1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
|
#!/usr/bin/env python3
"""Python module for using the NCrystal library for thermal neutron transport in crystals and other materials.
Please find more information about NCrystal at the website:
https://mctools.github.io/ncrystal/
In particular, a small example using the NCrystal python module can be found at:
https://github.com/mctools/ncrystal/blob/master/examples/ncrystal_example_py
A substantial effort went into developing NCrystal. If you use it for your work,
we would appreciate it if you would use the following reference in your work:
X.-X. Cai and T. Kittelmann, NCrystal: A library for thermal neutron
transport, Computer Physics Communications 246 (2020) 106851,
https://doi.org/10.1016/j.cpc.2019.07.015
For work benefitting from our inelastic physics, we furthermore request that you
additionally also use the following reference in your work:
X.-X. Cai, T. Kittelmann, et. al., "Rejection-based sampling of inelastic
neutron scattering", Journal of Computational Physics 380 (2019) 400-407,
https://doi.org/10.1016/j.jcp.2018.11.043
For detailed usage conditions and licensing of this open source project, see:
https://github.com/mctools/ncrystal/blob/master/NOTICE
https://github.com/mctools/ncrystal/blob/master/LICENSE
"""
################################################################################
## ##
## This file is part of NCrystal (see https://mctools.github.io/ncrystal/) ##
## ##
## Copyright 2015-2022 NCrystal developers ##
## ##
## Licensed under the Apache License, Version 2.0 (the "License"); ##
## you may not use this file except in compliance with the License. ##
## You may obtain a copy of the License at ##
## ##
## http://www.apache.org/licenses/LICENSE-2.0 ##
## ##
## Unless required by applicable law or agreed to in writing, software ##
## distributed under the License is distributed on an "AS IS" BASIS, ##
## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ##
## See the License for the specific language governing permissions and ##
## limitations under the License. ##
## ##
################################################################################
#NB: Synchronize meta-data below with fields in setup.py.in meta data:
__license__ = "Apache 2.0, http://www.apache.org/licenses/LICENSE-2.0"
__version__ = '3.4.1'
__status__ = "Production"
__author__ = "NCrystal developers (Thomas Kittelmann, Xiao Xiao Cai)"
__copyright__ = "Copyright 2015-2022 %s"%__author__
__maintainer__ = __author__
__email__ = "ncrystal-developers@cern.ch"
#Only put the few most important items in __all__, to prevent cluttering on
#wildcard imports. Specifically this is the exceptions, the most important API
#classes, the factory functions, and the constants:
__all__ = [ 'NCException','NCFileNotFound','NCDataLoadError','NCMissingInfo','NCCalcError',
'NCLogicError','NCBadInput','RCBase','TextData','Info','Process',
'Absorption','Scatter','AtomData','FileListEntry','createTextData',
'createInfo','createScatter','createScatterIndependentRNG','createAbsorption',
'constant_c','constant_dalton2kg','constant_dalton2eVc2','constant_avogadro',
'constant_boltzmann','const_neutron_mass_amu','constant_planck']
import sys
pyversion = sys.version_info[0:3]
_minpyversion=(3,6,0)
if pyversion < _minpyversion:
raise SystemExit('Unsupported python version %i.%i.%i detected (needs %i.%i.%i or later).'%(pyversion+_minpyversion))
import numbers
import pathlib
import os
import copy
import ctypes
import weakref
import enum
import json
import collections
###################################
#Convert cstr<->str:
def _str2cstr(s):
#converts any string (str,bytes,unicode,path) to bytes
if hasattr(s,'__fspath__'):
s=str(s)
try:
return s if isinstance(s,bytes) else s.encode('ascii')
except UnicodeEncodeError:
#Attempt with file-system encoding, in case of non-ASCII path names:
return s.encode(sys.getfilesystemencoding())
def _cstr2str(s):
#converts bytes object to str (unicode in py3, bytes in py2)
try:
return s if isinstance(s,str) else s.decode('ascii')
except UnicodeDecodeError:
return s.decode(sys.getfilesystemencoding())
###################################
#Same as NCRYSTAL_VERSION macro:
version_num = sum(int(i)*j for i,j in zip(__version__.split('.'),(1000000,1000,1)))
class NCException(RuntimeError):
"""Base class for all exceptions raised by NCrystal code"""
pass
class NCFileNotFound(NCException):
pass
class NCDataLoadError(NCException):
pass
class NCMissingInfo(NCException):
pass
class NCCalcError(NCException):
pass
class NCLogicError(NCException):
pass
class NCBadInput(NCException):
pass
#some constants (NB: Copied here from NCMath.hh - must keep synchronized!! Also,
#remember to include in __all__ list above):
constant_c = 299792458e10# speed of light in Aa/s
constant_dalton2kg = 1.660539040e-27# amu to kg
constant_dalton2eVc2 = 931494095.17# amu to eV/c^2
constant_avogadro = 6.022140857e23# mol^-1
constant_boltzmann = 8.6173303e-5# eV/K
const_neutron_mass_amu = 1.00866491588# [amu]
constant_planck = 4.135667662e-15 # [eV*s]
_kPi = 3.1415926535897932384626433832795028841971694
_k2Pi = 6.2831853071795864769252867665590057683943388
_k4Pidiv100 = 0.125663706143591729538505735331180115367886776
_k4PiSq = 39.4784176043574344753379639995046045412547976
standard_comp_types = ('coh_elas','incoh_elas','inelas','sans')#for client code checking all types of components.
def _find_nclib():
#If NCRYSTAL_LIB env var is set, we try that and only that:
override=os.environ.get('NCRYSTAL_LIB',None)
if override:
override = pathlib.Path(override)
if not override.exists() or override.is_dir():
raise NCFileNotFound('NCRYSTAL_LIB environment variable is set but does not point to an actual file.')
return override.absolute().resolve()
try:
if __name__ != '__main__':
#normal import
from . import _nclibpath
else:
#work if running as script:
sys.path.insert(0,str(pathlib.Path(__file__).absolute().parent))
import _nclibpath
sys.path.pop(0)
except ImportError:
raise NCFileNotFound('Autogenerated _nclibpath.py module not found (it should have been generated'
+' during installation). In this case you must set the environment variable'
+' NCRYSTAL_LIB to point at the compiled NCrystal library.')
_ = pathlib.Path(_nclibpath.liblocation)
if not _.is_absolute():
_ = (pathlib.Path(__file__).absolute().parent / _)
if not _.exists() or _.is_dir():
raise NCFileNotFound('Autogenerated _nclibpath.py module was found but no file exists in the indicated'
+' library location (%s). Either reinstall NCrystal or try to use the environment variable'%_
+' NCRYSTAL_LIB to point at the compiled NCrystal library.')
return _.resolve()
try:
import numpy as _np
except ImportError:
_np = None
def _ensure_numpy():
if not _np:
raise NCException("Numpy not available - array based functionality is unavailable")
_keepalive = []
def _np_linspace(start,stop,num=50):
"""linspace with reproducible endpoint value"""
_ensure_numpy()
assert num >= 2
l = _np.linspace(start,stop,num)
l[0] = start
l[-1] = stop
return l
def _np_geomspace(start,stop,num=50):
"""geomspace with reproducible endpoint value"""
_ensure_numpy()
assert num >= 2
l = _np.geomspace(start,stop,num)
l[0] = start
l[-1] = stop
return l
def _np_logspace(start,stop,num=50):
"""logspace with reproducible endpoint value"""
_ensure_numpy()
assert num >= 2
l = _np.logspace(start,stop,num)
l[0] = start
l[-1] = stop
return l
def _load(nclib_filename):
_nclib = ctypes.CDLL(nclib_filename)
_int,_intp,_uint,_uintp,_dbl,_dblp,_cstr,_voidp = (ctypes.c_int, ctypes.POINTER(ctypes.c_int),
ctypes.c_uint,ctypes.POINTER(ctypes.c_uint), ctypes.c_double,
ctypes.POINTER(ctypes.c_double), ctypes.c_char_p, ctypes.c_void_p)
_ulong = ctypes.c_ulong
_charptr = ctypes.POINTER(ctypes.c_char)
_cstrp = ctypes.POINTER(_cstr)
_cstrpp = ctypes.POINTER(_cstrp)
_dblpp = ctypes.POINTER(_dblp)
ndarray_to_dblp = lambda a : a.ctypes.data_as(_dblp)
ndarray_to_uintp = lambda a : a.ctypes.data_as(_uintp)
ndarray_to_intp = lambda a : a.ctypes.data_as(_intp)
def _create_numpy_double_array(n):
_ensure_numpy()
a=_np.empty(n,dtype=_dbl)
return a,ndarray_to_dblp(a)
def _create_numpy_unsigned_array(n):
_ensure_numpy()
a=_np.empty(n,dtype=_uint)
return a,ndarray_to_uintp(a)
def _create_numpy_int_array(n):
_ensure_numpy()
a=_np.empty(n,dtype=_int)
return a,ndarray_to_intp(a)
class ncrystal_info_t(ctypes.Structure):
_fields_ = [('internal', _voidp)]
class ncrystal_process_t(ctypes.Structure):
_fields_ = [('internal', _voidp)]
class ncrystal_scatter_t(ctypes.Structure):
_fields_ = [('internal', _voidp)]
class ncrystal_absorption_t(ctypes.Structure):
_fields_ = [('internal', _voidp)]
class ncrystal_atomdata_t(ctypes.Structure):
_fields_ = [('internal', _voidp)]
functions = {}
#Exceptions:
_errmap = {'FileNotFound':NCFileNotFound,
'DataLoadError':NCDataLoadError,
'MissingInfo':NCMissingInfo,
'CalcError':NCCalcError,
'LogicError':NCLogicError,
'BadInput':NCBadInput}
def _raise_err():
assert _ncerror()#checks there was an error
tm=(_cstr2str(_ncerror_type()),_cstr2str(_ncerror_msg()))
_ncerror_clear()
#TODO: Provide line number / file as well?
e=_errmap.get(tm[0],NCException)(tm[1])
e.message = tm[1]#to avoid warnings in py 2.6
raise e
#helper class for exporting the functions:
def _wrap(fct_name,restype,argtypes,take_ref = False, hide=False, error_check=True):
assert isinstance(argtypes,tuple)
raw=getattr(_nclib,fct_name)
raw.argtypes=argtypes
raw.restype=restype
if take_ref:
assert len(argtypes)==1
fct = lambda arg : raw(ctypes.byref(arg))
else:
fct = lambda *args : raw(*args)
if error_check:
#NB: we should read about return types in the ctypes tutorial. Apparently one
#can just set an error checking function as the restype.
raw_fct = fct
def fcte(*aaa):
r = raw_fct(*aaa)
if _ncerror():
_raise_err()
return r
fct=fcte
if not hide:
functions[fct_name] = fct
return fct
lib_version = _cstr2str(_wrap('ncrystal_version_str',_cstr,tuple(),hide=True,error_check=False)())
if lib_version != __version__:
raise RuntimeError("ERROR: Version mismatch detected between NCrystal python code (v%s)"
" and loaded binary"" library (v%s). Control which NCrystal library"
" to load with the NCRYSTAL_LIB env var."%(__version__,lib_version))
_wrap('ncrystal_sethaltonerror',_int,(_int,),hide=True,error_check=False)(False)
_wrap('ncrystal_setquietonerror',_int,(_int,),hide=True,error_check=False)(True)
_ncerror = _wrap('ncrystal_error',_int,tuple(),hide=True,error_check=False)
_ncerror_msg = _wrap('ncrystal_lasterror',_cstr,tuple(),hide=True,error_check=False)
_ncerror_type = _wrap('ncrystal_lasterrortype',_cstr,tuple(),hide=True,error_check=False)
_ncerror_clear = _wrap('ncrystal_clearerror',None,tuple(),hide=True,error_check=False)
_wrap('ncrystal_refcount',_int,(_voidp,),take_ref=True)
_wrap('ncrystal_valid',_int,(_voidp,),take_ref=True)
#NB: For ncrystal_unref we use take_ref=False, so RCBase.__del__ can cache
#the result of ctypes.byref(rawobj). This is needed since the ctypes module
#might have been unloaded before RCBase.__del__ is called:
_wrap('ncrystal_unref',None,(_voidp,),take_ref=False)
_wrap('ncrystal_cast_scat2proc',ncrystal_process_t,(ncrystal_scatter_t,))
_wrap('ncrystal_cast_abs2proc',ncrystal_process_t,(ncrystal_absorption_t,))
_wrap('ncrystal_dump',None,(ncrystal_info_t,))
_wrap('ncrystal_dump_verbose',None,(ncrystal_info_t,_uint))
_wrap('ncrystal_ekin2wl',_dbl,(_dbl,))
_wrap('ncrystal_wl2ekin',_dbl,(_dbl,))
_wrap('ncrystal_isnonoriented',_int,(ncrystal_process_t,))
_wrap('ncrystal_name',_cstr,(ncrystal_process_t,))
_wrap('ncrystal_debyetemp2msd',_dbl,(_dbl,_dbl,_dbl))
_wrap('ncrystal_msd2debyetemp',_dbl,(_dbl,_dbl,_dbl))
_wrap('ncrystal_create_atomdata_fromdb',ncrystal_atomdata_t,(_uint,_uint))
_wrap('ncrystal_create_atomdata_fromdbstr',ncrystal_atomdata_t,(_cstr,))
_raw_atomdb_getn = _wrap('ncrystal_atomdatadb_getnentries',_uint,tuple(), hide=True )
_raw_atomdb_getall = _wrap('ncrystal_atomdatadb_getallentries',_uint,(_uintp,_uintp), hide=True )
def atomdb_getall_za():
n = _raw_atomdb_getn()
zvals,zvalsptr = _create_numpy_unsigned_array(n)
avals,avalsptr = _create_numpy_unsigned_array(n)
_raw_atomdb_getall(zvalsptr,avalsptr)
za=_np.stack((zvals,avals)).T
return za
functions['atomdb_getall_za']=atomdb_getall_za
_wrap('ncrystal_info_natominfo',_uint,(ncrystal_info_t,))
_wrap('ncrystal_info_hasatommsd',_int,(ncrystal_info_t,))
_raw_info_getatominfo = _wrap('ncrystal_info_getatominfo',None,(ncrystal_info_t,_uint,_uintp,_uintp,_dblp,_dblp),hide=True)
def ncrystal_info_getatominfo(nfo,iatom):
atomidx,n,dt,msd=_uint(),_uint(),_dbl(),_dbl()
_raw_info_getatominfo(nfo,iatom,atomidx,n,dt,msd)
return (atomidx.value,n.value,dt.value,msd.value)
functions['ncrystal_info_getatominfo'] = ncrystal_info_getatominfo
_raw_info_getatompos = _wrap('ncrystal_info_getatompos',None,(ncrystal_info_t,_uint,_uint,_dblp,_dblp,_dblp),hide=True)
def ncrystal_info_getatompos(nfo,iatom,ipos):
