1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
|
#!/usr/bin/env python3
################################################################################
## ##
## This file is part of NCrystal (see https://mctools.github.io/ncrystal/) ##
## ##
## Copyright 2015-2022 NCrystal developers ##
## ##
## Licensed under the Apache License, Version 2.0 (the "License"); ##
## you may not use this file except in compliance with the License. ##
## You may obtain a copy of the License at ##
## ##
## http://www.apache.org/licenses/LICENSE-2.0 ##
## ##
## Unless required by applicable law or agreed to in writing, software ##
## distributed under the License is distributed on an "AS IS" BASIS, ##
## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ##
## See the License for the specific language governing permissions and ##
## limitations under the License. ##
## ##
################################################################################
"""Script for extracting neutron scattering kernels from ENDF files and creating
corresponding .ncmat files. The created files might need a bit of manual editing
after creation, to correct the dummy material densities inserted, or (for
crystalline materials) to remove the densities and instead add sections with
information about crystal structure. For materials based on more than one
scattering kernel (e.g. heavy water, D2O, where S(alpha,beta) tables are needed
for both atoms), it might be necessary to manually combine two resulting files
into one.
Input files are read with the Python Nuclear Engineering Toolkit
(http://pyne.io/), which must be first installed.
Input files can for instance be downloaded from:
https://www.nndc.bnl.gov/endf/b8.0/download.html
(download and open zip-file from the "Thermal Neutron Scattering Sublibrary")
"""
################################################################################################
####### Common code for all NCrystal cmdline scripts needing to import NCrystal modules ########
import sys
pyversion = sys.version_info[0:3]
_minpyversion=(3,6,0)
if pyversion < _minpyversion:
raise SystemExit('Unsupported python version %i.%i.%i detected (needs %i.%i.%i or later).'%(pyversion+_minpyversion))
import os
import pathlib
def maybeThisIsConda():
return ( os.environ.get('CONDA_PREFIX',None) or
os.path.exists(os.path.join(sys.base_prefix, 'conda-meta')) )
def fixSysPathAndImportNCrystal( *, allowfail = False ):
thisdir = pathlib.Path( __file__ ).parent
def extract_cmake_pymodloc():
p = thisdir / 'ncrystal-config'
if not p.exists():
return
with p.open('rt') as fh:
for i,l in enumerate(fh):
if i==30:
break
if l.startswith('#CMAKE_RELPATH_TO_PYMOD:'):
l = l[24:].strip()
return ( thisdir / l ) if l else None
pml = extract_cmake_pymodloc()
hack_syspath = pml and ( pml / 'NCrystal' / '__init__.py' ).exists()
if hack_syspath:
sys.path.insert(0,str(pml.absolute().resolve()))
try:
import NCrystal
except ImportError:
if allowfail:
return
msg = 'ERROR: Could not import the NCrystal Python module'
if maybeThisIsConda():
msg += ' (if using conda it might help to close your terminal and activate your environment again)'
elif not hack_syspath:
msg += ' (perhaps your PYTHONPATH is misconfigured)'
raise SystemExit(msg)
return NCrystal
################################################################################################
NC = fixSysPathAndImportNCrystal()
import warnings
import argparse
__pynecache=[None]
def import_pyne():
global __pynecache
if __pynecache[0] is not None:
return __pynecache[0]
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore")#silence annoying pyne.endf QAWarning's.
import pyne.endf
except ImportError:
raise SystemExit('ERROR: Could not "import pyne.endf". You probably need to install PyNE (see http://pyne.io/)')
#Monkey-patch pyne.endf reader, which was ignoring optional sections with teff
#curves of non-principal atoms (see
#https://github.com/pyne/pyne/issues/1209). The fix was accepted upstream, so
#eventually we can remove this monkey-patching once we think all users will have
#recent enough PyNE installations:
_orig_rti = pyne.endf.Evaluation._read_thermal_inelastic
def _fix_rti(_self):
_orig_rti(_self)
inel=_self.thermal_inelastic
B=inel['B']
for ii in range(len(B)//6-1):
if B[6*(ii+1)]==0.0:
if 'teff_%i'%(ii+1) in inel:
#If upstream already includes fix, do nothing.
