1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
"""
Module containing various McStas-related utilities, such as functions helping
with automatic setup of McStas-Union materials from NCrystal cfg-strings, or
production of .laz/.lau files for McStas components such as PowderN.comp or
Single_crystal.comp (with reduced physics capabilities of course).
"""
################################################################################
## ##
## This file is part of NCrystal (see https://mctools.github.io/ncrystal/) ##
## ##
## Copyright 2015-2022 NCrystal developers ##
## ##
## Licensed under the Apache License, Version 2.0 (the "License"); ##
## you may not use this file except in compliance with the License. ##
## You may obtain a copy of the License at ##
## ##
## http://www.apache.org/licenses/LICENSE-2.0 ##
## ##
## Unless required by applicable law or agreed to in writing, software ##
## distributed under the License is distributed on an "AS IS" BASIS, ##
## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ##
## See the License for the specific language governing permissions and ##
## limitations under the License. ##
## ##
################################################################################
#Import NCrystal module with importlib to make sure we always get the one from
#the same directory as the current file:
import pathlib
import importlib
try:
NC = importlib.import_module('NCrystal', package=str(pathlib.Path(__file__).parent.resolve()))
except (ModuleNotFoundError,ImportError):
#Fall back to standard search pattern:
import NCrystal as NC
import warnings
def cfgstr_detect_components( cfgstr ):
"""
Internal helper function which can detect which physics components are
present once a given cfg-string is loaded, and provide derived cfg-strings
suitable for picking out those components. The return value is a list of
component names (e.g. "inelas", "coh_elas", "sans", etc.) and the associated
cfg-strings: [(cfgstr1,compname1), (cfgstr2,compname2),...].
"""
#Normalise original cfg (so syntax errors will refer to the cfgstr as
#originally specified), and add flags which cause initialisation speedup
#without affecting which components are present:
probecfgstr = NC.normaliseCfg(cfgstr) + ';vdoslux=0'
res=[]
for ct in NC.standard_comp_types:
extracfg = f';comp={ct}'
if not NC.createScatter( probecfgstr + extracfg ).isNull():
res.append( ( NC.normaliseCfg(cfgstr+extracfg), ct.replace('_','') ) )
return res
def cfgstr_2_unioncfg( *, cfgstr, split_by_physics = False ):
"""Analyse cfg-string and return data needed in order to set up Union
components accordingly. Specifically the function returns
(inv_pen_depth_2200,proclist) where inv_pen_depth is the inverse penetration
depth in inverse meters for a neutron at 2200m/s, and proclist is a list
[(cfgstr1,compname1), (cfgstr2,compname2),...] with the relevant
components. If split_by_physics is True, this process list will be as
provided by cfgstr_detect_components(cfgstr), and otherwise it will simply
be [(normaliseCfg(cfgstr),'total')].
"""
info=NC.createInfo(cfgstr)
inv_pen_depth_2200 = 100.0 * info.getNumberDensity() * info.getXSectAbsorption()# in inverse meters
if split_by_physics:
return inv_pen_depth_2200, cfgstr_detect_components( cfgstr )
else:
return inv_pen_depth_2200, [(NC.normaliseCfg(cfgstr),'total')]
def cfgstr_2_union_instrument_code( *, cfgstr, name, split_by_physics = False ):
"""
Analyse cfg-string (via a call to cfgstr_2_unioncfg(cfgstr,split_by_physics)),
and use the results to produce (and return) McStas-instrument code suitable
for defining a McStas-Union material with the given name as specified via
the "name" parameter. Depending on the value of split_by_physics, this Union
material will either be set up with either just a single NCrystal_process,
or a whole list of NCrystal_processes. Using split_by_physics=False is
likely slightly more efficient, but split_by_physics=True will allow insight
into the contributions of the various physics components ("inelas",
"coh_elas", "sans", "incoh_elas", ...) at the McStas-Union level.