x,y,z=_dbl(),_dbl(),_dbl()
_raw_info_getatompos(nfo,iatom,ipos,x,y,z)
return x.value, y.value, z.value
functions['ncrystal_info_getatompos'] = ncrystal_info_getatompos
for s in ('temperature','xsectabsorption','xsectfree','density','numberdensity','sld'):
_wrap('ncrystal_info_get%s'%s,_dbl,(ncrystal_info_t,))
_wrap('ncrystal_info_getstateofmatter',_int,( ncrystal_info_t,))
_raw_info_getstruct = _wrap('ncrystal_info_getstructure',_int,(ncrystal_info_t,_uintp,_dblp,_dblp,_dblp,_dblp,_dblp,_dblp,_dblp,_uintp))
def ncrystal_info_getstructure(nfo):
sg,natom=_uint(),_uint()
a,b,c,alpha,beta,gamma,vol = _dbl(),_dbl(),_dbl(),_dbl(),_dbl(),_dbl(),_dbl(),
if _raw_info_getstruct(nfo,sg,a,b,c,alpha,beta,gamma,vol,natom) == 0:
return {}
return dict(spacegroup=int(sg.value),a=a.value,b=b.value,c=c.value,alpha=alpha.value,
beta=beta.value,gamma=gamma.value,volume=vol.value,n_atoms=int(natom.value))
functions['ncrystal_info_getstructure'] = ncrystal_info_getstructure
_wrap('ncrystal_info_nphases',_int,(ncrystal_info_t,))
_wrap('ncrystal_info_getphase',ncrystal_info_t,(ncrystal_info_t,_int,_dblp))
_wrap('ncrystal_info_nhkl',_int,(ncrystal_info_t,))
_wrap('ncrystal_info_hkl_dlower',_dbl,(ncrystal_info_t,))
_wrap('ncrystal_info_hkl_dupper',_dbl,(ncrystal_info_t,))
_wrap('ncrystal_info_braggthreshold',_dbl,(ncrystal_info_t,))
_wrap('ncrystal_info_hklinfotype',_int,(ncrystal_info_t,))
_wrap('ncrystal_info_gethkl',None,(ncrystal_info_t,_int,_intp,_intp,_intp,_intp,_dblp,_dblp))
_wrap('ncrystal_info_dspacing_from_hkl',_dbl,(ncrystal_info_t,_int,_int,_int))
functions['ncrystal_info_gethkl_setuppars'] = lambda : (_int(),_int(),_int(),_int(),_dbl(),_dbl())
_raw_gethkl_allindices = _wrap('ncrystal_info_gethkl_allindices',None,(ncrystal_info_t,_int,_intp,_intp,_intp), hide=True )
def iter_hkllist(nfo,all_indices=False):
h,k,l,mult,dsp,fsq = _int(),_int(),_int(),_int(),_dbl(),_dbl()
nhkl = int(functions['ncrystal_info_nhkl'](nfo))
for idx in range(nhkl):
_rawfct['ncrystal_info_gethkl'](nfo,idx,h,k,l,mult,dsp,fsq)
if not all_indices:
yield h.value,k.value,l.value,mult.value,dsp.value,fsq.value
else:
nc_assert( mult.value % 2 == 0 )
n = mult.value // 2
hvals, hvalsptr = _create_numpy_int_array( n )
kvals, kvalsptr = _create_numpy_int_array( n )
lvals, lvalsptr = _create_numpy_int_array( n )
_raw_gethkl_allindices(nfo,idx,hvalsptr,kvalsptr,lvalsptr)
yield hvals,kvals,lvals,mult.value,dsp.value,fsq.value
functions['iter_hkllist']=iter_hkllist
_wrap('ncrystal_info_ndyninfo',_uint,(ncrystal_info_t,))
_raw_di_base = _wrap('ncrystal_dyninfo_base',None,(ncrystal_info_t,_uint,_dblp,_uintp,_dblp,_uintp),hide=True)
_raw_di_scatknl = _wrap('ncrystal_dyninfo_extract_scatknl',None,(ncrystal_info_t,_uint,_uint,_dblp,_uintp,_uintp,_uintp,
_dblpp,_dblpp,_dblpp,_dblpp),hide=True)
_raw_di_vdos = _wrap('ncrystal_dyninfo_extract_vdos',None,(ncrystal_info_t,_uint,_dblp,_dblp,_uintp,_dblpp),hide=True)
_raw_di_vdosdebye = _wrap('ncrystal_dyninfo_extract_vdosdebye',None,(ncrystal_info_t,_uint,_dblp),hide=True)
_raw_di_vdos_input = _wrap('ncrystal_dyninfo_extract_vdos_input',None,(ncrystal_info_t,_uint,_uintp,_dblpp,_uintp,_dblpp),hide=True)
def ncrystal_dyninfo_base(key):
infoobj,dynidx = key
fr,tt,atomindex,ditype=_dbl(),_dbl(),_uint(),_uint()
_raw_di_base(infoobj,dynidx,fr,atomindex,tt,ditype)
return (fr.value,tt.value,atomindex.value,ditype.value)
def ncrystal_dyninfo_extract_scatknl(key,vdoslux):
infoobj,dynidx = key
sugEmax,ne,na,nb,e,a,b,sab = _dbl(),_uint(),_uint(),_uint(),_dblp(),_dblp(),_dblp(),_dblp()
_raw_di_scatknl(infoobj,dynidx,vdoslux,sugEmax,ne,na,nb,
ctypes.byref(e),ctypes.byref(a),ctypes.byref(b),ctypes.byref(sab))
return (sugEmax.value,ne.value,na.value,nb.value,e,a,b,sab)
def ncrystal_dyninfo_extract_vdos(key):
infoobj,dynidx = key
egrid_min,egrid_max,ndensity,densityptr = _dbl(),_dbl(),_uint(),_dblp()
_raw_di_vdos(infoobj,dynidx,egrid_min,egrid_max,ndensity,ctypes.byref(densityptr))
return (egrid_min.value,egrid_max.value,ndensity.value,densityptr)
def ncrystal_dyninfo_extract_vdosdebye(key):
infoobj,dynidx = key
td=_dbl()
_raw_di_vdosdebye(infoobj,dynidx,td)
return td.value
def ncrystal_dyninfo_extract_vdos_input(key):
infoobj,dynidx = key
negrid,egridptr,ndensity,densityptr = _uint(),_dblp(),_uint(),_dblp()
_raw_di_vdos_input(infoobj,dynidx,negrid,ctypes.byref(egridptr),ndensity,ctypes.byref(densityptr))
return (negrid.value,egridptr,ndensity.value,densityptr)
functions['ncrystal_dyninfo_base'] = ncrystal_dyninfo_base
functions['ncrystal_dyninfo_extract_scatknl'] = ncrystal_dyninfo_extract_scatknl
functions['ncrystal_dyninfo_extract_vdos'] = ncrystal_dyninfo_extract_vdos
functions['ncrystal_dyninfo_extract_vdosdebye'] = ncrystal_dyninfo_extract_vdosdebye
functions['ncrystal_dyninfo_extract_vdos_input'] = ncrystal_dyninfo_extract_vdos_input
_raw_vdoseval = _wrap('ncrystal_vdoseval',None,(_dbl,_dbl,_uint,_dblp,_dbl,_dbl,_dblp,_dblp,_dblp,_dblp,_dblp),hide=True)
def nc_vdoseval(emin,emax,density,temp,mass_amu):
msd,dt,g0,teff,oint=_dbl(),_dbl(),_dbl(),_dbl(),_dbl()
_raw_vdoseval(emin,emax,len(density),ndarray_to_dblp(density),temp,mass_amu,
msd,dt,g0,teff,oint)
return dict(msd=msd.value,debye_temp=dt.value,gamma0=g0.value,teff=teff.value,integral=oint.value)
functions['nc_vdoseval']=nc_vdoseval
_wrap('ncrystal_info_ncomponents',_uint,(ncrystal_info_t,))
_raw_info_getcomp=_wrap('ncrystal_info_getcomponent',None,(ncrystal_info_t,_uint,_uintp,_dblp),hide=True)
def ncrystal_info_getcomp(nfo,icomp):
aidx,fraction=_uint(),_dbl()
_raw_info_getcomp(nfo,icomp,aidx,fraction)
return aidx.value,fraction.value
functions['ncrystal_info_getcomp']=ncrystal_info_getcomp
_NEP_FCTTYPE = ctypes.CFUNCTYPE( _uint,_uint,_uintp,_dblp )# -> unsigned (*natelemprovider)(unsigned,unsigned*,double*)
_raw_info_getflatcompos = _wrap('ncrystal_get_flatcompos',_charptr,(ncrystal_info_t,_int,_NEP_FCTTYPE),hide=True)
def nc_info_getflatcompos( nfo, natelemprovider = None, prefernatelem = True ):
_prefnatelem = _int(1 if prefernatelem else 0)
if not natelemprovider:
_nullfct = ctypes.cast(None, _NEP_FCTTYPE)
raw_str = _raw_info_getflatcompos(nfo,_prefnatelem,_nullfct)
else:
#natelemprovider is function which takes integer Z and returns a list
#[(A,fraction),...]. Create a wrapper compatible with _NEP_FCTTYPE:
#unsigned (*natelemprovider)(unsigned,unsigned*,double*)
def nep_wrap(Z,bufA,bufFrac):
_ = natelemprovider(Z)
if not _:
#returned None or [], i.e. there is no info about the
#element:
return 0
assert len(_) < 128
for i,(A,f) in enumerate(_):
bufA[i] = A
bufFrac[i] = f
return len(_)
_c_nep_wrap = _NEP_FCTTYPE(nep_wrap)
raw_str = _raw_info_getflatcompos(nfo,_prefnatelem,_c_nep_wrap)
if raw_str is None:
return 'null'#None in json
res=_cstr2str(ctypes.cast(raw_str,_cstr).value)
_raw_deallocstr(raw_str)
return res
functions['nc_info_getflatcompos']=nc_info_getflatcompos
_wrap('ncrystal_create_atomdata',ncrystal_atomdata_t,(ncrystal_info_t,_uint))
_raw_atomdata_subcomp = _wrap('ncrystal_create_atomdata_subcomp',ncrystal_atomdata_t,
(ncrystal_atomdata_t,_uint,_dblp),hide=True)
_raw_atomdata_getfields=_wrap('ncrystal_atomdata_getfields',None,(ncrystal_atomdata_t,_cstrp,_cstrp,
_dblp,_dblp,_dblp,_dblp,
_uintp,_uintp,_uintp),hide=True)
_wrap('ncrystal_create_component_atomdata',ncrystal_atomdata_t,(ncrystal_info_t,_uint))
def ncrystal_atomdata_createsubcomp(ad,icomp):
fraction = _dbl()
comp_ad = _raw_atomdata_subcomp(ad,icomp,fraction)
return (comp_ad,fraction.value)
functions['ncrystal_atomdata_createsubcomp']=ncrystal_atomdata_createsubcomp
def ncrystal_atomdata_getfields(ad):
mass_amu,sigma_inc,scatlen_coh,sigma_abs=_dbl(),_dbl(),_dbl(),_dbl()
dl,descr=_cstr(),_cstr()
ncomp,zval,aval = _uint(),_uint(),_uint()
_raw_atomdata_getfields(ad,ctypes.byref(dl),ctypes.byref(descr),
mass_amu,sigma_inc,scatlen_coh,sigma_abs,
ncomp,zval,aval)
return dict(m=mass_amu.value,incxs=sigma_inc.value,cohsl_fm=scatlen_coh.value,absxs=sigma_abs.value,
dl=_cstr2str(dl.value),descr=_cstr2str(descr.value),
ncomp=ncomp.value,z=zval.value,a=aval.value)
functions['ncrystal_atomdata_getfields'] = ncrystal_atomdata_getfields
_raw_ncustom = _wrap('ncrystal_info_ncustomsections',_uint,(ncrystal_info_t,),hide=True)
_raw_csec_name = _wrap('ncrystal_info_customsec_name',_cstr,(ncrystal_info_t,_uint),hide=True)
_raw_csec_nlines = _wrap('ncrystal_info_customsec_nlines',_uint,(ncrystal_info_t,_uint),hide=True)
_raw_csec_nparts = _wrap('ncrystal_info_customline_nparts',_uint,(ncrystal_info_t,_uint,_uint),hide=True)
_raw_csec_part = _wrap('ncrystal_info_customline_getpart',_cstr,(ncrystal_info_t,_uint,_uint,_uint),hide=True)
def ncrystal_info_getcustomsections(nfo):
n=_raw_ncustom(nfo)
if n==0:
return tuple()
out=[]
for isec in range(n):
lines=[]
secname = _cstr2str(_raw_csec_name(nfo,isec))
nlines = _raw_csec_nlines(nfo,isec)
for iline in range(nlines):
nparts=_raw_csec_nparts(nfo,isec,iline)
parts=[]
for ipart in range(nparts):
parts.append(_cstr2str(_raw_csec_part(nfo,isec,iline,ipart)))
lines.append(tuple(parts))
out.append((secname,tuple(lines)))
return tuple(out)
functions['ncrystal_info_getcustomsections'] = ncrystal_info_getcustomsections
_raw_reginmemfd = _wrap('ncrystal_register_in_mem_file_data',None,(_cstr,_cstr),hide=True)
def ncrystal_register_in_mem_file_data(virtual_filename,data):
_raw_reginmemfd(_str2cstr(virtual_filename),
_str2cstr(data))
functions['ncrystal_register_in_mem_file_data']=ncrystal_register_in_mem_file_data
def _prepare_many(ekin,repeat):
if _np is None and not repeat is None:
raise NCBadInput('Can not use "repeat" parameter when Numpy is absent on the system')
if repeat is None and not hasattr(ekin,'__len__'):
return None#scalar case, array interface not triggered
repeat = 1 if repeat is None else repeat
ekin = (ekin if hasattr(ekin,'ctypes') else _np.asfarray(ekin) ) if hasattr(ekin,'__len__') else _np.ones(1)*ekin
#NB: returning the ekin object itself is important in order to keep a reference to it after the call:
return ndarray_to_dblp(ekin),len(ekin),repeat,ekin
_raw_xs_no = _wrap('ncrystal_crosssection_nonoriented',None,(ncrystal_process_t,_dbl,_dblp),hide=True)
_raw_xs_no_many = _wrap('ncrystal_crosssection_nonoriented_many',None,(ncrystal_process_t,_dblp,_ulong,
_ulong,_dblp),hide=True)
def ncrystal_crosssection_nonoriented(scat,ekin,repeat=None):
many = _prepare_many(ekin,repeat)
if many is None:
res = _dbl()
_raw_xs_no(scat,ekin,res)
return res.value
else:
ekin_ct,n_ekin,repeat,ekin_nparr = many
xs, xs_ct = _create_numpy_double_array(n_ekin*repeat)
_raw_xs_no_many(scat,ekin_ct,n_ekin,repeat,xs_ct)
return xs
functions['ncrystal_crosssection_nonoriented'] = ncrystal_crosssection_nonoriented
_raw_domain = _wrap('ncrystal_domain',None,(ncrystal_process_t,_dblp,_dblp),hide=True)
def ncrystal_domain(proc):
a,b = _dbl(),_dbl()
_raw_domain(proc,a,b)
return (a.value,b.value)
functions['ncrystal_domain'] = ncrystal_domain
_raw_samplesct_iso =_wrap('ncrystal_samplescatterisotropic',None,(ncrystal_scatter_t,_dbl,_dblp,_dblp),hide=True)
_raw_samplesct_iso_many =_wrap('ncrystal_samplescatterisotropic_many',None,
(ncrystal_scatter_t,_dblp,_ulong,_ulong,_dblp,_dblp),hide=True)
_raw_samplescat = _wrap('ncrystal_samplescatter',None,( ncrystal_scatter_t, _dbl,_dbl*3,_dblp,_dbl*3),hide=True)
_raw_samplescat_many = _wrap('ncrystal_samplescatter_many',None,( ncrystal_scatter_t,_dbl,_dbl*3,_ulong,
_dblp,_dblp,_dblp,_dblp),hide=True)
def ncrystal_samplesct_iso(scat,ekin,repeat=None):
many = _prepare_many(ekin,repeat)
if many is None:
ekin_final,mu = _dbl(),_dbl()
_raw_samplesct_iso(scat,ekin,ekin_final,mu)
return ekin_final.value,mu.value
else:
ekin_ct,n_ekin,repeat,ekin_nparr = many
ekin_final, ekin_final_ct = _create_numpy_double_array(n_ekin*repeat)
mu, mu_ct = _create_numpy_double_array(n_ekin*repeat)
_raw_samplesct_iso_many(scat,ekin_ct,n_ekin,repeat,ekin_final_ct,mu_ct)
return ekin_final,mu
functions['ncrystal_samplesct_iso'] = ncrystal_samplesct_iso
def ncrystal_samplesct(scat, ekin, direction, repeat):
cdir = (_dbl * 3)(*direction)
if not repeat:
res_dir = (_dbl * 3)(0,0,0)
res_ekin = _dbl()
_raw_samplescat(scat,ekin,cdir,res_ekin,res_dir)
return res_ekin.value,(res_dir[0],res_dir[1],res_dir[2])
else:
assert repeat>=1
res_ekin, res_ekin_ct = _create_numpy_double_array(repeat)
res_ux, res_ux_ct = _create_numpy_double_array(repeat)
res_uy, res_uy_ct = _create_numpy_double_array(repeat)
res_uz, res_uz_ct = _create_numpy_double_array(repeat)
_raw_samplescat_many(scat,ekin,cdir,repeat,res_ekin_ct,res_ux_ct,res_uy_ct,res_uz_ct)
return res_ekin,(res_ux,res_uy,res_uz)
functions['ncrystal_samplesct']=ncrystal_samplesct
_raw_xs = _wrap('ncrystal_crosssection',None,(ncrystal_process_t,_dbl,_dbl*3,_dblp),hide=True)
def ncrystal_crosssection( proc, ekin, direction):
res = _dbl()
cdir = (_dbl * 3)(*direction)
if hasattr(ekin,'__len__'):
#Todo: this vectorises on the Python side which is slow!
