placeIndex = 0, wordIndex = 0, placeInWord=0;
placeIndex <= numPlacesInPattern; placeIndex++, placeInWord++) {
if (placeIndex==numPlacesInPattern || inputPatternMasked[placeIndex] < 0
|| placeInWord == BITS_PACKED_PER_WORD ) {
patternSearch->match_maskL[wordIndex] = 1 << (placeInWord-1);
oneWordSLL = patternSearch->SLL[wordIndex];
for (charIndex = 0; charIndex < ALPHABET_SIZE; charIndex++) {
oneWordMask = 0;
for (placeInWord2 = 0; placeInWord2 < placeInWord; placeInWord2++) {
if ((1<< charIndex) &
inputPatternMasked[placeIndex-placeInWord+placeInWord2])
oneWordMask |= (1 << placeInWord2);
}
oneWordSLL[charIndex] = oneWordMask;
}
patternSearch->numPlacesInWord[wordIndex] = placeInWord;
if (patternWordProbability < most_specific) {
most_specific = patternWordProbability;
patternSearch->whichMostSpecific = wordIndex;
}
if (placeIndex == numPlacesInPattern)
patternSearch->spacing[wordIndex++] = 0;
else
if (inputPatternMasked[placeIndex] < 0) {
patternSearch->spacing[wordIndex++] = -inputPatternMasked[placeIndex];
}
else {
placeIndex--;
patternSearch->spacing[wordIndex++] = 0;
}
placeInWord = -1;
patternWordProbability = 1.0;
}
else {
patternWordProbability *= (Nlm_FloatHi)
num_of_one(inputPatternMasked[placeIndex])/ (Nlm_FloatHi) ALPHABET_SIZE;
}
}
patternSearch->numWords = wordIndex;
}
/*find matches when pattern is very long,
hitArray is used to pass back pairs of end position. start position for hits
seq is the sequence; len is its length
is_dna indicates if the sequence is DNA or protein*/
static Int4 find_hitsLL(Int4 *hitArray, Uint1Ptr seq, Int4 len, Boolean is_dna,
patternSearchItems *patternSearch)
{
Int4 twiceNumHits; /*twice the number of matches*/
Int4 twiceHitsOneCall; /*twice the number of hits in one call to
find_hitsS */
Int4 wordIndex; /*index over words in pattern*/
Int4 start; /*start position in sequence for calls to find_hitsS */
Int4 hitArray1[MAX_HIT]; /*used to get hits against different words*/
Int4 nextPosInHitArray; /*next available position in hitArray1 */
Int4 hitIndex1, hitIndex2; /*indices over hitArray1*/
patternSearch->whichPositionPtr =
patternSearch->SLL[patternSearch->whichMostSpecific];
patternSearch->match_mask =
patternSearch->match_maskL[patternSearch->whichMostSpecific];
if (is_dna) {
patternSearch->DNAwhichPrefixPosPtr = patternSearch->DNAprefixSLL[patternSearch->whichMostSpecific];
patternSearch->DNAwhichSuffixPosPtr = patternSearch->DNAsuffixSLL[patternSearch->whichMostSpecific];
}
/*find matches to most specific word of pattern*/
twiceNumHits = find_hitsS_head(hitArray, seq, 0, len, is_dna, patternSearch);
if (twiceNumHits < 2)
return 0;
/*extend matches word by word*/
for (wordIndex = patternSearch->whichMostSpecific+1;
wordIndex < patternSearch->numWords; wordIndex++) {
patternSearch->whichPositionPtr =
patternSearch->SLL[wordIndex];
patternSearch->match_mask = patternSearch->match_maskL[wordIndex];
if (is_dna) {
patternSearch->DNAwhichPrefixPosPtr = patternSearch->DNAprefixSLL[wordIndex];
patternSearch->DNAwhichSuffixPosPtr = patternSearch->DNAsuffixSLL[wordIndex];
}
nextPosInHitArray = 0;