continue
_, teff = _self._get_tab1_record()
inel['teff_%i'%(ii+1)] = teff#Store as teff_1, teff_2, etc. for now.
pyne.endf.Evaluation._read_thermal_inelastic=_fix_rti
__pynecache[0] = pyne
return pyne
def elementZToName(z):
d = NCrystal.atomDB(z,throwOnErrors=False)
return d.elementName() if d else None
def guessElementFromMass(mass_amu):
elem_data=[ (abs(d.averageMassAMU()-mass_amu),d) for d in [NCrystal.atomDB(z,throwOnErrors=False) for z in range(1,120)] if d ]
elem_data.sort()
print (f'Guessing mass={mass_amu:.8}u is element {elem_data[0][1].elementName()}')
return elem_data[0][1].elementName()
def guessElementName(ZA,mass_amu):
Z=ZA//1000
if ZA==155:
return 'Y'#YH2, whatever it is
if ZA==140:
return 'H'#benzene... C6H6. Guessing H is dominant. But tsl-benzene.endf is actually a compound SAB...
if ZA==1002:
return 'D'
if ZA in (133,134):
return 'H'#solid or liquid methane (CH4 happens to have mass 12+1*4=16 close to oxygen, so can't guess from mass)
if ZA in (112,113):
return 'D'#ortho-D or para-D
guess_by_mass = guessElementFromMass(mass_amu)
guess_by_z = elementZToName(Z) if (Z>0 and Z<120) else None
if guess_by_z:
if guess_by_z!=guess_by_mass:
raise SystemExit(f"ERROR: Mass and Z guess gives different element name (Z={Z}=>'{guess_by_z}', mass={mass_amu}amu=>'{guess_by_mass}')")
return guess_by_z
if Z==0:
return guess_by_mass
raise ValueError(f'Could not determine element name from ZA={ZA}, mass={mass_amu}amu')
#Custom bare-bones reader, so we can extract the data header as-is in the file:
def parse_endf6(src,name=None,selectfct=None):
"""Parse TSL data from ENDF-6 file according to ENDF manual. Select function can
used to determine which mat,mf,mt lines to read. E.g. "selectfct=lambda
mat,mf,mt:mf==7". Remember to select (mf,mt)=(1,451) for the description at
the start of each material.
"""
if isinstance(src,str) or isinstance(src,bytes) or hasattr(src,'__fspath__'):
p=pathlib.Path(src).expanduser()
with p.open('rt') as srcstream:
return parse_endf6(srcstream,name=p.name)
#according to the manual section 0.6, each line is broken down as follows:
#Columns 1-66 content, 67-70 MAT number, 71-72 MF, 73-75 MT, 76-80 [optional] NS, 81+ undefined
#Content can either be one 66 char long text field, or there are 6 fields of 11 chars.
errprefix = '' if not name else f'in {name}'
def require(check,errmsg):
if not check:
raise ValueError(f'{errprefix}: {errmsg}')
def parse_endf6_line(l):
require(len(l)>=75,"line too short")
content=l[0:66]
mat=int(l[66:70])
mf=int(l[70:72])
mt=int(l[72:75])
return (content,mat,mf,mt)
content,mat,mf,mt = parse_endf6_line(next(src))
require((mat,mf,mt)==(1,0,0),'Not an ENDF-6 file?')
global_header=content
d={}#material -> material info
for l in src:
#print(l)
content,mat,mf,mt = parse_endf6_line(l)
if mat<1:
continue#Ignore dummy lines (section dividers, etc.)
if selectfct and not selectfct(mat,mf,mt):
continue
if not mat in d:
d[mat]=dict()
dd=d[mat]
if not mf in dd:
dd[mf]={}
ddd=dd[mf]
if not mt in ddd:
ddd[mt]=[content]
else:
ddd[mt]+=[content]
return dict(global_header=global_header,name=name),d
def extract_and_format_endf_file_header(filename):
custom_parse = parse_endf6(filename,selectfct=lambda mat,mf,mt : (mf,mt)==(1,451))
mats=custom_parse[1]
assert len(mats)==1,("File contains more than one material number which is not supported by the"
+" present script (please contact NCrystal developers if you really need this).")