_ensure_numpy()
def e2xs(e):
_raw_xs(proc,e,cdir,res)
return res.value
return _np.vectorize(e2xs)(ekin)
else:
_raw_xs(proc,ekin,cdir,res)
return res.value
functions['ncrystal_crosssection'] = ncrystal_crosssection
#Obsolete:
_raw_gs_no = _wrap('ncrystal_genscatter_nonoriented',None,(ncrystal_scatter_t,_dbl,_dblp,_dblp),hide=True)
_raw_gs_no_many = _wrap('ncrystal_genscatter_nonoriented_many',None,(ncrystal_scatter_t,_dblp,_ulong,
_ulong,_dblp,_dblp),hide=True)
def ncrystal_genscatter_nonoriented(scat,ekin,repeat=None):
many = _prepare_many(ekin,repeat)
if many is None:
angle,de = _dbl(),_dbl()
_raw_gs_no(scat,ekin,angle,de)
return angle.value,de.value
else:
ekin_ct,n_ekin,repeat,ekin_nparr = many
angle, angle_ct = _create_numpy_double_array(n_ekin*repeat)
de, de_ct = _create_numpy_double_array(n_ekin*repeat)
_raw_gs_no_many(scat,ekin_ct,n_ekin,repeat,angle_ct,de_ct)
return angle,de
functions['ncrystal_genscatter_nonoriented'] = ncrystal_genscatter_nonoriented
_raw_gs = _wrap('ncrystal_genscatter',None,(ncrystal_scatter_t,_dbl,_dbl*3,_dbl*3,_dblp),hide=True)
_raw_gs_many = _wrap('ncrystal_genscatter_many',None,(ncrystal_scatter_t,_dbl,_dbl*3,
_ulong,_dblp,_dblp,_dblp,_dblp),hide=True)
def ncrystal_genscatter(scat, ekin, direction, repeat):
cdir = (_dbl * 3)(*direction)
if not repeat:
res_dir = (_dbl * 3)(0,0,0)
res_de = _dbl()
_raw_gs(scat,ekin,cdir,res_dir,res_de)
return (res_dir[0],res_dir[1],res_dir[2]),res_de.value
else:
assert repeat>=1
res_ux, res_ux_ct = _create_numpy_double_array(repeat)
res_uy, res_uy_ct = _create_numpy_double_array(repeat)
res_uz, res_uz_ct = _create_numpy_double_array(repeat)
res_de, res_de_ct = _create_numpy_double_array(repeat)
_raw_gs_many(scat,ekin,cdir,repeat,res_ux_ct,res_uy_ct,res_uz_ct,res_de_ct)
return (res_ux,res_uy,res_uz),res_de
functions['ncrystal_genscatter']=ncrystal_genscatter
_wrap('ncrystal_create_info',ncrystal_info_t,(_cstr,))
_wrap('ncrystal_create_scatter',ncrystal_scatter_t,(_cstr,))
_wrap('ncrystal_create_scatter_builtinrng',ncrystal_scatter_t,(_cstr,_ulong))
_wrap('ncrystal_create_absorption',ncrystal_absorption_t,(_cstr,))
_raw_multicreate_direct = _wrap('ncrystal_multicreate_direct',None,
( _cstr, _cstr, _cstr,
ctypes.POINTER(ncrystal_info_t),
ctypes.POINTER(ncrystal_scatter_t),
ctypes.POINTER(ncrystal_absorption_t) ),hide=True)
nullptr_ncrystal_info_t = ctypes.cast(None, ctypes.POINTER(ncrystal_info_t))
nullptr_ncrystal_scatter_t = ctypes.cast(None, ctypes.POINTER(ncrystal_scatter_t))
nullptr_ncrystal_absorption_t = ctypes.cast(None, ctypes.POINTER(ncrystal_absorption_t))
def multicreate_direct(data,dataType,cfg_params,doI,doS,doA):
rawi = ncrystal_info_t() if doI else None
raws = ncrystal_scatter_t() if doS else None
rawa = ncrystal_absorption_t() if doA else None
_raw_multicreate_direct( _str2cstr(data),_str2cstr(dataType or "" ),_str2cstr(cfg_params or ""),
ctypes.byref(rawi) if rawi else nullptr_ncrystal_info_t,
ctypes.byref(raws) if raws else nullptr_ncrystal_scatter_t,
ctypes.byref(rawa) if rawa else nullptr_ncrystal_absorption_t )
return rawi,raws,rawa
functions['multicreate_direct'] = multicreate_direct
_wrap('ncrystal_setbuiltinrandgen',None,tuple())
_RANDGENFCTTYPE = ctypes.CFUNCTYPE( _dbl )
_raw_setrand = _wrap('ncrystal_setrandgen',None,(_RANDGENFCTTYPE,),hide=True)
def ncrystal_setrandgen(randfct):
#Set random function, keeping references as needed (otherwise fct ptrs
#kept on C++ side will suddenly stop working!) and casting None to a null-ptr.
if not randfct:
keepalive=(None,ctypes.cast(None, _RANDGENFCTTYPE))
else:
keepalive=(randfct,_RANDGENFCTTYPE(randfct))#keep refs!
_keepalive.append(keepalive)
_raw_setrand(keepalive[1])
functions['ncrystal_setrandgen'] = ncrystal_setrandgen
_wrap('ncrystal_clone_absorption',ncrystal_absorption_t,(ncrystal_absorption_t,))
_wrap('ncrystal_clone_scatter',ncrystal_scatter_t,(ncrystal_scatter_t,))
_wrap('ncrystal_clone_scatter_rngbyidx',ncrystal_scatter_t,(ncrystal_scatter_t,_ulong))
_wrap('ncrystal_clone_scatter_rngforcurrentthread',ncrystal_scatter_t,(ncrystal_scatter_t,))
_wrap('ncrystal_decodecfg_vdoslux',_uint,(_cstr,))
_wrap('ncrystal_has_factory',_int,(_cstr,))
_wrap('ncrystal_clear_caches',None,tuple())
_wrap('ncrystal_rngsupportsstatemanip_ofscatter',_int,( ncrystal_scatter_t, ))
_wrap('ncrystal_setrngstate_ofscatter',None,(ncrystal_scatter_t, _cstr))
_raw_getrngstate_scat = _wrap('ncrystal_getrngstate_ofscatter',_charptr,( ncrystal_scatter_t,),hide=True)
def nc_getrngstate_scat(rawscatobj):
rawstate = _raw_getrngstate_scat(rawscatobj)
if not rawstate:
#null ptr, i.e. state manipulation is not supported
return None
state=_cstr2str(ctypes.cast(rawstate,_cstr).value)
_raw_deallocstr(rawstate)
return state
functions['nc_getrngstate_scat']=nc_getrngstate_scat
def _decode_and_dealloc_raw_str(raw_cstr):
if not raw_cstr:
return None
res=_cstr2str(ctypes.cast(raw_cstr,_cstr).value)
_raw_deallocstr(raw_cstr)
return res
_raw_dbg_process = _wrap('ncrystal_dbg_process',_charptr,(ncrystal_process_t,),hide=True)
def nc_dbg_proc(rawprocobj):
return json.loads( _decode_and_dealloc_raw_str( _raw_dbg_process( rawprocobj ) ) )
functions['nc_dbg_proc']=nc_dbg_proc
_raw_decodecfg_json = _wrap('ncrystal_decodecfg_json',_charptr,(_cstr,),hide=True)
def nc_cfgstr2json(cfgstr):
return _decode_and_dealloc_raw_str( _raw_decodecfg_json(_str2cstr(cfgstr) ) )
functions['nc_cfgstr2json']=nc_cfgstr2json
_raw_ncmat2json = _wrap('ncrystal_ncmat2json',_charptr,(_cstr,),hide=True)
def nc_ncmat2json(tdname):
return _decode_and_dealloc_raw_str( _raw_ncmat2json(_str2cstr(tdname) ) )
functions['nc_ncmat2json']=nc_ncmat2json
raw_proc_uid = _wrap('ncrystal_process_uid',_charptr,(ncrystal_process_t,),hide=True)
functions['procuid'] = lambda rawproc : int(_decode_and_dealloc_raw_str(raw_proc_uid(rawproc)))
raw_info_uid = _wrap('ncrystal_info_uid',_charptr,(ncrystal_info_t,),hide=True)
functions['infouid'] = lambda rawinfo : int(_decode_and_dealloc_raw_str(raw_info_uid(rawinfo)))
raw_info_underlyinguid = _wrap('ncrystal_info_underlyinguid',_charptr,(ncrystal_info_t,),hide=True)
functions['infouid_underlying'] = lambda rawinfo : int(_decode_and_dealloc_raw_str(raw_info_underlyinguid(rawinfo)))
_raw_normcfgstr = _wrap('ncrystal_normalisecfg',_charptr,(_cstr,),hide=True)
def nc_normcfgstr(cfgstr):
raw_str = _raw_normcfgstr(_str2cstr(cfgstr))
if not raw_str:
return None
res=_cstr2str(ctypes.cast(raw_str,_cstr).value)
_raw_deallocstr(raw_str)
return res
functions['nc_normcfgstr']=nc_normcfgstr
_raw_gencfgdoc = _wrap('ncrystal_gencfgstr_doc',_charptr,(_int,),hide=True)
def nc_gencfgdoc(mode):
raw_str = _raw_gencfgdoc(mode)
if not raw_str:
return None
res=_cstr2str(ctypes.cast(raw_str,_cstr).value)
_raw_deallocstr(raw_str)
return res
functions['nc_gencfgdoc']=nc_gencfgdoc
_raw_gettextdata = _wrap('ncrystal_get_text_data',_cstrp,(_cstr,),hide=True)
_raw_deallocstr = _wrap('ncrystal_dealloc_string',None,(_charptr,),hide=True)
def nc_gettextdata(name):
l = _raw_gettextdata(_str2cstr(str(name)))
assert l is not None
n = 5
res = [l[i].decode() for i in range(n)]
assert isinstance(res[0],str)
_raw_deallocstrlist(n,l)
return res
functions['nc_gettextdata'] = nc_gettextdata
_raw_getfilelist = _wrap('ncrystal_get_file_list',None,(_uintp,_cstrpp),hide=True)
_raw_deallocstrlist = _wrap('ncrystal_dealloc_stringlist',None,(_uint,_cstrp),hide=True)
def ncrystal_get_filelist():
n,l = _uint(),_cstrp()
_raw_getfilelist(n,ctypes.byref(l))
assert n.value%4==0
res=[]
for i in range(n.value//4):
res += [ (l[i*4].decode(),l[i*4+1].decode(),l[i*4+2].decode(),l[i*4+3].decode()) ]
_raw_deallocstrlist(n,l)
return res
functions['ncrystal_get_filelist'] = ncrystal_get_filelist
_raw_getpluginlist = _wrap('ncrystal_get_plugin_list',None,(_uintp,_cstrpp),hide=True)
def ncrystal_get_pluginlist():
n,l = _uint(),_cstrp()
_raw_getpluginlist(n,ctypes.byref(l))
assert n.value%3==0
res=[]
for i in range(n.value//3):
pluginname,filename,plugintype=l[i*3].decode(),l[i*3+1].decode(),l[i*3+2].decode()
res+=[(pluginname,filename,plugintype)]
_raw_deallocstrlist(n,l)
return res
functions['ncrystal_get_pluginlist'] = ncrystal_get_pluginlist
_wrap('ncrystal_add_custom_search_dir',None,(_cstr,))
_wrap('ncrystal_remove_custom_search_dirs',None,tuple())
_wrap('ncrystal_enable_abspaths',None,(_int,))
_wrap('ncrystal_enable_relpaths',None,(_int,))
_wrap('ncrystal_enable_stddatalib',None,(_int,_cstr))
_wrap('ncrystal_enable_stdsearchpath',None,(_int,))
_wrap('ncrystal_remove_all_data_sources',None,tuple())
return functions
_rawfct = _load(_find_nclib())
def decodecfg_packfact(cfgstr):
"""OBSOLETE FUNCTION (always returns 1.0 now)."""
return 1.0
def decodecfg_vdoslux(cfgstr):
"""Extract vdoslux value from cfgstr"""
return int(_rawfct['ncrystal_decodecfg_vdoslux'](_str2cstr(cfgstr)))
def createVDOSDebye(debye_temperature):
"""Create simplified VDOS according to the Debye model"""
_ensure_numpy()
#NB: Must keep function exactly synchronised with createVDOSDebye function
#in .cc src (although leaving out temperature,boundXS,elementMassAMU args
#here):
debye_energy = constant_boltzmann*debye_temperature
vdos_egrid = _np_linspace(0.5*debye_energy,debye_energy,20)
scale = 1.0 / (debye_energy*debye_energy)
vdos_density = scale * (vdos_egrid**2)
#Actual returned egrid should contain only first and last value:
return (_np.asarray([vdos_egrid[0],vdos_egrid[-1]]) ,vdos_density)
class RCBase:
"""Base class for all NCrystal objects"""
def __init__(self, rawobj):
"""internal usage only"""
self._rawobj = rawobj
#do not ref here, since ncrystal_create_xxx functions in C-interface already did so.
self._rawunref = _rawfct['ncrystal_unref']#keep fct reference
self.__rawobj_byref = ctypes.byref(rawobj)#keep byref(rawobj), since ctypes might
#disappear before __del__ is called.
def __del__(self):
if hasattr(self,'_rawunref') and self._rawunref:
self._rawunref(self.__rawobj_byref)
def refCount(self):
"""Access reference count of wrapped C++ object"""
return _rawfct['ncrystal_refcount'](self._rawobj)
def nc_assert(b,msg=""):
"""Assertion which throws NCLogicError on failure"""
if not bool(b):
raise NCLogicError(msg if msg else 'assertion failed')
class AtomData(RCBase):
"""Class providing physical constants related to a particular mix of
isotopes. This can be used to represent elements (i.e. all isotopes having
same Z) in either natural or enriched form, but can also be used to
represent atoms in doped crystals. E.g. if a small fraction (0.1%) of
Cr-ions replace some Al-ions in a Al2O3 lattice, the AtomData could
represent a mix of 0.1% Cr and 99.9% Al.