for (hitIndex2 = 0; hitIndex2 < twiceNumHits; hitIndex2 += 2) {
twiceHitsOneCall = find_hitsS_head(&hitArray1[nextPosInHitArray], seq,
hitArray[hitIndex2]+1, MIN(len-hitArray[hitIndex2]-1,
patternSearch->spacing[wordIndex-1] + patternSearch->numPlacesInWord[wordIndex]), is_dna, patternSearch);
for (hitIndex1 = 0; hitIndex1 < twiceHitsOneCall; hitIndex1+= 2) {
hitArray1[nextPosInHitArray+hitIndex1] =
hitArray[hitIndex2]+hitArray1[nextPosInHitArray+hitIndex1]+1;
hitArray1[nextPosInHitArray+hitIndex1+1] = hitArray[hitIndex2+1];
}
nextPosInHitArray += twiceHitsOneCall;
}
twiceNumHits = nextPosInHitArray;
if (twiceNumHits < 2)
return 0;
/*copy back matches that extend */
for (hitIndex2 = 0; hitIndex2 < nextPosInHitArray; hitIndex2++)
hitArray[hitIndex2] = hitArray1[hitIndex2];
}
/*extend each match back one word at a time*/
for (wordIndex = patternSearch->whichMostSpecific-1; wordIndex >=0;
wordIndex--) {
patternSearch->whichPositionPtr =
patternSearch->SLL[wordIndex];
patternSearch->match_mask = patternSearch->match_maskL[wordIndex];
if (is_dna) {
patternSearch->DNAwhichPrefixPosPtr = patternSearch->DNAprefixSLL[wordIndex];
patternSearch->DNAwhichSuffixPosPtr = patternSearch->DNAsuffixSLL[wordIndex];
}
nextPosInHitArray = 0;
for (hitIndex2 = 0; hitIndex2 < twiceNumHits; hitIndex2 += 2) {
start = hitArray[hitIndex2+1]-patternSearch->spacing[wordIndex]-patternSearch->numPlacesInWord[wordIndex];
if (start < 0)
start = 0;
twiceHitsOneCall = find_hitsS_head(&hitArray1[nextPosInHitArray], seq, start,
hitArray[hitIndex2+1]-start, is_dna, patternSearch);
for (hitIndex1 = 0; hitIndex1 < twiceHitsOneCall; hitIndex1+= 2) {
hitArray1[nextPosInHitArray+hitIndex1] = hitArray[hitIndex2];
hitArray1[nextPosInHitArray+hitIndex1+1] = start +
hitArray1[nextPosInHitArray+hitIndex1+1];
}
nextPosInHitArray += twiceHitsOneCall;
}
twiceNumHits = nextPosInHitArray;
if (twiceNumHits < 2)
return 0;
/*copy back matches that extend*/
for (hitIndex2 = 0; hitIndex2 < nextPosInHitArray; hitIndex2++)
hitArray[hitIndex2] = hitArray1[hitIndex2];
}
return twiceNumHits;
}
/*stores dynamic programming information */
typedef struct DP {
Int4 CC; /*minimum cost for these coordiantes*/
Int4 DD; /*minimum cost when preceded by a deletion (vertical edge)
for these coordinates*/
} *dp_ptr, dp_node;
#define gap(k) ((k) <= 0 ? 0 : (alignSearch->gapOpen+alignSearch->gapExtend*(k))) /* k-symbol indel cost */
typedef struct {
Int4Ptr sapp; /* Current script append ptr */
Int4 last; /*last edit operation*/
} data_dp;
/* Append "Delete k" op */
#define DEL_(k) \
{ \
if (data->last < 0) \
data->last = data->sapp[-1] -= (k); \
else \
data->last = (*data->sapp++ = -(k)); \
}
/* Append "Insert k" op */
#define INS_(k) \
{ \
if (data->last > 0) \
data->last = data->sapp[-1] += (k); \
else \
data->last = (*data->sapp++ = (k)); \
}
/* Append "Replace" op */
#define REP_ \
{ data->last = (*data->sapp++ = 0); \
}
/* Returns the cost of an optimum conversion
within highDiag and lowDiag between
seq1[1..end1] and seq2[1..end2] and appends such a conversion
to the current script.
Score_only is 1 if only the score is desired, not the conversion script.