material_number,material_info = next(iter(mats.items()))
return dict( filename = custom_parse[0]['name'],
material_number = material_number,
global_header = custom_parse[0]['global_header'],
infosection=material_info[1][451] )
def parse_endf_file(filename):
print(f"Attempting to load ENDF file {filename}...")
result={}
warnings_=[]
pyne = import_pyne()
data=pyne.endf.Evaluation(filename)
data.read()
result['input_file']=pathlib.Path(filename)
result['pynedata']=data
print('Performing a few sanity checks...')
if not hasattr(data,'thermal_inelastic') or not 'B' in data.thermal_inelastic or not 'scattering_law' in data.thermal_inelastic:
raise SystemExit('Error: File does not appear to contain any inelastic neutron scattering kernel.')
ti=data.thermal_inelastic
if ti['ln(S)']:
raise SystemExit('The ln(S) flag is enabled. For the reasons given in the ENDF manual just before'
+'section 7.4.1, it is not safe to simple convert these to S-values. We need ncmat to support a logsab_scaled option first.'
+' Another (easier?) alternative would be to use mpmath module here and calculate unscaled S-values and produce an ncmat file with S=...')
assert ti['temperature_used'] in ('actual','0.0253 eV')
if ti['temperature_used'].strip()=='actual':
alphabetagrid_T0=None
else:
alphabetagrid_T0 = float(ti['temperature_used'].split('eV',1)[0].strip())/NCrystal.constant_boltzmann#Must stretch betagrid values relative to this
#print(data.target)
element_name=guessElementName(data.target['ZA'],data.target['mass'])
zsymam=data.target['zsymam'].strip()
if not zsymam in ['s-ch4','l-ch4','ortho-d','para-d','BENZINE'] and not 'graphit' in zsymam.lower():
assert element_name in zsymam,f"{element_name} not in {zsymam}"
result['element_name_principal']=element_name
lenB = len(ti['B'])
B = [None] + list(ti['B'])#B-array, with fortran indexing (for easier reference with ENDF manual):
A0 = float(B[3]) #Needed to unscale
if B[1]==0.0:
raise SystemExit('Material has no principal scatterers - thus no S(alpha,beta)')
suggested_emax = B[4]#In principle... but in practice not sure if this holds! Also, data.info['energy_max'] gives a different number (5.0)?!?
count_principal = B[6]
num_non_principal = ti['num_non_principal']
non_principal_data = []
for i in range(num_non_principal):
offset = 6*(i+1)
assert lenB >= 6*(i+2)
a1=B[offset+1]#0.0: SCT (short collision time approx), 1.0: free-gas, 2.0: diffusive motion.
if a1!=1.0:
warnings_+=['WARNING: A non-free-gas model is proposed for the first non-principal atom']
warnings_+=[' in the original file. This is currently not handled by NCrystal.']