"""
def __init__(self,rawobj):
"""internal usage only"""
super(AtomData, self).__init__(rawobj)
f=_rawfct['ncrystal_atomdata_getfields'](rawobj)
self.__m = f['m']
self.__incxs = f['incxs']
self.__cohsl_fm = f['cohsl_fm']
self.__absxs = f['absxs']
self.__dl = f['dl']
self.__descr = f['descr']
self.__ncomp = f['ncomp']
self.__z = f['z']
self.__a = f['a']
self.__b2f = (self.__m/(self.__m+const_neutron_mass_amu))**2
self.__comp = [None]*self.__ncomp
self.__compalldone = (self.__ncomp==0)
def averageMassAMU(self):
"""Atomic mass in Daltons (averaged appropriately over constituents)"""
return self.__m
def coherentScatLen(self):
"""Coherent scattering length in sqrt(barn)=10fm"""
return self.__cohsl_fm*0.1#0.1 is fm/sqrt(barn)
def coherentScatLenFM(self):
"""Coherent scattering length in fm"""
return self.__cohsl_fm
def coherentXS(self):
"""Bound coherent cross section in barn. Same as 4*pi*coherentScatLen()**2"""
return _k4Pidiv100*self.__cohsl_fm**2
def incoherentXS(self):
"""Bound incoherent cross section in barn"""
return self.__incxs
def scatteringXS(self):
"""Bound scattering cross section in barn (same as coherentXS()+incoherentXS())"""
return self.__incxs+self.coherentXS()
def captureXS(self):
"""Absorption cross section in barn"""
return self.__absxs
def freeScatteringXS(self):
"""Free scattering cross section in barn (same as freeCoherentXS()+freeIncoherentXS())"""
return self.__b2f * self.scatteringXS()
def freeCoherentXS(self):
"""Free coherent cross section in barn."""
return self.__b2f * self.coherentXS()
def freeIncoherentXS(self):
"""Free incoherent cross section in barn."""
return self.__b2f * self.incoherentXS()
def isNaturalElement(self):
"""Natural element with no composition."""
return self.__z!=0 and self.__ncomp==0 and self.__a==0
def isSingleIsotope(self):
"""Single isotope with no composition."""
return self.__a!=0
def isComposite(self):
"""Composite definition. See nComponents(), getComponent() and components property"""
return self.__ncomp!=0
def isElement(self):
"""If number of protons per nuclei is well defined. This is true for natural
elements, single isotopes, and composites where all components
have the same number of protons per nuclei."""
return self.__z!=0
def Z(self):
"""Number of protons per nuclei (0 if not well defined)."""
return self.__z
def elementName(self):
"""If Z()!=0, this returns the corresponding element name ('H', 'He', ...).
Returns empty string when Z() is 0."""
if not self.__z:
return ''
#NB: We are relying on natural elements to return their element names in
#description(false). This is promised by a comment in NCAtomData.hh!
if self.isNaturalElement():
return self.__descr
return atomDB(self.__z).description(False)
def A(self):
"""Number of nucleons per nuclei (0 if not well defined or natural element)."""
return self.__a
class Component:
def __init__(self,fr,ad):
"""internal usage only"""
self.__fr = fr
self.__ad = ad
assert not ad.isTopLevel()
@property
def fraction(self):
"""Fraction (by count) of component in mixture"""
return self.__fr
@property
def data(self):
"""AtomData of component"""
return self.__ad
def __str__(self):
return '%g*AtomData(%s)'%(self.__fr,self.__ad.description(True))
def nComponents(self):
"""Number of sub-components in a mixture"""
return self.__ncomp
def getComponent(self,icomponent):
"""Get component in a mixture"""
c=self.__comp[icomponent]
if c:
return c
rawobj_subc,fraction=_rawfct['ncrystal_atomdata_createsubcomp'](self._rawobj,icomponent)
ad = AtomData(rawobj_subc)
c = AtomData.Component(fraction,ad)
self.__comp[icomponent] = c
return c
def getAllComponents(self):
"""Get list of all components"""
if self.__compalldone:
return self.__comp
for i,c in enumerate(self.__comp):
if not c:
self.getComponent(i)
self.__compalldone=True
return self.__comp
components = property(getAllComponents)
def displayLabel(self):
"""Short label which unique identifies an atom role within a particular material."""
return self.__dl
def isTopLevel(self):
"""Whether or not AtomData appears directly on an Info object. If not,
it will most likely either be a component (direct or indirect) of a top
level AtomData object, or be taken from the composition list of a
multi-phase object.
"""
return bool(self.__dl)
def description(self,includeValues=True):
"""Returns description of material as a string, with or without values."""
if includeValues:
zstr=' Z=%i'%self.__z if self.__z else ''
astr=' A=%i'%self.__a if self.__a else ''
_=(self.__descr,self.__cohsl_fm,self.coherentXS(),self.__incxs,
self.__absxs,self.__m,zstr,astr)
return'%s(cohSL=%gfm cohXS=%gbarn incXS=%gbarn absXS=%gbarn mass=%gamu%s%s)'%_
return self.__descr
def __str__(self):
descr=self.description()
return '%s=%s'%(self.__dl,descr) if self.__dl else descr
class StateOfMatter(enum.Enum):
"""State of matter. Note that Solid's might be either amorphous or crystalline."""
#NB: List here must be synchronized with list and values in NCInfo.hh:
Unknown = 0
Solid = 1
Gas = 2
Liquid = 3
class HKLInfoType(enum.Enum):
"""Describes the kind of information about plane normals and Miller (hkl)
indices available on each entry in the HKLList."""
#NB: List here must be synchronized with list and values in NCInfoTypes.hh:
SymEqvGroup = 0
ExplicitHKLs = 1
ExplicitNormals = 2
Minimal = 3
class Info(RCBase):
"""Class representing information about a given material.
Objects might represent either multi- or single phase
materials. Multi-phase objects contain a list of phases (which might
themselves be either single or multi-phase objects). Most other fields
(structure, hkl lists, dynamics, etc.) are single-phase specific and will
be unavailable on multiphase-phase objects. Exceptions are phase-structure
information (todo) which is only available on multi-phase objects, and
fields which are available for both multi- and single-phase objects such as
density, composition, temperature, and state of matter (where such are well
defined).
"""
def __init__(self, cfgstr):
"""create Info object based on cfg-string (same as using createInfo(cfgstr))"""
if isinstance(cfgstr,tuple) and len(cfgstr)==2 and cfgstr[0]=='_rawobj_':
#Already got an ncrystal_info_t object:
rawobj = cfgstr[1]
else:
rawobj = _rawfct['ncrystal_create_info'](_str2cstr(cfgstr))
super(Info, self).__init__(rawobj)
self.__dyninfo=None
self.__atominfo=None
self.__custom=None
self.__atomdatas=[]
self.__comp=None
self._som=None
self._nphases = int(_rawfct['ncrystal_info_nphases'](rawobj))
assert self._nphases == 0 or self._nphases >= 2
self._phases = tuple() if self._nphases == 0 else None
def getUniqueID(self):
"""Unique identifier of object (UID)."""
return _rawfct['infouid'](self._rawobj)
uid = property(getUniqueID)
def _getUnderlyingUniqueID(self):
"""Unique identifier of underlying object, which does not change on simple
density or cfg-data overrides (expert usage only!)."""
return _rawfct['infouid_underlying'](self._rawobj)
def isSinglePhase(self):
"""Single phase object."""
return self._nphases == 0
def isMultiPhase(self):
"""Multi phase object."""
return self._nphases != 0
def __initPhases(self):
assert self._phases is None and self._nphases > 1
l=[]
for i in range(self._nphases):
fraction = ctypes.c_double()
ph_info_raw = _rawfct['ncrystal_info_getphase'](self._rawobj,i,fraction)
ph_info = Info( ('_rawobj_',ph_info_raw) )
l.append( ( float(fraction.value), ph_info ) )
self._phases = tuple(l)
return self._phases
def getPhases(self):
"""Daughter phases in a multi-phase object. Returns a list of fractions and Info
objects of the daughter phases, in the format [(fraction_i,daughter_i),...]
"""
return self.__initPhases() if self._phases is None else self._phases
phases=property(getPhases)
def _initComp(self):
assert self.__comp is None
nc = _rawfct['ncrystal_info_ncomponents'](self._rawobj)
l = []
for icomp in range(nc):
atomidx,fraction = _rawfct['ncrystal_info_getcomp'](self._rawobj,icomp)
#NB: atomidx will be invalid in case of multiphase objects!
if atomidx < 65535:
#Most likely a single-phase object with valid atomidx, we can
#use self._provideAtomData and share the AtomData objects also here on the python side:
l += [(fraction,self._provideAtomData(atomidx))]
else:
#Most likely a multi-phase object with invalid atomidx, we must
#create new AtomData objects, based on ncrystal_create_component_atomdata:
raw_ad = _rawfct['ncrystal_create_component_atomdata'](self._rawobj,icomp)
obj = AtomData(raw_ad)
assert not obj.isTopLevel()#does not appear directly on Info object
l += [(fraction,obj)]
self.__comp = l
return self.__comp
def stateOfMatter(self):
"""State of matter, i.e. Solid, Liquid, Gas, ... as per the options in the
StateOfMatter class. Note that the .isCrystalline() method can be used
to additionally distinguish between amorphous and crystalline
solids. Return value is an enum object, whose .name() method can be used
in case a string value is desired.
"""
if self._som is None:
self._som = StateOfMatter(_rawfct['ncrystal_info_getstateofmatter'](self._rawobj))
return self._som
def isCrystalline(self):
"""Whether or not object is crystalline (i.e. has unit cell structure or list of
reflection planes)."""
return self.hasStructureInfo() or self.hasAtomInfo() or self.hasHKLInfo()
def hasComposition(self):
"""OBSOLETE FUNCTION (always available now)."""
return True
def getComposition(self):
"""Get basic composition as list of (fraction,AtomData). For a single-phase
object, the list is always consistent with AtomInfo/DynInfo (if
present).
"""
return self._initComp() if self.__comp is None else self.__comp
composition=property(getComposition)
def getFlattenedComposition( self,
preferNaturalElements = True,
naturalAbundProvider = None,
asJSONStr=False ):
"""Break down the basic composition of the material into elements and
isotopes. If an element only occurs as a natural element and has no
specific isotopes, that element will be returned as a natural isotope
unless preferNaturalElements=False. Generally, it is best if a
naturalAbundProvider is given, since if a given Z value has a mix of
isotopes and the natural elements, the natural element must always be
broken up.
If a naturalAbundProvider is given, it must be a function taking a Z
value and returning the breakdown into isotopes,
[(A1,frac1),...,(An,fracn)]. It can return None or an empty list to
indicate missing information.
Returns a list of (Z,<breakdown>) tuples, where <breakdown> is again a
list of tuples of A-values and associated abundances (A=0 indicates
natural elements). If asJSONStr=true, the data structure will be
returned as a JSON-encoded string, instead of a Python dictionary.
"""
_js = _rawfct['nc_info_getflatcompos'](self._rawobj,naturalAbundProvider,preferNaturalElements)
return _js if asJSONStr else json.loads(_js)
def dump(self,verbose=0):
"""Dump contained information to standard output. Use verbose argument to set
verbosity level to 0 (minimal), 1 (middle), 2 (most verbose)."""
sys.stdout.flush()
sys.stderr.flush()
_rawfct['ncrystal_dump_verbose'](self._rawobj,min(999,max(0,int(verbose))))
def hasTemperature(self):
"""Whether or not material has a temperature available"""
return _rawfct['ncrystal_info_gettemperature'](self._rawobj)>-1
def getTemperature(self):
"""Material temperature (in kelvin)"""
t=_rawfct['ncrystal_info_gettemperature'](self._rawobj)
nc_assert(t>-1)
return t
def hasGlobalDebyeTemperature(self):
"""OBSOLETE FUNCTION: The concept of global versus per-element Debye
temperatures has been removed. Please iterate over AtomInfo objects
instead (see getAtomInfos() function) and get the Debye Temperature
from those. This function will be removed in a future release.
"""
return False
def getGlobalDebyeTemperature(self):
"""OBSOLETE FUNCTION: The concept of global versus per-element Debye
temperatures has been removed. Please iterate over AtomInfo objects
instead (see getAtomInfos() function) and get the Debye Temperature
from those. Calling this function will always result in an exception
thrown for now, and the function will be removed in a future release..
"""
raise NCLogicError('The concept of global Debye temperatures has been removed. Iterate over'
+' AtomInfo objects instead and get the Debye temperature values from those.')
return None
def hasAtomDebyeTemp(self):
"""Whether AtomInfo objects are present and have Debye temperatures available
(they will either all have them available, or none of them will have
them available).
"""
if self.__atominfo is None:
self.__initAtomInfo()
return self.__atominfo[3]
def hasDebyeTemperature(self):
"""Alias for hasAtomDebyeTemp()."""
return self.hasAtomDebyeTemp()
def hasAnyDebyeTemperature(self):
"""OBSOLETE FUNCTION which will be removed in a future release. Please
call hasDebyeTemperature() instead.
"""
return self.hasAtomDebyeTemp()
def getDebyeTemperatureByElement(self,atomdata):
"""OBSOLETE FUNCTION which will be removed in a future release. Please access
the AtomInfo objects instead and query the Debye temperature there.
"""
if atomdata.isTopLevel():
for ai in self.atominfos:
if atomdata is ai.atomData:
return ai.debyeTemperature
raise NCBadInput('Invalid atomdata object passed to Info.getDebyeTemperatureByElement'
+' (must be top-level AtomData from the same Info object)')
def hasDensity(self):
"""OBSOLETE FUNCTION (densities are now always available)."""
return True
def getDensity(self):
"""Get density in g/cm^3. See also getNumberDensity()."""
t=_rawfct['ncrystal_info_getdensity'](self._rawobj)
nc_assert(t>0.0)
return t
density = property(getDensity)
def hasNumberDensity(self):
"""OBSOLETE FUNCTION (densities are now always available)."""
return True
def getNumberDensity(self):
"""Get number density in atoms/angstrom^3. See also getDensity()."""
t=_rawfct['ncrystal_info_getnumberdensity'](self._rawobj)
nc_assert(t>0.0)
return t
numberdensity = property(getNumberDensity)
def hasXSectAbsorption(self):
"""OBSOLETE FUNCTION"""
return True
def getXSectAbsorption(self):
"""Absorption cross section in barn (at 2200m/s)"""
t=_rawfct['ncrystal_info_getxsectabsorption'](self._rawobj)
nc_assert(t>-1)
return t
def hasXSectFree(self):
"""OBSOLETE FUNCTION"""
return True
def getXSectFree(self):
"""Saturated (free) scattering cross section in barn in the high-E limit"""
t=_rawfct['ncrystal_info_getxsectfree'](self._rawobj)
nc_assert(t>-1)
return t
def getSLD(self):
"""Get scattering length density in 1e-6/Aa^2"""
return _rawfct['ncrystal_info_getsld'](self._rawobj)
sld = property(getSLD)
def hasStructureInfo(self):
"""Whether or not material has crystal structure information available."""
return bool(_rawfct['ncrystal_info_getstructure'](self._rawobj))
def getStructureInfo(self):
"""Information about crystal structure."""
d=_rawfct['ncrystal_info_getstructure'](self._rawobj)
nc_assert(d)
return d
def _provideAtomData(self,atomindex):
if atomindex >= len(self.__atomdatas):
if atomindex >= 65535:
raise NCLogicError(f'Invalid atomindex ({atomindex}) provided to Info._provideAtomData')
self.__atomdatas.extend([None,]*(atomindex+1-len(self.__atomdatas)))
obj = self.__atomdatas[atomindex]
if obj:
return obj
raw_ad = _rawfct['ncrystal_create_atomdata'](self._rawobj,atomindex)
obj = AtomData(raw_ad)
assert obj.isTopLevel()
self.__atomdatas[atomindex] = obj
return obj
class AtomInfo:
"""Class with information about a particular atom in a unit cell, including the
composition of atoms, positions, Debye temperature, and mean-squared-displacements.