0 otherwise
CD and data stores dynamic program intermediate scores
*/
static Int4 align(Uint1 * seq1, Uint1 * seq2, Int4 end1, Int4 end2,
Int4 lowDiag, Int4 highDiag, Char score_only, dp_ptr CD, alignSearchItems * alignSearch, data_dp * data)
{
Int4 nextState; /*stores code for next entry in state*/
Int4 score; /*score to return*/
Int4 band; /*number of diagonals between highDiag and lowDiag
inclusive*/
Int4 diagIndex; /*loop index over diagonals*/
Int4 leftd, rightd; /* diagonal indices for CC, DD, CP and DP */
register Int4 curd; /* current index for CC, DD CP and DP */
register Int4 i; /*loop index*/
register Int4 index1; /*index on seq1*/
register Int4 tempCC; /*placeholder for a CC field*/
register Int4 tempDD; /*placeholder for a DD field*/
register Int4 tempHorScore; /*dual of tempDD for the case where a
horizontal edge (insertion) is the last step*/
register dp_ptr CDrow; /*points to a row of CD*/
Int4 stateDecoder; /*used to decode the edge information in a state*/
Int4 initialScore; /*score to initialize dynamic program entries*/
Int4 *matrixRow; /*row of score matrix*/
Int1 **state; /*stores dynamic program information*/
Int1 *stateRow; /*holds one row of state*/
Int1 *editInstructions; /*holds instruction for string-to-string edit*/
Int4 index2; /*index on seq2*/
Int4 charCounter; /*counts number of characters involved in
optimal edit sequence*/
Int4 charIndex; /*index over character positions in optimal
edit sequence*/
Int4 editStep, nextEditStep; /*steps in string conversion sequence*/
/* Boundary cases: end1 <= 0 , end2 <= 0, or highDiag-lowDiag <= 0 */
band = highDiag-lowDiag+1;
state = (Int1 **) ckalloc(sizeof(Int1 *)*(end1+1));
state[0] = (Int1 *) ckalloc((end1+1)*(band+2));
for (index1 = 1; index1 <= end1; index1++)
state[index1] = state[index1-1]+band+2;
/* Initialization */
leftd = 1-lowDiag;
rightd = highDiag-lowDiag+1;
CD[leftd].CC = 0;
state[0][leftd] = -1;
initialScore = -alignSearch->gapOpen;
for (diagIndex = leftd+1; diagIndex <= rightd; diagIndex++) {
CD[diagIndex].CC = initialScore = initialScore-alignSearch->gapExtend;
CD[diagIndex-1].DD = initialScore-alignSearch->gapCost;
state[0][diagIndex] = DIAGONAL_INSERT;
}
CD[rightd+1].CC = MININT;
CD[rightd].DD = MININT;
CD[leftd-1].DD = -alignSearch->gapCost;
CD[leftd-1].CC = MININT;
for (i = 1; i <= end1; i++) {
if (i > end2-highDiag)
rightd--;
if (leftd > 1)
leftd--;
matrixRow = alignSearch->matrix[seq1[i]];
tempDD = CD[leftd].DD;
nextState = 0;
if ((index2 = leftd+lowDiag-1+i) > 0)
tempCC = CD[leftd].CC+matrixRow[seq2[index2]];
if (tempDD > tempCC || index2 <= 0) {
tempCC = tempDD;
nextState = DIAGONAL_DELETE;
}
tempHorScore = tempCC-alignSearch->gapCost;
if (leftd >= 1)
if ((tempDD-= alignSearch->gapExtend) >= tempHorScore) {
CD[leftd-1].DD = tempDD;
nextState += DELETE_CODE;
}
else {
CD[leftd-1].DD = tempHorScore;
}
stateRow = &state[i][leftd];
*stateRow++ = nextState;
CD[leftd].CC = tempCC;
for (curd=leftd+1, CDrow = &CD[curd]; curd <= rightd; curd++) {
tempCC = CDrow->CC + matrixRow[seq2[curd+lowDiag-1+i]];
if ((tempDD=CDrow->DD) > tempCC) {
if (tempDD > tempHorScore) {
CDrow->CC = tempDD;
tempHorScore -= alignSearch->gapExtend;
(CDrow++-1)->DD = tempDD-alignSearch->gapExtend;
*stateRow++=DELETE_CODE + INSERT_CODE + DIAGONAL_DELETE;
}
else {
CDrow->CC = tempHorScore;
tempHorScore -= alignSearch->gapExtend;
(CDrow++-1)->DD = tempDD-alignSearch->gapExtend;
*stateRow++=DELETE_CODE + INSERT_CODE + DIAGONAL_INSERT;
}
}
else
if (tempHorScore > tempCC) {
CDrow->CC = tempHorScore;
tempHorScore -= alignSearch->gapExtend;