"""
for ch in ';.:':
if ch in name:
raise ValueError(f'union process name "{name}" contains a "{ch}"'
+' character which is likely not what was intended.')
assert not '/*' in cfgstr
assert not '*/' in cfgstr
assert not '/*' in name
assert not '*/' in name
out_absorption, physlist = cfgstr_2_unioncfg( cfgstr=cfgstr, split_by_physics=split_by_physics )
res = f"""
/*
The following code was auto generated by NCrystal v{NC.__version__} via Python:
NCrystal.mcstasutils.cfgstr_2_union_instrument_code(
cfgstr = {repr(str(cfgstr))},
name = {repr(str(name))}"""
if split_by_physics:
res += """,
split_by_physics = True )
"""
else:
res += ' )\n'
res+="""
Please rerun in case of major changes to input data or NCrystal.
*/
"""
procnames=[]
mcstas_string_max = 256
for proccfgstr, proctypename in physlist:
if len(physlist)==1 and proctypename=='total':
procname=f'{name}_ncrystal_proc'
else:
procname=f'{name}_ncrystal_{proctypename}_proc'
procnames.append( procname )
if len(proccfgstr) > mcstas_string_max:
warnings.warn(f'cfg_string might be too long for a McStas string: "{proccfgstr}"')
res += f"""
COMPONENT {procname} = NCrystal_process(
cfg = "{proccfgstr}" )
AT (0,0,0) ABSOLUTE
"""
procnamestr = ','.join(procnames)
if len(procnamestr) > mcstas_string_max:
warnings.warn(f'process_string might be too long for a McStas string: "{procnamestr}" '
+'(it might work if you use a shorter material name)')
res += f"""
COMPONENT {name} = Union_make_material(
process_string = "{procnamestr}",
my_absorption = {out_absorption:.15g} )
AT (0,0,0) ABSOLUTE
/* End of auto generated code from NCrystal v{NC.__version__}. */
"""
return res
def cfgstr_2_hkl(*, cfgstr, tgtformat, verbose=True, fp_format = '%.14g'):
"""Function which can be used to create input files with reflections for
McStas crystalline sample components like PowderN and Single_crystal, based
on NCrystal cfg-strings (usually referring to NCMAT files with crystalline
single-phase materials). The tgtformat must be either 'laz' or 'lau'. If
verbose is True, the files might contain strictly unneccessary content
(e.g. white-space for adjusting columns, a dspacing column in .lau files,
...). Finally the fp_format parameter can be used to change the precision of
floating point numbers in the file.
This function returns an iterable, yielding one line of the output file at a
time.
"""
import numbers
import functools
import math
assert tgtformat in ('laz','lau')
doPowder = (tgtformat=='laz')
doDsp = (doPowder or verbose)
doMult = True#Always needed, even in lau
cfgstr = NC.normaliseCfg(cfgstr)
info = NC.createInfo(cfgstr)
def errmsg(msg):
raise SystemExit('Error: %s'%msg)
if info.isMultiPhase():
errmsg('this script does not handle multiphase materials')
if not info.hasHKLInfo():
errmsg('this script does not handle non-crystalline materials')
if not info.hasStructureInfo():
errmsg('this script does not handle crystalline materials without unit cell structure')
si = info.getStructureInfo()
if not si.get('spacegroup',None):
errmsg('this script does not handle crystalline materials without spacegroup number')
if not info.hasAtomInfo():
errmsg('this script does not handle crystalline materials without info of atoms placement in the unit cell')
if info.hklInfoType() != NC.HKLInfoType.SymEqvGroup:
errmsg('this script does not handle crystalline materials without symmetry equivalent HKL groupings')
orig_header = []