"""
def __init__(self,theinfoobj,atomidx,n,dt,msd,pos):
"""For internal usage only."""
assert dt is None or ( isinstance(dt,float) and dt > 0.0 )
assert msd is None or ( isinstance(msd,float) and msd > 0.0 )
self._info_wr = weakref.ref(theinfoobj)
self._atomidx,self.__n,self.__dt,self.__msd,=atomidx,n,dt,msd
self.__pos = tuple(pos)#tuple, since it is immutable
self.__atomdata = None
self.__correspDI_wp = None
def correspondingDynamicInfo(self):
"""
Get corresponding DynamicInfo object from the same Info
object. Returns None if Info object does not have dynamic info
available
"""
if self.__correspDI_wp is not None:
if self.__correspDI_wp == False:
return None
di = self.__correspDI_wp()
nc_assert(di is not None,"AtomInfo.correspondingDynamicInfo can not"
+" be used after associated Info object is deleted")
return di
_info = self._info_wr()
nc_assert(_info is not None,"AtomInfo.correspondingDynamicInfo can not"
+" be used after associated Info object is deleted")
if not _info.hasDynamicInfo():
self.__correspDI_wp = False
return None
for di in _info.dyninfos:
if di._atomidx == self._atomidx:
self.__correspDI_wp = weakref.ref(di)
return di
nc_assert(False,"AtomInfo.correspondingDynamicInfo: inconsistent internal state (bug?)")
dyninfo = property(correspondingDynamicInfo)
@property
def atomData(self):
"""Return AtomData object with details about composition and relevant physics constants"""
if self.__atomdata is None:
_info = self._info_wr()
nc_assert(_info is not None,"AtomInfo.atomData can not be used after associated Info object is deleted")
self.__atomdata = _info._provideAtomData(self._atomidx)
assert self.__atomdata.isTopLevel()
return self.__atomdata
@property
def count(self):
"""Number of atoms of this type per unit cell"""
return self.__n
@property
def debyeTemperature(self):
"""The Debye Temperature of the atom (kelvin). Returns None if not available."""
return self.__dt
@property
def meanSquaredDisplacement(self):
"""The mean-squared-displacement of the atom (angstrom^2). Returns None if not
available.
"""
return self.__msd
msd=meanSquaredDisplacement#alias
@property
def positions(self):
"""List (tuple actually) of positions of this atom in the unit cell. Each
entry is given as a tuple of three values, (x,y,z)"""
return self.__pos
@property
def atomIndex(self):
"""Index of atom on this material"""
return self._atomidx
def __str__(self):
l=[str(self.atomData.displayLabel()),str(self.__n)]
if self.__dt>0.0:
l.append('DebyeT=%gK'%self.__dt if self.__dt else 'DebyeT=n/a')
if self.__msd>0.0:
l.append('MSD=%gAa^2'%self.__msd if self.__msd else 'MSD=n/a')
l.append('hasPositions=%s'%('yes' if self.__pos else 'no'))
return 'AtomInfo(%s)'%(', '.join(l))
def hasAtomInfo(self):
"""Whether or no getAtomInfo()/atominfos are available"""
if self.__atominfo is None:
self.__initAtomInfo()
return self.__atominfo[0]
def hasAtomMSD(self):
"""Whether AtomInfo objects have mean-square-displacements available"""
if self.__atominfo is None:
self.__initAtomInfo()
return self.__atominfo[1]
def hasAtomPositions(self):
"""OBSOLETE FUNCTION: AtomInfo objects now always have positions
available. Returns same as hasAtomInfo(). Will be removed in a future
release.
"""
return self.hasAtomInfo()
def hasPerElementDebyeTemperature(self):
"""OBSOLETE FUNCTION which will be removed in a future
release. Please use hasAtomDebyeTemp() instead.
"""
return self.hasAtomDebyeTemp()
def getAtomInfo(self):
"""Get list of AtomInfo objects, one for each atom. Returns empty list if unavailable."""
if self.__atominfo is None:
self.__initAtomInfo()
return self.__atominfo[2]
atominfos = property(getAtomInfo)
def __initAtomInfo(self):
assert self.__atominfo is None
natoms = _rawfct['ncrystal_info_natominfo'](self._rawobj)
hasmsd = bool(_rawfct['ncrystal_info_hasatommsd'](self._rawobj))
hasperelemdt=False
l=[]
for iatom in range(natoms):
atomidx,n,dt,msd = _rawfct['ncrystal_info_getatominfo'](self._rawobj,iatom)
if dt:
hasperelemdt=True
assert hasmsd == (msd>0.0)
pos=[]
for ipos in range(n):
pos.append( _rawfct['ncrystal_info_getatompos'](self._rawobj,iatom,ipos) )
l.append( Info.AtomInfo(self,atomidx, n,
( dt if ( dt and dt>0.0) else None),
(msd if (msd and msd>0.0) else None),
pos) )
self.__atominfo = ( natoms>0, hasmsd, l, hasperelemdt )
def hasHKLInfo(self):
"""Whether or not material has lists of HKL-plane info available"""
return bool(_rawfct['ncrystal_info_nhkl'](self._rawobj)>-1)
def nHKL(self):
"""Number of HKL planes available (grouped into families with similar d-spacing and f-squared)"""
return int(_rawfct['ncrystal_info_nhkl'](self._rawobj))
def hklDLower(self):
"""Lower d-spacing cutoff (angstrom)."""
return float(_rawfct['ncrystal_info_hkl_dlower'](self._rawobj))
def hklDUpper(self):
"""Upper d-spacing cutoff (angstrom)."""
return float(_rawfct['ncrystal_info_hkl_dupper'](self._rawobj))
def hklList(self,all_indices=False):
"""Iterator over HKL info, yielding tuples in the format
(h,k,l,multiplicity,dspacing,fsquared). Running with all_indices=True to
get the full list of hkl points in each group - in that case, h, k, and
l will be numpy arrays of length multiplicity/2 (including just one of
(h,k,l) and (-h,-k,-l) in the list).
"""
nc_assert(self.hasHKLInfo())
return _rawfct['iter_hkllist']( self._rawobj,
all_indices = all_indices )
def getBraggThreshold(self):
"""Get Bragg threshold in Aa (returns None if non-crystalline). This
method is meant as a fast way to access the Bragg threshold without
necessarily triggering a full initialisation of all HKL planes.
"""
bt = float(_rawfct['ncrystal_info_braggthreshold'](self._rawobj))
return bt if bt > 0.0 else None
braggthreshold = property(getBraggThreshold)
def hklInfoType(self):
"""What kind of information about plane normals and Miller indices are
available in the hklList(). It is guaranteed to be the same for all
HKLInfo entries, and will return "Minimal" when hklList() is present but
empty. Like getBraggThreshold(), calling this method will not
necessarily trigger a full initialisation of the hklList()."""
return HKLInfoType(int(_rawfct['ncrystal_info_hklinfotype'](self._rawobj)))
def dspacingFromHKL(self, h, k, l):
"""Convenience method, calculating the d-spacing of a given Miller
index. Calling this incurs the overhead of creating a reciprocal lattice
matrix from the structure info."""
return float(_rawfct['ncrystal_info_dspacing_from_hkl'](self._rawobj,h,k,l))
class DynamicInfo:
"""Class representing dynamic information (related to inelastic scattering)
about a given atom"""
def __init__(self,theinfoobj,fr,atomidx,tt,key):
"""internal usage only"""
self._info_wr,self.__atomdata = weakref.ref(theinfoobj), None
self.__fraction, self._atomidx, self._key, self.__tt = fr,atomidx,key,tt
self.__correspAtomInfo_wp = None
def correspondingAtomInfo(self):
"""Get corresponding AtomInfo object from the same Info object. Returns None if Info object does not have AtomInfo available"""
if self.__correspAtomInfo_wp is not None:
if self.__correspAtomInfo_wp == False:
return None
ai = self.__correspAtomInfo_wp()
nc_assert(ai is not None,"DynamicInfo.correspondingAtomInfo can not be used after associated Info object is deleted")
return ai
_info = self._info_wr()
nc_assert(_info is not None,"DynamicInfo.correspondingAtomInfo can not be used after associated Info object is deleted")
if not _info.hasAtomInfo():
self.__correspAtomInfo_wp = False
return None
for ai in _info.atominfos:
if ai._atomidx == self._atomidx:
self.__correspAtomInfo_wp = weakref.ref(ai)
return ai
nc_assert(False,"DynamicInfo.correspondingAtomInfo: inconsistent internal state (bug?)")
atominfo = property(correspondingAtomInfo)
@property
def atomIndex(self):
"""Index of atom on this material"""
return self._atomidx
@property
def fraction(self):
"""Atom fraction in material (all fractions must add up to unity)"""
return self.__fraction
@property
def temperature(self):
"""Material temperature (same value as on associated Info object)"""
return self.__tt
@property
def atomData(self):
"""Return AtomData object with details about composition and relevant physics constants"""
if self.__atomdata is None:
_info = self._info_wr()
nc_assert(_info is not None,"DynamicInfo.atomData can not be used after associated Info object is deleted")
self.__atomdata = _info._provideAtomData(self._atomidx)
assert self.__atomdata.isTopLevel()
return self.__atomdata
def _np(self):
_ensure_numpy()
return _np
def _copy_cptr_2_nparray(self,cptr,n):
np = self._np()
return np.copy(np.ctypeslib.as_array(cptr, shape=(n,)))
def __str__(self):
n=self.__class__.__name__
if n.startswith('DI_'):
n=n[3:]
s=', %s'%self._extradescr() if hasattr(self,'_extradescr') else ''
return ('DynamicInfo(%s, fraction=%.4g%%, type=%s%s)'%(self.atomData.displayLabel(),
self.__fraction*100.0,
n,s))
class DI_Sterile(DynamicInfo):
"""Class indicating atoms for which inelastic neutron scattering is absent
or disabled."""
pass
class DI_FreeGas(DynamicInfo):
"""Class indicating atoms for which inelastic neutron scattering should be
modelled as scattering on a free gas."""
pass
class DI_ScatKnl(DynamicInfo):
"""Base class indicating atoms for which inelastic neutron scattering will
be, directly or indirectly, described by a scattering kernel,
S(alpha,beta). This is an abstract class, and derived classes provide
actual access to the kernels.
"""
def __init__(self,theinfoobj,fr,atomidx,tt,key):
"""internal usage only"""
super(Info.DI_ScatKnl, self).__init__(theinfoobj,fr,atomidx,tt,key)
self.__lastknl,self.__lastvdoslux = None,None
def _loadKernel( self, vdoslux = 3 ):
assert isinstance(vdoslux,numbers.Integral) and 0<=vdoslux<=5
vdoslux=int(vdoslux)
if self.__lastvdoslux != vdoslux:
sugEmax,ne,na,nb,eptr,aptr,bptr,sabptr = _rawfct['ncrystal_dyninfo_extract_scatknl'](self._key,vdoslux)
self.__lastvdoslux = vdoslux
res={}
assert ne>=0
res['suggestedEmax'] = float(sugEmax)
res['egrid'] = self._copy_cptr_2_nparray(eptr,ne) if ne > 0 else self._np().zeros(0)
assert na>1 and nb>1
res['alpha'] = self._copy_cptr_2_nparray(aptr,na)
res['beta'] = self._copy_cptr_2_nparray(bptr,nb)
res['sab'] = self._copy_cptr_2_nparray(sabptr,na*nb)
self.__lastknl = res
assert self.__lastknl is not None
return self.__lastknl
class DI_ScatKnlDirect(DI_ScatKnl):
"""Pre-calculated scattering kernel which at most needs a (hidden) conversion to
S(alpha,beta) format before it is available."""
def __init__(self,theinfoobj,fr,atomidx,tt,key):
"""internal usage only"""
super(Info.DI_ScatKnlDirect, self).__init__(theinfoobj,fr,atomidx,tt,key)
def loadKernel( self ):
"""Prepares and returns the scattering kernel in S(alpha,beta) format"""
return self._loadKernel(vdoslux=3)#vdoslux value not actually used
class DI_VDOS(DI_ScatKnl):
"""Solid state material with a phonon spectrum in the form of a Vibrational
Density Of State (VDOS) parameterisation. This can be expanded into a
full scattering kernel. How luxurious this expansion will be is
controlled by an optional vdoslux parameter in the loadKernel call (must
be integer from 0 to 5)
"""
def __init__(self,theinfoobj,fr,atomidx,tt,key):
"""internal usage only"""
super(Info.DI_VDOS, self).__init__(theinfoobj,fr,atomidx,tt,key)
self.__vdosdata = None
self.__vdosegrid_expanded = None
self.__vdosorig = None
def _extradescr(self):
return 'npts=%i'%len(self.vdosOrigDensity())
def vdosData(self):
"""Access the VDOS as ([egrid_min,egrid_max],vdos_density)"""
if self.__vdosdata is None:
emin,emax,nd,dptr = _rawfct['ncrystal_dyninfo_extract_vdos'](self._key)
vdos_egrid = (emin,emax)
vdos_density = self._copy_cptr_2_nparray(dptr,nd)
self.__vdosdata = (vdos_egrid,vdos_density)
return self.__vdosdata
def __loadVDOSOrig(self):
if self.__vdosorig is None:
neg,egptr,nds,dsptr = _rawfct['ncrystal_dyninfo_extract_vdos_input'](self._key)
self.__vdosorig = ( self._copy_cptr_2_nparray(egptr,neg),
self._copy_cptr_2_nparray(dsptr,nds) )
return self.__vdosorig
def vdosOrigEgrid(self):
"""Access the original un-regularised VDOS energy grid"""
return self.__loadVDOSOrig()[0]
def vdosOrigDensity(self):
"""Access the original un-regularised VDOS energy grid"""
return self.__loadVDOSOrig()[1]
@property
def vdos_egrid(self):
"""Access the VDOS energy grid as [egrid_min,egrid_max]"""
return self.vdosData()[0]
@property
def vdos_egrid_expanded(self):
"""Access the egrid expanded into all actual egrid points"""
if self.__vdosegrid_expanded is None:
_ = self.vdosData()
self.__vdosegrid_expanded = _np_linspace(_[0][0],_[0][1],len(_[1]))
return self.__vdosegrid_expanded
@property
def vdos_density(self):
"""Access the VDOS density array"""
return self.vdosData()[1]
def loadKernel( self, vdoslux = 3 ):
"""Converts VDOS to S(alpha,beta) kernel with a luxury level given by the vdoslux parameter."""
return self._loadKernel(vdoslux=vdoslux)
def analyseVDOS(self):
"""Same as running the global analyseVDOS function on the contained VDOS."""
return analyseVDOS(*self.vdos_egrid,self.vdos_density,
self.temperature,self.atomData.averageMassAMU())
class DI_VDOSDebye(DI_ScatKnl):
"""Similarly to DI_VDOS, but instead of using a phonon VDOS spectrum provided
externally, an idealised spectrum is used for lack of better
options. This spectrum is based on the Debye Model, in which the
spectrum rises quadratically with phonon energy below a cutoff value,
kT, where T is the Debye temperature
"""
def __init__(self,theinfoobj,fr,atomidx,tt,key):
"""internal usage only"""
super(Info.DI_VDOSDebye, self).__init__(theinfoobj,fr,atomidx,tt,key)
self.__vdosdata = None
self.__debyetemp = None
self.__vdosegrid_expanded = None
def vdosData(self):
"""Access the idealised VDOS as ([egrid_min,egrid_max],vdos_density)"""
if self.__vdosdata is None:
self.__vdosdata = createVDOSDebye(self.debyeTemperature())
return self.__vdosdata
def debyeTemperature(self):
"""The Debye temperature of the atom"""
if self.__debyetemp is None:
self.__debyetemp = _rawfct['ncrystal_dyninfo_extract_vdosdebye'](self._key)
return self.__debyetemp
def _extradescr(self):
return 'TDebye=%gK'%self.debyeTemperature()
@property
def vdos_egrid(self):
"""Access the VDOS energy grid as [egrid_min,egrid_max]"""
return self.vdosData()[0]
@property
def vdos_egrid_expanded(self):
"""Access the egrid expanded into all actual egrid points"""
if self.__vdosegrid_expanded is None:
_ = self.vdosData()
self.__vdosegrid_expanded = _np_linspace(_[0][0],_[0][1],len(_[1]))
return self.__vdosegrid_expanded
@property
def vdos_density(self):
"""Access the VDOS density array"""
return self.vdosData()[1]
def loadKernel( self, vdoslux = 3 ):
"""Converts VDOS to S(alpha,beta) kernel with a luxury level given by the
vdoslux parameter, which is similar to the vdoslux parameter used
in DI_VDOS. Notice that the vdoslux parameter specified here on
DI_VDOSDebye will be reduced internally by 3 (but not less than
0), since the Debye model is anyway only a crude approximation
and it accordingly does not need the same level of precise
treatment as a full externally specified VDOS.