(CDrow++-1)->DD = tempDD-alignSearch->gapExtend;
*stateRow++=DELETE_CODE + INSERT_CODE + DIAGONAL_INSERT;;
}
else {
CDrow->CC = tempCC;
if ((tempCC -= alignSearch->gapCost) >
(tempHorScore-=alignSearch->gapExtend)) {
tempHorScore = tempCC;
nextState = 0;
}
else
nextState = INSERT_CODE;
if (tempCC > (tempDD -= alignSearch->gapExtend)) {
*stateRow++= nextState;
(CDrow++-1)->DD = tempCC;
}
else {
*stateRow++ = nextState+DELETE_CODE;
(CDrow++-1)->DD = tempDD;
}
}
}
}
/* decide which path to be traced back */
score = (CDrow-1)->CC;
if (score_only) {
MemFree(state[0]);
MemFree(state);
return score;
}
editInstructions = (Int1Ptr) ckalloc(end1+end2);
for (index1 = end1, diagIndex = rightd, editStep=0, charCounter = 0;
index1>=0; index1--, charCounter++) {
nextEditStep = (stateDecoder=state[index1][diagIndex]) % INSERT_CODE;
if (stateDecoder == -1)
break;
if (editStep == DIAGONAL_INSERT
&& ((stateDecoder/INSERT_CODE)%2) == 1)
nextEditStep = DIAGONAL_INSERT;
if (editStep == DIAGONAL_DELETE && (stateDecoder/DELETE_CODE)== 1)
nextEditStep = DIAGONAL_DELETE;
if (nextEditStep == DIAGONAL_INSERT) {
diagIndex--;
index1++;
}
else
if (nextEditStep == DIAGONAL_DELETE)
diagIndex++;
editInstructions[charCounter] = editStep = nextEditStep;
}
for (charIndex = charCounter-1; charIndex >= 0; charIndex--)
switch(editInstructions[charIndex]) {
case 0:
REP_;
break;
case DIAGONAL_INSERT:
INS_(1);
break;
case DIAGONAL_DELETE:
DEL_(1);
break;
}
MemFree(editInstructions);
MemFree(state[0]);
MemFree(state);
return(score);
}
/*Do a banded, gapped alignment of seq1 and seq2 starting at position start1
of seq1 and position start2 of seq2; the band boundaries are lowBand
and highBand, matrix is the score matrix; gapOpen and gapExtend are
the gap costs; alignScript is used to describe the alignment;
alignScript is NULL if only the alignment score is desired
the alignment score is returned*/
static Int4 ALIGN_B(Uint1 *seq1, Uint1 *seq2,Int4 start1, Int4 start2,
Int4 lowDiag, Int4 highDiag,Int4 **matrix, Int4 gapOpen,
Int4 gapExtend, Int4 * alignScript, data_dp * data)
{
Int4 score; /*score to return*/
Int4 i; /*index over sequences*/
Int4 band; /*width of band*/
alignSearchItems *alignSearch; /*holds alignment parameters*/
dp_ptr CD; /*array for dynamic program information*/
alignSearch = (alignSearchItems *) ckalloc(sizeof(alignSearchItems));
/* Setup alignment parameters */
alignSearch->matrix = matrix;
alignSearch->gapOpen = gapOpen;
alignSearch->gapExtend = gapExtend;
alignSearch->gapCost = gapOpen+gapExtend;
lowDiag = MIN(MAX(-start1, lowDiag),MIN(start2-start1,0));
highDiag = MAX(MIN(start2, highDiag),MAX(start2-start1,0));
if (start2 <= 0) {
if (start1 > 0)
if (alignScript)
DEL_(start1);
return -gap(start1);
}
if (start1 <= 0) {
if (alignScript)
INS_(start2);
return -gap(start2);
}
if ((band = highDiag-lowDiag+1) <= 1) {
score = 0;
for (i = 1; i <= start1; i++) {
if (alignScript)
REP_;
score += alignSearch->matrix[seq1[i]][seq2[i]];
}
MemFree(alignSearch);
return score;
}
CD = (dp_ptr) ckalloc(sizeof(dp_node)*(band+2));
if (alignScript) {
score = align(seq1,seq2,start1,start2,lowDiag,highDiag,0, CD, alignSearch, data);
}
else {
score = align(seq1,seq2,start1,start2,lowDiag,highDiag, 1, CD, alignSearch, data);
}
MemFree(CD);
MemFree(alignSearch);
return score;
}
/*seq is a piece of a sequence, len is the sength of seq
pass back start and end position where first pattern match occurs*/
static void get_pat(Uint1 *seq, Int4 len, Int4 *start, Int4 *end,
patternSearchItems *patternSearch)
{
Int4 mask; /*mask of input pattern positions after which