decoded_cfg = NC.decodeCfg(cfgstr)
data_name = decoded_cfg.get('data_name',None)
cfgstr_nodataname = cfgstr.replace(data_name,'')
if cfgstr_nodataname.startswith(';'):
cfgstr_nodataname = cfgstr_nodataname[1:]
cfgstr_nodataname = cfgstr_nodataname.strip()
if ( decoded_cfg.get('density',{}).get('type',None) != 'scalefactor'
or decoded_cfg.get('density',{}).get('value',None) != 1.0 ):
errmsg('this script does not handle configurations with density overrides'
+' (since resulting files might not load correctly by all clients)')
if data_name:
for i,l in enumerate(NC.createTextData(data_name)):
if l.startswith('#') or not l.strip():
orig_header.append(l.rstrip())
else:
if not (i==0 and l.startswith('NCMAT')):
break
assert info.hasStructureInfo()
assert info.hasHKLInfo()
assert info.hasTemperature()
assert info.hasAtomInfo()
si = info.getStructureInfo()
fmtfp=lambda x : fp_format%x if isinstance(x, numbers.Real) else str(x)
yield f'# File created by NCrystal v{NC.__version__}'
yield '#'
yield f'# ncrystal_cfgstr "{cfgstr}"'
yield '#'
if tgtformat=='laz':
yield '# Format: "laz" (suitable for McStas PowderN component)'
else:
assert tgtformat=='lau'
yield '# Format: "lau" (suitable for McStas Single_crystal component)'
yield '#'
if orig_header:
had_embedded_cfg = any( 'NCRYSTALMATCFG[' in e for e in orig_header)
guard=' orighdr :'#something that hopefully will cause McStas code to ignore the line
yield f'#{guard} Original file had the following comments at the top:'
if had_embedded_cfg:
yield f'#{guard}'
yield f'#{guard} (note the ncrystalmatcfg statement is disabled in this'
yield f'#{guard} reproduction by adding "<disable>" around it)'
yield f'#{guard}'
for l in orig_header:
if 'NCRYSTALMATCFG[' in l:
l=l.replace('NCRYSTALMATCFG[','NCRYSTAL<disable>MATCFG[')
yield f'#{guard} {l}'
yield '#'
if cfgstr_nodataname:
yield '#'
yield f'# ncrystal_embedded_cfg : NCRYSTALMATCFG[{cfgstr_nodataname}]'
yield '#'
yield f'# temperature {fmtfp(info.getTemperature())} [kelvin]'
yield '#'
yield f'# spacegroup {si["spacegroup"]}'
yield f'# lattice_a {fmtfp(si["a"])} [Aa]'
yield f'# lattice_b {fmtfp(si["b"])} [Aa]'
yield f'# lattice_c {fmtfp(si["c"])} [Aa]'
yield f'# lattice_aa {fmtfp(si["alpha"])} [degrees]'
yield f'# lattice_bb {fmtfp(si["beta"])} [degrees]'
yield f'# lattice_cc {fmtfp(si["gamma"])} [degrees]'
yield f'# Vc {fmtfp(si["volume"])} [Aa^3]'
yield '#'
n_atoms = sum( ai.count for ai in info.atominfos )
assert si["n_atoms"] == n_atoms
yield f'# multiplicity {n_atoms} [atoms/unit cell]'
yield f'# density {fmtfp(info.density)} [g/cm^3]'
yield f'# number_density {fmtfp(info.numberdensity)} [atoms/Aa^3]'
daltons_per_unitcell = sum(ai.atomData.averageMassAMU() * ai.count for ai in info.atominfos)
yield f'# weight {fmtfp(daltons_per_unitcell)} [g/mol of entire unit cell]'
yield f'# average_mass {fmtfp(daltons_per_unitcell/n_atoms)} [average atomic g/mol]'
sigma_coh = sum(ai.atomData.coherentXS() * ai.count for ai in info.atominfos)
sigma_inc = sum(ai.atomData.incoherentXS() * ai.count for ai in info.atominfos)
sigma_abs = sum(ai.atomData.captureXS() * ai.count for ai in info.atominfos)
yield '#'
yield f'# sigma_coh {fmtfp(sigma_coh)} [barn/unitcell]'
yield f'# sigma_inc {fmtfp(sigma_inc)} [barn/unitcell]'
yield f'# sigma_abs {fmtfp(sigma_abs)} [barn/unitcell]'
yield '#'
has_debye_temp = True
debye_temp_sum = 0.0
debye_temp_sumw = 0.0