"""
return self._loadKernel(vdoslux=vdoslux)
def hasDynamicInfo(self):
"""Whether or not dynamic information for each atom is present"""
return int(_rawfct['ncrystal_info_ndyninfo'](self._rawobj))>0 if self.__dyninfo is None else bool(self.__dyninfo)
def getDynamicInfoList(self):
"""Get list of DynamicInfo objects (if available). One for each atom."""
if self.__dyninfo is None:
self.__dyninfo = []
for idx in range(int(_rawfct['ncrystal_info_ndyninfo'](self._rawobj))):
key = (self._rawobj,idx)
fr,tt,atomidx,ditype = _rawfct['ncrystal_dyninfo_base'](key)
args=(self,fr,atomidx,tt,key)
if ditype==0:
di = Info.DI_Sterile(*args)
elif ditype==1:
di = Info.DI_FreeGas(*args)
elif ditype==2:
di = Info.DI_ScatKnlDirect(*args)
elif ditype==3:
di = Info.DI_VDOS(*args)
elif ditype==4:
di = Info.DI_VDOSDebye(*args)
else:
raise AssertionError('Unknown DynInfo type id (%i)'%ditype.value)
self.__dyninfo += [ di ]
return self.__dyninfo
dyninfos = property(getDynamicInfoList)
def getAllCustomSections(self):
"""Custom information for which the core NCrystal code does not have any
specific treatment. This is usually intended for usage by developers adding new
experimental physics models."""
if self.__custom is None:
self.__custom = _rawfct['ncrystal_info_getcustomsections'](self._rawobj)
return self.__custom
customsections = property(getAllCustomSections)
class Process(RCBase):
"""Base class for calculations of processes in materials.
Note that kinetic energies are in electronvolt and direction vectors are
tuples of 3 numbers.
"""
def getCalcName(self):
"""Obsolete alias for getName"""
return self.getName()
def getName(self):
"""Process name"""
return _cstr2str(_rawfct['ncrystal_name'](self._rawobj))
name = property(getName)
def getUniqueID(self):
"""UID of underlying ProcImpl::Process object."""
return _rawfct['procuid'](self._rawobj)
uid = property(getUniqueID)
def domain(self):
"""Domain where process has non-vanishing cross section.
Returns the domain as (ekin_low,ekin_high). Outside this range of
neutron kinetic energy, the process can be assumed to have vanishing
cross sections. Thus, processes present at all energies will return
(0.0,infinity).
"""
return _rawfct['ncrystal_domain'](self._rawobj)
def isNull(self):
"""Domain might indicate that this is a null-process, vanishing everywhere."""
elow,ehigh = self.domain()
#checking for inf like the following to avoid depending on numpy or math
#modules just for this:
return ( elow >= ehigh or ( elow>1e99 and elow==float('inf') ) )
def isNonOriented(self):
"""opposite of isOriented()"""
return bool(_rawfct['ncrystal_isnonoriented'](self._rawobj))
def isOriented(self):
"""Check if process is oriented and results depend on the incident direction of the neutron"""
return not self.isNonOriented()
def crossSection( self, ekin, direction ):
"""Access cross sections."""
return _rawfct['ncrystal_crosssection'](self._rawobj,ekin, direction)
def crossSectionIsotropic( self, ekin, repeat = None ):
"""Access cross sections (should not be called for oriented processes).
For efficiency it is possible to provide the ekin parameter as a numpy
array of numbers and get a corresponding array of cross sections
back. Likewise, the repeat parameter can be set to a positive number,
causing the ekin value(s) to be reused that many times and a numpy array
with results returned.
"""
return _rawfct['ncrystal_crosssection_nonoriented'](self._rawobj,ekin,repeat)
#Backwards compatible alias:
crossSectionNonOriented = crossSectionIsotropic
def xsect(self,ekin=None,direction=None,wl=None,repeat=None):
"""Convenience function which redirects calls to either crossSectionIsotropic
or crossSection depending on whether or not a direction is given. It can
also accept wavelengths instead of kinetic energies via the wl
parameter. The repeat parameter is currently only supported when
direction is not provided.
"""
ekin = Process._parseekin( ekin, wl )
if direction is None:
return self.crossSectionIsotropic( ekin, repeat )
else:
if repeat is None:
return self.crossSection( ekin, direction )
else:
raise NCBadInput('The repeat parameter is not currently supported when the direction parameter is also provided.')
@staticmethod
def _parseekin(ekin,wl):
if wl is None:
if ekin is None:
raise NCBadInput('Please provide either one of the "ekin" or "wl" parameters.')
return ekin
else:
if ekin is not None:
raise NCBadInput('Do not provide both "ekin" and "wl" parameters')
return wl2ekin(wl)
def getSummary(self,short = False ):
"""By default access a high-level summary of the process in the form of
a dictionary holding various information which is also available on
the underlying C++ process object. If instead short==True, what is
instead returned is simply a short process label along with a
(recursive) list of sub-components and their scales (if
appropriate). Finally, if short=='printable', the returned object
will instead be a list of strings suitable for a quick printout (each
string is one line of printout).
"""
#Not caching, method is likely to be called sparringly.
#short printable:
if short == 'printable':
toplbl,comps=self.getSummary(short=True)
l=[ toplbl]
def add_lines( comps, indentlvl = 1 ):
ncomps = len(comps)
prefix = ' '*indentlvl
for i,(scale,(lbl,subcomps)) in enumerate(comps):
smb = '\--' if i+1==ncomps else '|--'
scale_str = '' if scale==1.0 else f'{scale:g} * '
l.append(f'{prefix}{smb} {scale_str}{lbl}')
if subcomps:
add_lines( subcomps, indentlvl + 1 )
if comps:
add_lines( comps )
return l
d=_rawfct['nc_dbg_proc'](self._rawobj)
#full:
if not short:
return d
#short:
def fmt_lbl(proc):
name = proc['name']
summarystr = proc['specific'].get('summarystr','')
return f'{name}({summarystr})' if summarystr else name
def extract_subcomponents(proc):
subprocs = proc.get('specific',{}).get('components',[])
return (fmt_lbl(proc),list( (scl, extract_subcomponents(sp)) for scl,sp in subprocs ))
return extract_subcomponents(d)
def dump(self,prefix=''):
"""Print a quick high level summary of the process to stdout. What is printed is
in fact the lines resulting from a call to self.getSummary(short='printable'),
with an optional prefix prepended to each line.
"""
print(prefix+f'\n{prefix}'.join(self.getSummary(short='printable')))
class Absorption(Process):
"""Base class for calculations of absorption in materials"""
def __init__(self, cfgstr):
"""create Absorption object based on cfg-string (same as using createAbsorption(cfgstr))"""
if isinstance(cfgstr,tuple) and len(cfgstr)==2 and cfgstr[0]=='_rawobj_':
#Cloning:
rawobj_abs = cfgstr[1]
else:
rawobj_abs = _rawfct['ncrystal_create_absorption'](_str2cstr(cfgstr))
self._rawobj_abs = rawobj_abs
rawobj_proc = _rawfct['ncrystal_cast_abs2proc'](rawobj_abs)
super(Absorption, self).__init__(rawobj_proc)
def clone(self):
"""Clone object. The clone will be using the same physics models and sharing any
read-only data with the original, but will be using its own private copy of any
mutable caches. All in all, this means that the objects are safe to use
concurrently in multi-threaded programming, as long as each thread gets
its own clone. Return value is the new Absorption object.
"""
newrawobj = _rawfct['ncrystal_clone_absorption'](self._rawobj_abs)
return Absorption( ('_rawobj_',newrawobj) )
class Scatter(Process):
"""Base class for calculations of scattering in materials.
Note that kinetic energies are in electronvolt and direction vectors are
tuples of 3 numbers.
"""
def __init__(self, cfgstr):
"""create Scatter object based on cfg-string (same as using createScatter(cfgstr))"""
if isinstance(cfgstr,tuple) and len(cfgstr)==2 and cfgstr[0]=='_rawobj_':
#Already got an ncrystal_scatter_t object:
self._rawobj_scat = cfgstr[1]
else:
self._rawobj_scat = _rawfct['ncrystal_create_scatter'](_str2cstr(cfgstr))
rawobj_proc = _rawfct['ncrystal_cast_scat2proc'](self._rawobj_scat)
super(Scatter, self).__init__(rawobj_proc)
def clone(self,rng_stream_index=None,for_current_thread=False):
"""Clone object. The clone will be using the same physics models and sharing any
read-only data with the original, but will be using its own private copy
of any mutable caches and will get an independent RNG stream. All in
all, this means that the objects are safe to use concurrently in
multi-threaded programming, as long as each thread gets its own
clone. Return value is the new Scatter object.
If greater control over RNG streams are needed, it is optionally allowed
to either set rng_stream_index to a non-negative integral value, or set
for_current_thread=True.
If rng_stream_index is set, the resulting object will use a specific
rngstream index. All objects with the same indeed will share the same
RNG state, so a sensible strategy is to use the same index for all
scatter objects which are to be used in the same thread:
If setting for_current_thread=True, the resulting object will use a
specific rngstream which has been set aside for the current thread. Thus
this function can be called from a given work-thread, in order to get
thread-safe scatter handle, with all objects cloned within the same
thread sharing RNG state.
"""
if rng_stream_index is not None:
if for_current_thread:
raise NCBadInput('Scatter.clone(..): do not set both rng_stream_index and for_current_thread parameters')
if not isinstance(rng_stream_index, numbers.Integral) or not 0 <= rng_stream_index <= 4294967295:
raise NCBadInput('Scatter.clone(..): rng_stream_index must be integral and in range [0,4294967295]')
newrawobj = _rawfct['ncrystal_clone_scatter_rngbyidx'](self._rawobj_scat,int(rng_stream_index))
elif for_current_thread:
newrawobj = _rawfct['ncrystal_clone_scatter_rngforcurrentthread'](self._rawobj_scat)
else:
newrawobj = _rawfct['ncrystal_clone_scatter'](self._rawobj_scat)
return Scatter( ('_rawobj_',newrawobj) )
def sampleScatter( self, ekin, direction, repeat = None ):
"""Randomly generate scatterings.
Assuming a scattering took place, generate final state of neutron based
on current kinetic energy and direction. Returns
tuple(ekin_final,direction_final) where direct_final is itself a tuple
(ux,uy,uz). The repeat parameter can be set to a positive number,
causing the scattering to be sampled that many times and numpy arrays
with results returned.
"""
return _rawfct['ncrystal_samplesct'](self._rawobj_scat,ekin,direction,repeat)
def sampleScatterIsotropic( self, ekin, repeat = None ):
"""Randomly generate scatterings (should not be called for oriented processes).
Assuming a scattering took place, generate final state of
neutron. Returns tuple(ekin_final,mu) where mu is the cosine of the
scattering angle. For efficiency it is possible to provide the ekin
parameter as a numpy array of numbers and get corresponding arrays of
energies and mu back. Likewise, the repeat parameter can be
set to a positive number, causing the ekin value(s) to be reused that
many times and numpy arrays with results returned.
"""
return _rawfct['ncrystal_samplesct_iso'](self._rawobj_scat,ekin,repeat)
def generateScattering( self, ekin, direction, repeat = None ):
"""WARNING: Deprecated method. Please use the sampleScatter method instead.
Randomly generate scatterings.
Assuming a scattering took place, generate energy transfer (delta_ekin)
and new neutron direction based on current kinetic energy and direction
and return tuple(new_direction,delta_ekin). The repeat parameter can be
set to a positive number, causing the scattering to be sampled that many
times and numpy arrays with results returned.
"""
return _rawfct['ncrystal_genscatter'](self._rawobj_scat,ekin,direction,repeat)
def generateScatteringNonOriented( self, ekin, repeat = None ):
"""WARNING: Deprecated method. Please use the sampleScatterIsotropic method instead.
Randomly generate scatterings (should not be called for oriented processes).
Assuming a scattering took place, generate energy transfer (delta_ekin)
and scatter angle in radians and return tuple(scatter_angle,delta_ekin)
(this method should not be invoked on oriented processes). For
efficiency it is possible to provide the ekin parameter as a numpy array
of numbers and get corresponding arrays of angles and energy transfers
back. Likewise, the repeat parameter can be set to a positive number,
causing the ekin value(s) to be reused that many times and numpy arrays
with results returned.
"""
return _rawfct['ncrystal_genscatter_nonoriented'](self._rawobj_scat,ekin,repeat)
def scatter(self,ekin=None,direction=None,wl=None,repeat=None):
"""Convenience function which redirects calls to either
sampleScatterIsotropic or sampleScatter depending on whether
or not a direction is given. It can also accept wavelengths instead of
kinetic energies via the wl parameter.
"""
ekin = Process._parseekin( ekin, wl )
return self.sampleScatterIsotropic( ekin, repeat ) if direction is None else self.sampleScatter( ekin, direction, repeat )
def genscat(self,ekin=None,direction=None,wl=None,repeat=None):
"""WARNING: Deprecated method. Please use the "scatter" method instead.
Convenience function which redirects calls to either
generateScatteringNonOriented or generateScattering depending on whether
or not a direction is given. It can also accept wavelengths instead of
kinetic energies via the wl parameter.
"""
ekin = Process._parseekin( ekin, wl )
return self.generateScatteringNonOriented( ekin, repeat ) if direction is None else self.generateScattering( ekin, direction, repeat )
def rngSupportsStateManipulation(self):
"""Query whether associated RNG stream supports state manipulation"""
return bool(_rawfct['ncrystal_rngsupportsstatemanip_ofscatter'](self._rawobj_scat))
def getRNGState(self):
"""Get current RNG state (as printable hex-string with RNG type info
embedded). This function returns None if RNG stream does not support
state manipulation
"""
return _rawfct['nc_getrngstate_scat'](self._rawobj_scat)
def setRNGState(self,state):
"""Set current RNG state.
Note that setting the rng state will affect all objects sharing the
RNG stream with the given scatter object (and those subsequently cloned
from any of those).
Note that if the provided state originates in (the current version
of) NCrystal's builtin RNG algorithm, it can always be used here,
even if the current RNG uses a different algorithm (it will simply be
replaced). Otherwise, a mismatch of RNG stream algorithms will result
in an error.
"""
_rawfct['ncrystal_setrngstate_ofscatter']( self._rawobj_scat,
_str2cstr(state) )
def createInfo(cfgstr):
"""Construct Info object based on provided configuration (using available factories)"""
return Info(cfgstr)
def createScatter(cfgstr):
"""Construct Scatter object based on provided configuration (using available factories)"""
return Scatter(cfgstr)
def createScatterIndependentRNG(cfgstr,seed = 0):
"""Construct Scatter object based on provided configuration (using available
factories) and with its own independent RNG stream (using the builtin RNG
generator and the provided seed)"""
rawobj = _rawfct['ncrystal_create_scatter_builtinrng'](_str2cstr(cfgstr),seed)
return Scatter(('_rawobj_',rawobj))
def createAbsorption(cfgstr):
"""Construct Absorption object based on provided configuration (using available factories)"""
return Absorption(cfgstr)
def directMultiCreate( data, cfg_params='', *, dtype='',
doInfo = True, doScatter = True, doAbsorption = True ):
"""Convenience function which creates Info, Scatter, and Absorption objects
directly from a data string rather than an on-disk or in-memory
file. Such usage obviously precludes proper caching behind the scenes,
and is intended for scenarios where the same data should not be used
repeatedly.