a match can be declared*/
Int4 maskShiftPlus1; /*mask shifted left plus 1*/
Int4 prefixMatchedBitPattern = 0; /*indicates where pattern aligns
with seq; e.g., if value is 9 = 0101 then
last 3 chars of seq match first 3 positions in pattern
and last 1 char of seq matches 1 position of pattern*/
Int4 i; /*index over seq */
Int4 rightOne; /*loop index looking for 1 in both mask and
prefixMatchedBitPattern*/
Int4 rightMaskOnly; /*rightmost bit that is 1 in the mask only*/
mask = patternSearch->match_mask;
maskShiftPlus1 = (mask << 1) +1;
for (i = 0, prefixMatchedBitPattern= 0; i < len; i++) {
prefixMatchedBitPattern =
((prefixMatchedBitPattern << 1) | maskShiftPlus1) &
patternSearch->whichPositionPtr[seq[i]];
}
/*do the work of lenof here*/
rightMaskOnly = -1;
rightOne = prefixMatchedBitPattern & mask;
for (i = 0; i < BITS_PACKED_PER_WORD; i++) {
if ((rightOne >> i) % 2 == 1)
break;
if ((mask >> i) %2 == 1)
rightMaskOnly = i;
}
*start = rightMaskOnly + 1;
*end = i;
}
/*seq is a piece of a sequence, len is the sength of seq
pass back start and end position where first pattern match occurs
Similar to get_pat, but for patterns longer than a word*/
static void get_patL(Uint1 *seq, Int4 len, Int4 *start, Int4 *end,
patternSearchItems *patternSearch)
{
Int4 *mask; /*mask of input pattern positions after which
a match can be declared*/
Int4 *prefixMatchedBitPattern; /*indicates where pattern aligns with seq*/
Int4 wordIndex; /*index over words in pattern*/
Int4 i; /*index over seq*/
Int4 rightMaskOnly; /*rightmost bit that is 1 in the mask only*/
Int4 j; /*index over bits in a word*/
Boolean found = FALSE; /*found match position yet*/
mask = (Int4 *) ckalloc(sizeof(Int4)*patternSearch->numWords);
prefixMatchedBitPattern = (Int4 *)
ckalloc(sizeof(Int4)*patternSearch->numWords);
for (wordIndex = 0; wordIndex < patternSearch->numWords; wordIndex++) {
mask[wordIndex] = patternSearch->match_maskL[wordIndex];
prefixMatchedBitPattern[wordIndex] = 0;
}
lmove(mask, 1, patternSearch);
for (i = 0; i < len; i++) {
lmove(prefixMatchedBitPattern, 0, patternSearch);
or(prefixMatchedBitPattern, mask, patternSearch);
and(prefixMatchedBitPattern, prefixMatchedBitPattern,
patternSearch->bitPatternByLetter[seq[i]], patternSearch);
}
and(prefixMatchedBitPattern, prefixMatchedBitPattern,
patternSearch->match_maskL, patternSearch);
rightMaskOnly = -1;
for (wordIndex = 0; (wordIndex < patternSearch->numWords) && (!found);
wordIndex++) {
for (j = 0; j < BITS_PACKED_PER_WORD && (!found); j++) {
if ((prefixMatchedBitPattern[wordIndex]>>j) % 2 == 1)
found = TRUE;
else
if ((patternSearch->match_maskL[wordIndex] >> j)%2 == 1)
rightMaskOnly = wordIndex*BITS_PACKED_PER_WORD+j;
}
}
if (found) {
wordIndex--;
j --;
}
prefixMatchedBitPattern = MemFree(prefixMatchedBitPattern);
mask = MemFree(mask);
*start = rightMaskOnly+1;
*end = wordIndex*BITS_PACKED_PER_WORD+j;
}
/*Find pattern occurrences in seq when the pattern description is
extra long, report the results back in hitArray
seq is input sequence, len is length of seq
hitArray stores pairs of length/position for matches */
static void get_patLL(Uint1 *seq, Int4 len, Int4 *hitArray,
patternSearchItems *patternSearch)
{
Int4 i, j; /*indices on one word hits*/
Int4 wordIndex, wordIndex2; /*indices on words in pattern representation*/
Int4 twiceHitsOneWord; /*Twice the number of hits against one
word of the pattern*/
Int4 hitIndex; /*index over hits against one word*/
Int4 pos; /*keeps track of how many intermediate hits*/
Int4 placeIndex; /*index over the number of places in the pattern rep*/