if all(ai.atomData.isElement() for ai in info.atominfos):
d = {}
for ai in info.atominfos:
if has_debye_temp:
if ai.debyeTemperature is not None:
_dt = ai.debyeTemperature
elif ai.msd is not None:
_dt = NC.debyeTempFromIsotropicMSD( msd = ai.msd,
temperature = info.getTemperature(),
mass = ai.atomData.averageMassAMU() )
else:
has_debye_temp = False
_dt = 0.0
_dtw = ai.count * ai.atomData.scatteringXS()
debye_temp_sum += _dt*_dtw
debye_temp_sumw += _dtw
d[ai.atomData.elementName()] = d.get(ai.atomData.elementName(),0) + ai.count
nformula_per_unitcell = functools.reduce(math.gcd, list(c for _,c in d.items()))
formula = ''.join(( '%s%i'%(k,v/nformula_per_unitcell) if v!=nformula_per_unitcell else k) for k,v in sorted(d.items()))
yield f'# formula {formula}'
yield f'# nformula_per_unitcell {nformula_per_unitcell}'
if debye_temp_sum:
yield f'# debye_temperature {fmtfp(debye_temp_sum/debye_temp_sumw)} [kelvin, weighted by sigma_b]'
cols = ['h','k','l']
if doMult:
cols.append('j')
if doDsp:
cols.append('d')
cols.append('F2')
colwidths={'h':3,'k':3,'l':3,'j':2,'d':16,'F2':16}
header = '#'
for i,c in enumerate(cols):
header += ' '
if verbose:
header += c.rjust(colwidths[c])
else:
header += c
col_comments={
'd':"[d-spacing in Aa]",
'j': "multiplicity",
'F2':"[norm of scattering factor |F|^2 in barn]"
}
yield '#'
maxcw=max(len(c) for c in col_comments.keys())
for i,c in enumerate(cols):
cc = col_comments.get(c,'')
if cc:
cc = ' '+cc
yield f'# column_{c.ljust(maxcw)} {i+1}{cc}'
yield '# unit_F2 barn'
yield '#'
yield header
def format_line(data):
s=' ' if verbose else ''
for c in cols:
if s:
s+=' '
s+=fmtfp(data[c]).rjust(colwidths[c])
return s
if doPowder:
for h,k,l,mult,dsp,F2_barn in info.hklList():
yield format_line({'h':h,'k':k,'l':l,'d':dsp,'j':mult,'F2':F2_barn})
else:
for h,k,l,mult,dsp,F2_barn in info.hklList(all_indices=True):
for i in range(len(h)):
#Yield both hkl and -hkl and put mult=1 (since we put all planes explicitly)
yield format_line({'h':h[i],'k':k[i],'l':l[i],'d':dsp,'j':1,'F2':F2_barn})
yield format_line({'h':-h[i],'k':-k[i],'l':-l[i],'d':dsp,'j':1,'F2':F2_barn})
def main(argv):
args = argv[1:]
if args and isinstance(args[0],bytes):
args = list(e.decode() for e in args)
def usage(*,err):
if err:
print("ERROR - wrong usage!")
print()
import os
pn=os.path.basename(argv[0])
if pn.endswith('.py'):
pn = pn[0:-3]
print("""Usage:
--help|-h Show these instructions
--union [--split] NAME CFGSTR Output McStas-Union code to define material
with NAME based on specified NCrystal CFGSTR.
Providing --split will split NCrystal processes
into physics types at the McStas-Union level,
rather than internally in NCrystal.
--laz CFGSTR Convert NCrystal CFGSTR to McStas .laz format
for PowderN.
--lau CFGSTR Convert NCrystal CFGSTR to McStas .lau format
for Single_crystal.
""")
raise SystemExit(1 if err else 0)
err = lambda : usage(err=True)
if '-h' in args or '--help' in args:
usage(err=False)
if not args or len(args)<2:
err()
if args[0] == '--union':
dosplit = False
if '--split' in args:
args.remove('--split')
dosplit=True
if len(args)<3:
err()
print(cfgstr_2_union_instrument_code( cfgstr=';'.join(args[2:]), name=args[1], split_by_physics = dosplit ))
return
if args[0] in ('--laz','--lau'):
for e in cfgstr_2_hkl(cfgstr=';'.join(args[1:]),tgtformat=args[0][2:]):
print(e)
return
err()
if __name__ == '__main__':
import sys
main(sys.argv)
|