"""
if isinstance(data,TextData):
_localkeepalive = data
data = data.rawData
if not dtype and not data.startswith('NCMAT') and 'NCMAT' in data:
if data.strip().startswith('NCMAT'):
raise NCBadInput('NCMAT data must have "NCMAT" as the first 5 characters (must not be preceded by whitespace)')
rawi,raws,rawa = _rawfct['multicreate_direct'](data,dtype,cfg_params,doInfo,doScatter,doAbsorption)
info = Info( ('_rawobj_',rawi) ) if rawi else None
scatter = Scatter( ('_rawobj_',raws) ) if raws else None
absorption = Absorption( ('_rawobj_',rawa) ) if rawa else None
class MultiCreated:
def __init__(self,i,s,a):
self.__i,self.__s,self.__a = i,s,a
@property
def info(self):
"""Info object (None if not present)."""
return self.__i
@property
def scatter(self):
"""Scatter object (None if not present)."""
return self.__s
@property
def absorption(self):
"""Absorption object (None if not present)."""
return self.__a
def __str__(self):
fmt = lambda x : str(x) if x else 'n/a'
return 'MultiCreated(Info=%s, Scatter=%s, Absorption=%s)'%(fmt(self.__i),
fmt(self.__s),
fmt(self.__a))
return MultiCreated(info,scatter,absorption)
def registerInMemoryFileData(virtual_filename,data):
"""Register in-memory file data. This needs a "filename" and the content of this
virtual file. After registering such in-memory "files", they can be used
as file names in cfg strings or MatCfg objects. Registering the same
filename more than once, will simply override the content.
As a special case data can specified as "ondisk://<path>",
which will instead create a virtual alias for an on-disk file.
"""
if ( isinstance(data,str) and data.startswith('ondisk://')):
data = 'ondisk://'+str(pathlib.Path(data[9:]).resolve())
_rawfct['ncrystal_register_in_mem_file_data'](virtual_filename,data)
#numpy compatible wl2ekin and ekin2wl
_c_wl2ekin = float(_rawfct['ncrystal_wl2ekin'](1.0))
_c_ekin2wl = float(_rawfct['ncrystal_ekin2wl'](1.0))
def wl2ekin(wl):
"""Convert neutron wavelength in Angstrom to kinetic energy in electronvolt"""
if _np and hasattr(wl,'__len__'):
#reciprocals without zero division:
wlnonzero = wl != 0.0
wlinv = 1.0 / _np.where( wlnonzero, wl, 1.0)#fallback 1.0 wont be used
return _c_wl2ekin * _np.square(_np.where( wlnonzero, wlinv, _np.inf))
else:
return _rawfct['ncrystal_wl2ekin'](wl)
def ekin2wl(ekin):
"""Convert neutron kinetic energy in electronvolt to wavelength in Angstrom"""
if _np and hasattr(ekin,'__len__'):
#reciprocals without zero division:
ekinnonzero = ekin != 0.0
ekininv = 1.0 / _np.where( ekinnonzero, ekin, 1.0)#fallback 1.0 wont be used
return _c_ekin2wl * _np.sqrt(_np.where( ekinnonzero, ekininv, _np.inf))
else:
return _rawfct['ncrystal_ekin2wl'](ekin)
_const_ekin2ksq_factor = _k4PiSq / _c_wl2ekin
def ekin2ksq(ekin):
"""Convert neutron kinetic energy in electronvolt to squared wavenumber (k^2) in 1/Angstrom^2"""
return _const_ekin2ksq_factor*ekin
def wl2k(wl):
"""Convert neutron wavelength in Angstrom to wavenumber (k) in 1/Angstrom. This is simply k=2pi/wl"""
if _np and hasattr(wl,'__len__'):
#reciprocals without zero division:
wlnonzero = ekin != 0.0
ksafe = _k2Pi / _np.where( wlnonzero, wl, 1.0)#fallback 1.0 wont be used
return _np.where( wlnonzero, ksafe, _np.inf)
else:
return _k2Pi / wl if wl!=0.0 else float('inf')
def wl2ksq(wl):
"""Convert neutron wavelength in Angstrom to wavenumber (k^2) in 1/Angstrom^2. This is simply k^2=(2pi/wl)^2"""
return wl2k(wl) ** 2
def clearCaches():
"""Clear various caches"""
_rawfct['ncrystal_clear_caches']()
def clearInfoCaches():
"""Deprecated. Does the same as clearCaches()"""
clearCaches()
def disableCaching():
"""Obsolete function. Instead call clearCaches() as needed."""
raise RuntimeError('The disableCaching function has been removed. Users can'
+' instead call the clearCaches function if really needed to clear the caches.')
def enableCaching():
"""Obsolete function. Instead call clearCaches() as needed."""
raise RuntimeError('The enableCaching function has been removed. Users can'
+' instead call the clearCaches function if really needed to clear the caches.')
def hasFactory(name):
"""Check if a factory of a given name exists"""
return bool(_rawfct['ncrystal_has_factory'](_str2cstr(name)))
#Helper function, for scripts creating ncmat files:
def formatVectorForNCMAT(name,values):
"""Utility function for help in python scripts composing .ncmat files,
transforming an array of of values into a properly formatted text string,
with word-wrapping, usage of <val>r<n> syntax, etc.
"""
def provideFormattedEntries():
def _fmtnum(num):
_ = '%g'%num if num else '0'#avoid 0.0, -0, etc.
if _.startswith('0.'):
_=_[1:]
return _
i=0
v=values.flatten()
nv=len(v)
while i<nv:
fmt_vi=_fmtnum(v[i])
#check if is repeated:
irepeat=i
while irepeat+1<nv:
if _fmtnum(v[irepeat+1])==fmt_vi:
irepeat+=1
else:
break
yield '%sr%i'%(fmt_vi,1+irepeat-i) if irepeat>i else '%s'%fmt_vi
i=irepeat+1#advance
out=''
line=' %s'%name
collim=80
for e in provideFormattedEntries():
snext=' %s'%e
line_next=line+snext
if len(line_next)>collim:
out += line
out += '\n'
line = ' '+snext
else:
line = line_next
if line:
out += line
out += '\n'
return out
#Accept custom random generator:
def setDefaultRandomGenerator(rg, keepalive=True):
"""Set the default random generator.
Note that this can only changes the random generator for those processes not
already created.
To ensure Python does not clean up the passed function object prematurely,
the NCrystal python module will keep a reference to it eternally. To avoid
this, call with keepalive=False. But in that case the caller is responsible
for keeping a reference to the object for as long as NCrystal might use it
to generate random numbers.
"""
_rawfct['ncrystal_setrandgen'](rg)
__atomdb={}
def atomDB(Z,A=None,throwOnErrors=True):
"""Access internal database with data for isotopes and natural elements.
If A is provided, both A and Z must be integers, thus defining a specific isotope.
If Z is an integer and A is 0 or None, the corresponding natural element is provided.
Finally, the function can be called with a string identifying either natural
elements or isotopes: atomDB("Al"), atomDB("He3"), ...
In all cases, in case of errors or missing entries in the database, either
an NCBadInput exception is thrown (throwOnErrors==True) or None is
returned (when throwOnErrors==False).
"""
global __atomdb
if isinstance(Z,numbers.Integral):
Z=int(Z)
key=(Z,int(A or 0))
strkey=False
else:
assert A is None,"Do not supply two arguments unless the first argument is an integer"
assert isinstance(Z,str),"The first argument to the function must either be of int or str type"
key=Z
strkey=True
obj=__atomdb.get(key,None)
if obj:
return obj
if strkey:
rawatomdata=_rawfct['ncrystal_create_atomdata_fromdbstr'](_str2cstr(key))
else:
rawatomdata=_rawfct['ncrystal_create_atomdata_fromdb'](*key)
if not _rawfct['ncrystal_valid'](rawatomdata):
if not throwOnErrors:
return None
if strkey:
s='key="%s"'%key
else:
if key[1]==0:
s='Z=%i'%key[0]
else:
s='Z=%i,A=%i'%key
raise NCBadInput('atomDB: Could not find entry for key (%s)'%s)
ad = AtomData(rawatomdata)
assert ad.isElement()
Z,A = ad.Z(), (ad.A() if ad.isSingleIsotope() else 0)
keys=[ (Z,A)]
if Z==1 and A==2:
keys+=['H2','D']
elif Z==1 and A==3:
keys+=['H3','T']
else:
assert ad.isNaturalElement() or ad.isSingleIsotope()
keys += [ ad.description(False) ]#guaranteed to give just symbol for natelem/singleisotope!
assert key in keys#Should always be true unless we forgot some keys above
assert ad.description(False) in keys#Should also be true, given guarantees for AtomData::description(false)
for k in keys:
__atomdb[k] = ad
return ad
def iterateAtomDB(objects=True):
"""Iterate over all entries in the internal database with data for isotopes and
natural elements. If objects=True, AtomData objects are returned. If
objects=False, (Z,A) values are returned (A=0 indicates a natural
element)."""
for z,a in _rawfct['atomdb_getall_za']():
yield atomDB(z,a) if objects else (int(z),int(a))
class FileListEntry:
"""Entry in list returned by browseFiles."""
def __init__(self,*,name,source,factName,priority):
self.__n = name or None
self.__f = factName or None
self.__p = int(priority) if priority.isdigit() else priority
self.__s = source or None
@property
def name(self):
"""The (possibly virtual) filename needed to select this entry"""
return self.__n
@property
def source(self):
"""Description (such as the parent directory in case of on-disk files)"""
return self.__s
@property
def factName(self):
"""Name of the factory delivering entry."""
return self.__f
@property
def priority(self):
"""The priority value of the entry (important in case multiple factories
delivers content with the the same name). Can be 'Unable',
'OnlyOnExplicitRequest' or an integer priority value (entries with
higher values will be preferred).
"""
return self.__p
@property
def fullKey(self):
"""The string '%s::%s'%(self.factName,self.name), which can be used to
explicitly request this entry without interference from similarly
named entries in other factories.
"""
return '%s::%s'%(self.__f,self.__n)
def __str__(self):
l=[]
if self.__n:
l+=['name=%s'%self.__n]
if self.__s:
l+=['source=%s'%self.__s]
if self.__f:
l+=['factory=%s'%self.__f]
l+=['priority=%s'%self.__p]
return 'FileListEntry(%s)'%(', '.join(l))
def browseFiles(dump=False,factory=None):
"""Browse list of available input files (virtual or on-disk). The list is not
guaranteed to be exhaustive, but will usually include all files in
supported files in the most obvious locations (the NCrystal data
directory and other directories of the standard search path, the current
working directory, virtual files embedded in the NCrystal library or
registered dynamically.
Returns a list of FileListEntry objects. If the dump flag is set to True,
the list will also be printed to stdout in a human readable form.
Setting factory parameter will only return / print entries from the
factory of that name.
"""
res=[]
def sortkey(e):
praw = e.priority
if praw=='Unable':
p=-2
elif isinstance(praw,int):
p=praw
else:
assert praw=='OnlyOnExplicitRequest'
p=-1
return (-p, e.factName,e.source,e.name)
for n,s,f,p in _rawfct['ncrystal_get_filelist']():
res.append( FileListEntry(name=n,source=s,factName=f,priority=p) )
res.sort(key=sortkey)
if dump:
seen_names=set()
groupfct = lambda e : (e.factName,e.source,e.priority)
lastgroup = None
pending=[]
def print_pending():
if not pending:
return
if factory is not None and lastgroup[0]!=factory:
pending.clear()
return
n=len(pending) - 1
pending[0] = pending[0]%('%s files'%n if n!=1 else '%s file'%n )
for line in pending:
print (line)
pending.clear()
for e in res:
group = groupfct(e)
if lastgroup != group:
print_pending()
lastgroup = group
pending.append('==> %%s from "%s" (%s, priority=%s):'%group)
hidden = e.name in seen_names
seen_names.add(e.name)
extra=''
prname=e.name
if e.priority=='OnlyOnExplicitRequest':
prname='%s::%s'%(e.factName,e.name)
elif hidden:
extra=' <--- Hidden by higher priority entries (select as "%s::%s")'%(e.factName,e.name)
pending.append( ' %s%s'%(prname,extra))
print_pending()
if factory is None:
return res
return [e for e in res if e.factName==factory]
class TextData:
"""Text data accessible line by line, with associated meta-data. This always
include a UID (useful for comparison and downstream caching purposes) and
the data type (e.g. "ncmat"). Optionally available is the last known
on-disk path to a file with the same content, which might be useful in
case the data needs to be passed to 3rd party software which can only
work with physical files.
Text data objects are easily line-iterable, easily providing lines
(without newline characters): for( auto& line : mytextdata ) {...}. Of
course, the raw underlying data buffer can also be accessed if needed.
The raw data must be ASCII or UTF-8 text, with line endings \\n=CR=0x0A
(Unix) or \\r\\n=LF+CR=0x0D0A (Windows/DOS). Other encodings might work
only if 0x00, 0x0A, 0x0D bytes do not occur in them outside of line
endings.
Notice that ancient pre-OSX Mac line-endings \\r=LF=0x0D are not
supported, and iterators will actually throw an error upon encountering
them. This is done on purpose, since files with \\r on unix might hide
content when inspected in a terminal can be either confusing, a potential
security issue, or both.
"""
def __init__(self,name):
"""create TextData object based on string (same as using createTextData(name))"""
l=_rawfct['nc_gettextdata'](name)
assert len(l)==5
self.__rd = l[0]
self.__uid = int(l[1])
self.__dsn = l[2]
self.__datatype= l[3]
self.__rp = pathlib.Path(l[4]) if l[4] else None
@property
def uid(self):
"""Unique identifier. Objects only have identical UID if all contents and
metadata are identical."""
return self.__uid
@property
def dataType(self):
"""Data type ("ncmat", "lau", ...)."""
return self.__datatype
@property
def dataSourceName(self):
"""Data source name. This might for instance be a filename."""
return self.__dsn
@property
def rawData(self):
"""Raw access to underlying data."""
return self.__rd
@property
def lastKnownOnDiskLocation(self):
"""Last known on-disk location (returns None if unavailable). Note that there
is no guarantee against the file having been removed or modified since the
TextData object was created.
"""
return self.__rp
def __str__(self):
return 'TextData(%s, uid=%i, %i chars)'%(self.__dsn,self.__uid,len(self.__rd))
def __iter__(self):
"""Line-iteration, yielding lines without terminating newline characters"""
from io import StringIO
def chomp(x):
return x[:-2] if x.endswith('\r\n') else (x[:-1] if x.endswith('\n') else x)
for l in StringIO(self.__rd):
yield chomp(l)
def createTextData(name):
"""creates TextData objects based on requested name"""
return TextData(name)
def getFileContents(name):
"""OBSOLETE FUNCTION: Use createTextData(..).rawData instead."""
return createTextData(name).rawData
def addCustomSearchDirectory(dirpath):
"""Register custom directories to be monitored for data files."""
_rawfct['ncrystal_add_custom_search_dir'](_str2cstr(str(pathlib.Path(dirpath).resolve())))
def removeCustomSearchDirectories():
"""Remove all search directories added with addCustomSearchDirectory."""
_rawfct['ncrystal_remove_custom_search_dirs']()
def removeAllDataSources():
"""Disable all standard data sources, remove all TextData factories as well,
clear all registered virtual files and custom search directories. Finish
by calling global clearCaches function ("Ripley: I say we take off and
nuke the entire site from orbit. It's the only way to be sure.").
"""
_rawfct['ncrystal_remove_all_data_sources']()
def enableAbsolutePaths( enable = True ):
"""Whether or not absolute file paths are allowed."""
_rawfct['ncrystal_enable_abspaths'](1 if enable else 0)
def enableRelativePaths( enable = True ):
"""Whether or not paths relative to current working directory are allowed."""
_rawfct['ncrystal_enable_relpaths'](1 if enable else 0)
def enableStandardSearchPath( enable = True ):
"""Whether or not the standard search path should be searched. This standard
search path is is by default searched *after* the standard data library,
and is built by concatenating entries in the NCRYSTAL_DATA_PATH
environment variables with entries in the compile time definition of the
same name (in that order). Note that by default the standard search path
is searched *after* the standard data library.