Int4 hitArray1[MAX_HIT];
Int4 oneWordHitArray[MAX_WORDS_IN_PATTERN]; /*hits for one word of
pattern representation*/
i = 1;
hitArray[0] = patternSearch->numPlacesInWord[0]-1;
for (wordIndex = 1; wordIndex < patternSearch->numWords; wordIndex++) {
patternSearch->whichPositionPtr = patternSearch->SLL[wordIndex];
patternSearch->match_mask = patternSearch->match_maskL[wordIndex];
pos = 0;
for (j = 0; j < i; j += wordIndex) {
twiceHitsOneWord = find_hitsS(oneWordHitArray,
(Uint1Ptr) &seq[hitArray[j]+1],
MIN(len-hitArray[j]-1,
patternSearch->spacing[wordIndex-1]+patternSearch->numPlacesInWord[wordIndex]),
patternSearch);
for (hitIndex = 0; hitIndex < twiceHitsOneWord;
hitIndex+= 2, pos+= wordIndex+1) {
hitArray1[pos] = hitArray[j]+oneWordHitArray[hitIndex]+1;
for (wordIndex2 = 1; wordIndex2 < wordIndex; wordIndex2++)
hitArray1[pos+wordIndex2] = hitArray[j+wordIndex2];
hitArray1[pos+wordIndex] = oneWordHitArray[hitIndex+1];
}
}
i = pos;
for (j = 0; j < pos; j++)
hitArray[j] = hitArray1[j];
}
for (j = 0; j < pos; j+= wordIndex) {
for (placeIndex = patternSearch->numPlacesInWord[0], i=j+1;
i < j+wordIndex; i++)
placeIndex += hitArray[i]+patternSearch->numPlacesInWord[i-j];
if (placeIndex != len)
continue;
if (j == 0)
return;
for (i = 0; i < wordIndex; i++)
hitArray[i] = hitArray[i+j];
return;
}
ErrPostEx(SEV_FATAL, 1, 0, "getLL wrong\n");
exit(1);
}
/*align querySeq to dbSeq when guaranteed that the pattern occurs
in each
lenQuerySeq and lenDbSeq are their lengths
alignScript is alignment script; NULL if only score is desired
tback will hold adjusted alignment script for return
gap_align keeps track of parameters for a gapped alignment
multiple is related to significance of the pattern match
the overal match score is returned; a variant of the
score is passed back in useful_score*/
Int4 LIBCALL align_of_pattern(Uint1 *querySeq, Uint1 *dbSeq, Int4 lenQuerySeq,
Int4 lenDbSeq, Int4 *alignScript, Int4 **tback,
GapAlignBlkPtr gap_align, Int4 *useful_score,
Nlm_FloatHi *multiple, patternSearchItems *patternSearch,
seedSearchItems * seedSearch)
{
data_dp *data; /*stores dynaic program info*/
Int4 startQueryMatch, endQueryMatch; /*positions delimiting
where query matches pattern first */
Int4 startDbMatch, endDbMatch; /*positions delimiting where
database sequence matches pattern first*/
Int4 local_score, local_useful_score; /*two versions of score for return*/
Int4 queryMatchOffset, dbMatchOffset; /*offset from sequence start where
pattern character matches,
used as indices*/
Int4 patternPosQuery, patternPosDb; /*positions in pattern
for matches to query and database sequences*/
Int4 wordIndex; /*index over words*/
Int4 placeIndex1, placeIndex2; /*indices over places in pattern*/
Int4 *hitArray1=NULL, *hitArray2=NULL;
Int4 numPlacesInWord[MAX_WORDS_IN_PATTERN];
Int4 **matrix; /*score matrix*/
Int4 gap_open; /*gap opening penalty*/
Int4 gap_extend; /*gap extension penalty*/
Nlm_FloatHi mul = 1.0; /*local copy of what to pass back in multiple*/
if (alignScript)
data = (data_dp *) ckalloc(1 * sizeof(data_dp));
gap_open = gap_align->gap_open;
gap_extend = gap_align->gap_extend;
matrix = gap_align->matrix;
if (patternSearch->flagPatternLength == ONE_WORD_PATTERN) {
get_pat(querySeq, lenQuerySeq, &startQueryMatch, &endQueryMatch,
patternSearch);
get_pat(dbSeq, lenDbSeq, &startDbMatch, &endDbMatch, patternSearch);
}
else
if (patternSearch->flagPatternLength == MULTI_WORD_PATTERN) {
get_patL(querySeq, lenQuerySeq, &startQueryMatch, &endQueryMatch,
patternSearch);
get_patL(dbSeq, lenDbSeq, &startDbMatch, &endDbMatch,
patternSearch);
}
else {
hitArray1 = Nlm_Malloc(MAX_HIT*sizeof(Int4));
hitArray2 = Nlm_Malloc(MAX_HIT*sizeof(Int4));
if (alignScript) {
data->sapp = alignScript;
data->last = 0;
}
get_patLL(querySeq, lenQuerySeq, hitArray1, patternSearch);
get_patLL(dbSeq, lenDbSeq, hitArray2, patternSearch);
mul = 1.0;
local_useful_score = 0;
local_score = 0;
for (wordIndex = 0; wordIndex < patternSearch->numWords; wordIndex++)
numPlacesInWord[wordIndex] = patternSearch->numPlacesInWord[wordIndex];
for (placeIndex1 = 0, wordIndex = 0;
placeIndex1 < patternSearch->highestPlace; placeIndex1++) {
if (patternSearch->inputPatternMasked[placeIndex1] < 0) {
for (placeIndex2 = placeIndex1-1; placeIndex2 >=0; placeIndex2--)
if (patternSearch->inputPatternMasked[placeIndex2] != allone)
break;
numPlacesInWord[wordIndex++]-= placeIndex1-placeIndex2-1;
hitArray1[wordIndex] += placeIndex1-placeIndex2-1;
hitArray2[wordIndex] += placeIndex1-placeIndex2-1;
}
}
queryMatchOffset = dbMatchOffset = 0;
for (wordIndex = 0; wordIndex < patternSearch->numWords; wordIndex++) {
for (placeIndex1 = 0; placeIndex1 < numPlacesInWord[wordIndex]; placeIndex1++) {
if (alignScript)
REP_
else {
if (patternSearch->inputPatternMasked[wordIndex] > allone) {
local_score +=matrix[*querySeq][*dbSeq];
local_useful_score += matrix[*querySeq][*dbSeq];
mul *= seedSearch->charMultiple[*querySeq];
}
else
local_score += matrix[*querySeq][*dbSeq];
}
querySeq++;
dbSeq++;
}
if (wordIndex < patternSearch->numWords-1) {
local_score += ALIGN_B(querySeq-1, dbSeq-1, hitArray1[wordIndex+1], hitArray2[wordIndex+1],
BAND_LOW, BAND_HIGH, matrix, gap_open, gap_extend, alignScript, data);
querySeq += hitArray1[wordIndex+1];
dbSeq += hitArray2[wordIndex+1];
}
}
if (!alignScript) {
*useful_score = local_useful_score;
*multiple = mul;
}
else
*tback = data->sapp;
hitArray1 = MemFree(hitArray1);
hitArray2 = MemFree(hitArray2);
return local_score;
}
local_score = local_useful_score = 0;
if (alignScript) {
data->sapp = alignScript;
data->last = 0;
}
for (patternPosQuery = startQueryMatch, patternPosDb = startDbMatch; patternPosQuery <= endQueryMatch || patternPosDb <= endDbMatch; ) {
if (patternSearch->inputPatternMasked[patternPosQuery] != allone && patternSearch->inputPatternMasked[patternPosDb] != allone) {
if (alignScript)
REP_
else {
local_score += matrix[*querySeq][*dbSeq];
if (patternSearch->inputPatternMasked[patternPosQuery] > allone) {
local_useful_score+= matrix[*querySeq][*dbSeq];
mul *= seedSearch->charMultiple[*querySeq];
}
}
patternPosQuery++;
patternPosDb++;
querySeq++;
dbSeq++;
}
else {
for (queryMatchOffset =0; patternSearch->inputPatternMasked[patternPosQuery] == allone
&& patternPosQuery <= endQueryMatch; patternPosQuery++, queryMatchOffset++) ;
for (dbMatchOffset = 0; patternSearch->inputPatternMasked[patternPosDb] == allone && patternPosDb <= endDbMatch; patternPosDb++, dbMatchOffset++) ;
if (queryMatchOffset == dbMatchOffset) {
do {
if (alignScript)
REP_
else
local_score+= matrix[*querySeq][*dbSeq];
querySeq++;
dbSeq++;
queryMatchOffset--;
} while (queryMatchOffset > 0);
}
else {
local_score += ALIGN_B(querySeq-1, dbSeq-1, queryMatchOffset, dbMatchOffset,
BAND_LOW, BAND_HIGH, matrix, gap_open, gap_extend, alignScript, data);
querySeq+=queryMatchOffset;
dbSeq+=dbMatchOffset;
}
}
}
if (!alignScript) {
*multiple = mul;
*useful_score = local_useful_score;
}
else
*tback = data->sapp;
if (alignScript)
MemFree(data);
return local_score;
}
/*print output for sequence seq starting at offset begin and
ending at offset end
called once for each match*/