"""
_rawfct['ncrystal_enable_stdsearchpath'](1 if enable else 0)
def enableStandardDataLibrary( enable = True, dirpath_override = None ):
"""Whether or not the standard data library shipped with NCrystal should be
searched.
Unless NCrystal is configured to have the standard data library embedded
into the binary at compilation time, the location (directory path) of the
standard data library is taken from the NCRYSTAL_DATADIR environment
variable. If the environment variable is not set, the location is taken
from the compile time definition of the same name. If neither is set, and
data was not embedded at compilation time, the standard data library will
be disabled by default and the location must be provided before it can be
enabled. In all cases, the location can be overridden if explicitly
provided by the user as the second parameter to this function.
"""
d = _str2cstr(str(pathlib.Path(dirpath_override).resolve())) if dirpath_override else ctypes.cast(None, ctypes.c_char_p)
_rawfct['ncrystal_enable_stddatalib'](1 if enable else 0, d)
def browsePlugins(dump=False):
"""Return list of plugins [(pluginname,filename,plugintype),...].
If the dump flag is set to True, the list will not be returned. Instead it
will be printed to stdout.
"""
l=_rawfct['ncrystal_get_pluginlist']()
if not dump:
return l
print('NCrystal has %i plugins loaded.'%len(l))
for i in range(len(l)):
pluginname, filename, plugintype = l[i]
print('==> %s (%s%s)'%(pluginname,plugintype,
' from %s'%filename if filename else ''))
def debyeIsotropicMSD( *, debye_temperature, temperature, mass ):
"""Estimate (isotropic, harmonic) atomic mean-squared-displacement using the
Debye Model (eq. 11+12 in R.J. Glauber, Phys. Rev. Vol98 num 6,
1955). Unit of returned MSD value is Aa^2. Input temperatures should be
in Kelvin, and input atomic mass should be in amu.
"""
return float(_rawfct['ncrystal_debyetemp2msd'](debye_temperature, temperature, mass))
def debyeTempFromIsotropicMSD( *, msd, temperature, mass ):
"""The inverse of debyeIsotropicMSD (implemented via root-finding), allowing to
get the Debye temperature which will give rise to a given
mean-squared-displacement.
"""
return float(_rawfct['ncrystal_msd2debyetemp'](msd, temperature, mass))
def analyseVDOS(emin,emax,density,temperature,atom_mass_amu):
"""Analyse VDOS curve to extract mean-squared-displacements, Debye temperature,
effective temperature, gamma0 and integral. Input VDOS must be defined via
an array of density values, over an equidistant energy grid over [emin,emax]
(in eV). Additionally, it is required that emin>0, and a parabolic trend
towards (0,0) will be assumed for energies in [0,emin]. Units are kelvin and
eV where appropriate.
"""
return _rawfct['nc_vdoseval'](emin,emax,density,temperature,atom_mass_amu)
def normaliseCfg(cfgstr):
"""Returns normalised version of cfgstr. This is done behind the scenes by
loading the specified cfg-string into a C++ MatCfg object and then
re-encoding it as a string.
"""
return _rawfct['nc_normcfgstr'](cfgstr)
def decodeCfg(cfgstr,*,asJSONStr=False):
"""Decodes cfg-string and returns as Python data structure (a dictionary). The
format of this data structure should be mostly self-evident by
inspection, and is not guaranteed to stay the same across NCrystal
versions. If asJSONStr=true, the data structure will be returned as a
JSON-encoded string, instead of a Python dictionary.
"""
_js = _rawfct['nc_cfgstr2json'](cfgstr)
if asJSONStr:
return _js
return json.loads(_js)
def _rawParseNCMAT(text_data_name,*,asJSONStr=False):
"""Parses NCMAT content and returns as Python data structure (a dictionary). The
format of this data structure should be mostly self-evident by
inspection, and is not guaranteed to stay the same across NCrystal
versions. If asJSONStr=true, the data structure will be returned as a
JSON-encoded string, instead of a Python dictionary.
WARNING: This function is considered experimental and is currently NOT
feature complete. It only returns data from a few select NCMAT sections."""
_js = _rawfct['nc_ncmat2json'](text_data_name)
if asJSONStr:
return _js
return json.loads(_js)
def generateCfgStrDoc( mode = "print" ):
"""Generates documentation about the available cfg-str variables. Mode can
either be 'print' (print detailed explanation to stdout), 'txt_full' (return
detailed explanations as string), 'txt_short' (return short explanations as
string), 'json' (return json-encoded string), or 'python' (return python
data structures).
"""
modemap={'print':0,'txt_full':0,'txt_short':1,'json':2,'python':2}
modeint = modemap.get(mode,None)
if modeint is None:
raise NCBadInput('mode must be one of %s'%list(sorted(modemap.keys())))
_=_rawfct['nc_gencfgdoc'](modeint)
if mode == 'print':
print(_)
else:
return json.loads(_) if mode=='python' else _
def test():
"""Quick test that NCrystal works as expected in the current installation."""
_actualtest()
print("Tests completed succesfully")
def _actualtest():
def require(b):
if not b:
raise RuntimeError('check failed')
def flteq(a,b,rtol=1.0e-6,atol=1.0e-6):
return abs(a-b) <= 0.5 * rtol * (abs(a) + abs(b)) + atol
def require_flteq(a,b):
if not flteq(a,b):
raise RuntimeError('check failed (%.16g != %.16g, diff %g)'%(a,b,a-b))
return True
al = createInfo('stdlib::Al_sg225.ncmat;dcutoff=1.4')
require(hasFactory('stdncmat'))
require(al.hasTemperature() and require_flteq(al.getTemperature(),293.15))
require_flteq(al.getXSectFree(),1.39667)
require_flteq(al.getXSectAbsorption(),0.231)
require_flteq(al.getDensity(),2.69864547673)
require_flteq(al.getNumberDensity(),0.06023238256131625)
require(al.hasDebyeTemperature())
require(al.hasStructureInfo())
si=al.getStructureInfo()
require( si['spacegroup'] == 225 )
require_flteq(si['a'],4.04958)
require_flteq(si['b'],4.04958)
require_flteq(si['c'],4.04958)
require( si['alpha'] == 90.0 )
require( si['beta'] == 90.0 )
require( si['gamma'] == 90.0 )
require( si['n_atoms'] == 4 )
require_flteq(si['volume'],66.4094599932)
require( al.hasHKLInfo() )
require( al.nHKL() == 3 )
require_flteq(al.hklDLower(),1.4)
require( al.hklDUpper() > 1e36 )
expected_hkl = { 0 : (1, 1, 1, 8, 2.3380261031049243, 1.7731590373262052),
1 : (2, 0, 0, 6, 2.02479, 1.7317882793764163),
2 : (2, 2, 0, 12, 1.4317427394787092, 1.5757351418107877) }
for idx,hkl in enumerate(al.hklList()):
h,k,l,mult,dsp,fsq = hkl
require(idx<len(expected_hkl))
e = expected_hkl[idx]
require( list(e)[0:4] == [h,k,l,mult] )
require_flteq(dsp, e[4])
require_flteq(fsq, e[5])
#We do all createScatter... here with independent RNG, for reproducibility
#and to avoid consuming random numbers from other streams.
alpc = createScatterIndependentRNG('stdlib::Al_sg225.ncmat;dcutoff=1.4;incoh_elas=0;inelas=0')
require( alpc.name == 'PCBragg' )
require( isinstance(alpc.name,str) )
require( alpc.refCount() in (1,2) and type(alpc.refCount()) == int )
require( alpc.isNonOriented() )
#print(alpc.xsect(wl=4.0))
require_flteq(1.632435821586171,alpc.crossSectionIsotropic(wl2ekin(4.0)) )
require_flteq(1.632435821586171,alpc.crossSection(wl2ekin(4.0),(1,0,0)))
require( alpc.crossSectionIsotropic(wl2ekin(5.0)) == 0.0 )
require( alpc.rngSupportsStateManipulation() )
require(alpc.getRNGState()=='a79fd777407ba03b3d9d242b2b2a2e58b067bd44')
alpc.setRNGState('deadbeefdeadbeefdeadbeefdeadbeefb067bd44')
require(alpc.getRNGState()=='deadbeefdeadbeefdeadbeefdeadbeefb067bd44')
alpc_clone = alpc.clone()
require(alpc.getRNGState()=='deadbeefdeadbeefdeadbeefdeadbeefb067bd44')
require(alpc_clone.getRNGState()=='e0fd16d42a2aced7706cffa08536d869b067bd44')
alpc_clone2 = alpc_clone.clone(for_current_thread=True)
require(alpc_clone2.getRNGState()=='cc762bb1160a0be514300da860f6d160b067bd44')
alpc_clone3 = alpc_clone.clone(rng_stream_index = 12345 )
require(alpc_clone3.getRNGState()=='3a20660a10fd581bd7cddef8fc3f32a2b067bd44')
#Pick Nickel at 1.2 angstrom, to also both vdos + incoherent-elastic + coherent-elastic:
nipc = createScatterIndependentRNG('stdlib::Ni_sg225.ncmat;dcutoff=0.6;vdoslux=2',2543577)
nipc_testwl = 1.2
#print(nipc.xsect(wl=nipc_testwl),nipc.xsect(wl=5.0))
require_flteq(16.76322537767633,nipc.xsect(wl=nipc_testwl))
require_flteq(16.76322537767633,nipc.xsect(wl=nipc_testwl,direction=(1,0,0)))
require_flteq(5.958094744249944,nipc.xsect(wl=5.0))
require( nipc.name == 'ProcComposition' )
expected = [ ( 0.056808478892590906, 0.5361444826572666 ),
( 0.056808478892590906, 0.5361444826572666 ),
( 0.056808478892590906, 0.36219866365374176 ),
( 0.056808478892590906, 0.8391056916029316 ),
( 0.032001313096074194, -0.3726211530494784 ),
( 0.056808478892590906, -0.10165685368899147 ),
( 0.056808478892590906, -0.15963879335683306 ),
( 0.056808478892590906, 0.8260541809964751 ),
( 0.07799891342244511, -0.5293689067509328 ),
( 0.05348597239804991, -0.09542895891111686 ),
( 0.056808478892590906, 0.8260541809964751 ),
( 0.04125596596989546, -0.2114086959439411 ),
( 0.056808478892590906, -0.10165685368899147 ),
( 0.056808478892590906, -0.10165685368899147 ),
( 0.056808478892590906, 0.5361444826572666 ),
( 0.056808478892590906, -0.3915665520281999 ),
( 0.056808478892590906, 0.36219866365374176 ),
( 0.05750930296126236, -0.5221485562238027 ),
( 0.056808478892590906, 0.36219866365374176 ),
( 0.0812282226184265, -0.9893430983107131 ),
( 0.056808478892590906, -0.5655123710317247 ),
( 0.058097184485747494, -0.951408724433637 ),
( 0.056808478892590906, 0.3042167239859003 ),
( 0.056808478892590906, 0.7378808571510718 ),
( 0.056808478892590906, -0.10165685368899147 ),
( 0.08045270890565197, -0.8062090812584963 ),
( 0.056808478892590906, -0.5655123710317247 ),
( 0.06930621305459778, 0.0790013056899895 ),
( 0.04019454300337846, -0.9619857378392679 ),
( 0.08983663449895618, -0.5822245509723732 ) ]
if _np is None:
ekin,mu=[],[]
for i in range(30):
_ekin,_mu=nipc.sampleScatterIsotropic(wl2ekin(nipc_testwl))
mu += [_mu]
ekin += [_ekin]
else:
ekin,mu = nipc.sampleScatterIsotropic(wl2ekin(nipc_testwl),repeat=30)
for i in range(len(ekin)):
#print ( f' ( {ekin[i]}, {mu[i]} ),');continue
require_flteq(ekin[i],expected[i][0])
require_flteq(mu[i],expected[i][1])
expected = [ ( 0.056808478892590906, (0.07228896531453344, -0.5190173207165885, 0.8517014302500192) ),
( 0.056808478892590906, (-0.9249112255344181, -0.32220112076758217, -0.20180600252850442) ),
( 0.056808478892590906, (-0.15963879335683306, -0.8486615569734178, 0.5042707778277745) ),
( 0.0492224669270449, (-0.9779916301402904, 0.140975569549056, 0.15381241876342955) ),
( 0.056808478892590906, (0.07228896531453344, 0.7905105193171594, -0.6081672667471253) ),
( 0.056808478892590906, (-0.10165685368899147, -0.8869759070713323, -0.4504882066969593) ),
( 0.056808478892590906, (0.07228896531453344, -0.39741541395284924, -0.914787021249449) ),
( 0.056808478892590906, (-0.10165685368899147, -0.9768880366798581, -0.1880309758785167) ),
( 0.025610418737037184, (-0.884783168996826, -0.4657283985847863, 0.015993830422524287) ),
( 0.056808478892590906, (0.8260541809964751, 0.539797243436807, 0.16202909009269678) ),
( 0.07443181306716587, (-0.6036941700256581, -0.06282145095069493, -0.7947369466543514) ),
( 0.056808478892590906, (0.8260541809964751, 0.10854661864786977, 0.5530389874487663) ),
( 0.056808478892590906, (0.5361444826572666, 0.7795115518549294, 0.3238994199452849) ),
( 0.056808478892590906, (0.07228896531453344, 0.746175597107444, 0.6618128767069312) ),
( 0.056808478892590906, (-0.10165685368899147, -0.4247181868490453, 0.8996001033001911) ),
( 0.056808478892590906, (0.5361444826572666, 0.5555760611065321, -0.6355189486093415) ),
( 0.05736918247226906, (-0.17265143322057086, -0.684984059616355, 0.7078052844380157) ),
( 0.056808478892590906, (0.3042167239859003, -0.8706122815482211, -0.3866347631352975) ),
( 0.056808478892590906, (-0.7384733804796917, 0.6322144258925643, -0.23443972789660028) ),
( 0.056808478892590906, (-0.15963879335683306, 0.21525619037302965, -0.9634211063505222) ),
( 0.056808478892590906, (0.41359447569500096, 0.4927058865194684, 0.7656242675514158) ),
( 0.056808478892590906, (0.25796367721315083, 0.48520231047621615, 0.8354839670198411) ),
( 0.056808478892590906, (0.5785005938702705, 0.8104481067271115, -0.09225469740985966) ),
( 0.04320288783696474, (-0.030385860971878235, -0.49547867364837517, 0.8680884651996275) ),
( 0.05428746831317616, (-0.3602629693021255, -0.9063804616575692, 0.22064689364463652) ),
( 0.056808478892590906, (0.36219866365374176, -0.8822186430862216, 0.3008361577978114) ),
( 0.056808478892590906, (0.7680722413286334, 0.5975216576265994, -0.23028873347945303) ),
( 0.056808478892590906, (0.32922859149927786, -0.9426419619170849, 0.0550878042084668) ),
( 0.056808478892590906, (-0.10165685368899147, -0.2489220191768986, -0.9631737706493833) ),
( 0.0670456981700729, (-0.8979842133391931, 0.34668021323231085, 0.2709929562678522) ) ]
for i in range(30):
out_ekin,outdir = nipc.sampleScatter(wl2ekin(nipc_testwl),(1.0,0.0,0.0))
#print ( f' ( {out_ekin}, {outdir} ),');continue
require_flteq(out_ekin,expected[i][0])
require_flteq(outdir[0],expected[i][1][0])
require_flteq(outdir[1],expected[i][1][1])
require_flteq(outdir[2],expected[i][1][2])
gesc = createScatterIndependentRNG("""stdlib::Ge_sg227.ncmat;dcutoff=0.5;mos=40.0arcsec
;dir1=@crys_hkl:5,1,1@lab:0,0,1
;dir2=@crys_hkl:0,-1,1@lab:0,1,0""",3453455)
require_flteq(591.025731949681,gesc.crossSection(wl2ekin(1.540),( 0., 1., 1. )))
require_flteq(1.666984885615526,gesc.crossSection(wl2ekin(1.540),( 1., 1., 0. )))
|