void LIBCALL pat_output(Uint1 *seq, Int4 begin, Int4 end, patternSearchItems *patternSearch, ValNodePtr PNTR info_vnp)
{
Int4 startSeqMatch, endSeqMatch; /*positions in seq where
pattern match starts and ends*/
Int4 position; /*position of match*/
Int4 nextMatchStart; /*increment for start of next match*/
Int4 wordIndex; /*index over words in pattern*/
Int4 i; /*index over seq*/
Int4 placeIndex1, placeIndex2; /*indices over places in pattern*/
Int4 spacingArray[MAX_WORDS_IN_PATTERN]; /*number of characters of
sequence used across each variable-length region in pattern*/
Int4 numPlacesInWord[MAX_WORDS_IN_PATTERN]; /*number of places in each word
of the pattern*/
Char buffer[512];
ValNodeCopyStr(info_vnp, 0, "HI "); /*Fixed printing command here*/
if (patternSearch->flagPatternLength == ONE_WORD_PATTERN) {
get_pat(seq+begin, end-begin+1, &startSeqMatch, &endSeqMatch, patternSearch);
}
else
if (patternSearch->flagPatternLength == MULTI_WORD_PATTERN) {
get_patL(seq+begin, end-begin+1, &startSeqMatch, &endSeqMatch, patternSearch);
}
else {
get_patLL(seq+begin, end-begin+1, spacingArray, patternSearch);
for (wordIndex = 0; wordIndex < patternSearch->numWords; wordIndex++)
numPlacesInWord[wordIndex] = patternSearch->numPlacesInWord[wordIndex];
for (placeIndex1 = 0, wordIndex = 0; placeIndex1 < patternSearch->highestPlace; placeIndex1++) {
if (patternSearch->inputPatternMasked[placeIndex1] < 0) {
for (placeIndex2 = placeIndex1-1; placeIndex2 >=0; placeIndex2--)
if (patternSearch->inputPatternMasked[placeIndex2] != allone)
break;
numPlacesInWord[wordIndex++]-= placeIndex1-placeIndex2-1;
spacingArray[wordIndex] += placeIndex1-placeIndex2-1;
}
}
position = begin;
for (wordIndex = 0; wordIndex < patternSearch->numWords; wordIndex++) {
sprintf(buffer, "(%ld %ld)", (long) (1 + position), (long) (1 + position+numPlacesInWord[wordIndex]-1));
ValNodeCopyStr(info_vnp, 0, buffer);
position += numPlacesInWord[wordIndex]+spacingArray[wordIndex+1];
}
ValNodeCopyStr(info_vnp, 0, "\n");
return;
}
nextMatchStart = 0;
for (i = startSeqMatch; i <= endSeqMatch; ) {
if (patternSearch->inputPatternMasked[i] != allone) {
i++;
} else {
if (0 == nextMatchStart)
sprintf(buffer, "(%ld %ld) ", (long) (1 + begin+nextMatchStart), (long) (1+begin+i-1 - startSeqMatch));
else
sprintf(buffer, "(%ld %ld) ", (long) (1 +begin+nextMatchStart - startSeqMatch), (long) (1+begin+i-1 - startSeqMatch));
ValNodeCopyStr(info_vnp, 0, buffer);
for (; patternSearch->inputPatternMasked[i] == allone && i <= endSeqMatch; i++) ;
nextMatchStart = i;
}
}
if (nextMatchStart != i) { /*last match*/
sprintf(buffer, "(%ld %ld)\n", (long) (1+begin+nextMatchStart-startSeqMatch), (long) (1+begin+i-1 - startSeqMatch));
ValNodeCopyStr(info_vnp, 0, buffer);
} else {
ValNodeCopyStr(info_vnp, 0, "\n");
}
}
/*find the places where the pattern matches seq;
len is the length of seq
hitArray stores the results as pairs of positions in consecutive
entries
is_dna indicates whether seq is made of DNA or protein letters
twice the number of hits (length of hitArray filled in is returned
3 different methods are used depending on the length of the pattern*/
Int4 LIBCALL find_hits(Int4 *hitArray, Uint1Ptr seq, Int4 len, Boolean is_dna,
patternSearchItems * patternSearch)
{
if (patternSearch->flagPatternLength == ONE_WORD_PATTERN)
return find_hitsS_head(hitArray, seq, 0, len, is_dna, patternSearch);
if (patternSearch->flagPatternLength == MULTI_WORD_PATTERN)
return find_hitsL(hitArray, seq, len, patternSearch);
return find_hitsLL(hitArray, seq, len, is_dna, patternSearch);
}
#ifdef __cplusplus
}
#endif
|