print(warnings_[-2])
print(warnings_[-1])
effective_mass = B[offset+3]#mass in units of neutron mass
count = B[offset+6]#count per molecule or unit cell
theElementName = guessElementFromMass(effective_mass*NCrystal.const_neutron_mass_amu)
non_principal_data+=[[theElementName,count,effective_mass]]
count_total = count_principal + sum(count_ for elemname,count_,effmass in non_principal_data)
format_fraction = lambda c,ctot : f'{c:.14g}/{ctot:.14g}' if c!=ctot else '1'
for e in non_principal_data:
elementName,thecount,effective_mass=e
e += [format_fraction(thecount,count_total)]
header = extract_and_format_endf_file_header(filename)
result['header']=header
result['warnings']=warnings_
result['non_principal_data']=non_principal_data
result['count_total']=count_total
result['count_principal']=count_principal
result['fraction_str_principal']=format_fraction(count_principal,count_total)
result['suggested_emax']=suggested_emax
ndatablock = len(ti['teff'].x)
result_datablocks=[]
result['result_datablocks'] = result_datablocks
for idatablock in range(ndatablock):
result_datablock={}
result_datablocks += [result_datablock]
temperature=ti['teff'].x[idatablock]
temperature_effective=ti['teff'].y[idatablock]
result_datablock['T']=temperature
result_datablock['Teff']=temperature_effective
sabt=ti['scattering_law'][:,:,idatablock] #indexing t,a,b
sab=sabt.T
result_datablock['sab']=sab
#We must .copy() alpha/beta grids due to '*=' operators below:
alphagrid = ti['alpha'].copy()*A0#undo funny ENDF alpha definition which divides by A0
betagrid = ti['beta'].copy()
if alphabetagrid_T0 is not None:
#Undo funny ENDF scaling of grids at each temperature
betagrid *= (alphabetagrid_T0/temperature)
alphagrid *= (alphabetagrid_T0/temperature)
result_datablock['alphagrid']=alphagrid.copy()
result_datablock['betagrid']=betagrid.copy()
assert ti['symmetric'] == bool(betagrid[0]>=0.0),"inconsistencies detected"
warningsfmt=''
if warnings_:
warningsfmt='{}\n#'.format('\n# ----> '.join(['']+warnings_))
return result
def format_endf_block_as_ncmatdyninfo_for_principal_element(parsed_endf_data,temperature,fraction_str=None):
elem_name = parsed_endf_data["element_name_principal"]
#Find block by temperature:
temperature_exact,block_idx = list(sorted((abs(temperature-_["T"]),_["T"],idx) for idx,_ in enumerate(parsed_endf_data['result_datablocks'])))[0][1:]
assert abs(temperature_exact-temperature)<1e-6
temperature=temperature_exact
res = '@DYNINFO\n'
res += f" # Scattering kernel for {elem_name} @ {temperature}K extracted from {parsed_endf_data['input_file'].name}\n"
for w in parsed_endf_data['warnings']:
res += f'\n # ----> {w}'
res += ' #\n'
res += ' # For reference the description embedded in input ENDF file (section MF1,MT451) is repeated here:\n'
res += ' #\n'
header=parsed_endf_data['header']
for l in [header['global_header']]+header['infosection']:
res+=f' # --->{(" "+l).rstrip()}\n'
datablock = parsed_endf_data['result_datablocks'][block_idx]
res+=f' element {elem_name}\n'
if fraction_str is None:
fraction_str = parsed_endf_data["fraction_str_principal"]
else:
assert parsed_endf_data["fraction_str_principal"]=='1'
res+=f' fraction {fraction_str}\n'
res +=' type scatknl\n'
res+=f' temperature {temperature:.10} #NB: ENDF file specified "effective temperature" as {datablock["Teff"]:.10}K\n'
#NB: Not suggesting an emax value, since it seems to be unreliable! Same for B[4] from above...
#res+=f" egrid {parsed_endf_data['pynedata'].info['energy_max']}#Value (in eV) as specified in source ENDF file.\n"#argh... e.g. D2O@300K shows this can't be trusted!!!
res += NCrystal.formatVectorForNCMAT('alphagrid',datablock['alphagrid'])
res += NCrystal.formatVectorForNCMAT('betagrid',datablock['betagrid'])
res += NCrystal.formatVectorForNCMAT('sab_scaled',datablock['sab'])
return res
def _parseArgs():
descr="""
Converts neutron scattering kernels ("thermal scattering laws, tsl") found in
ENDF files to NCMAT format (specifically @DYNINFO sections of NCMAT files).
Note that this script exists for the benefit of experts only. Most users are
recommended to simply download and use one of the pre-converted files shipped
with NCrystal or found at:
https://github.com/mctools/ncrystal-extra/tree/master/data
Only information for NCMAT @DYNINFO sections are extracted from ENDF files, so
it is recommended to provide the initial parts of the target NCMAT file in a
separate file specified via the --filehdr parameter. That file should include
both initial comments for the file as well as either @DENSITY or
@CELL/@SPACEGROUP/@ATOMPOSITIONS/@DEBYETEMPERATUE sections, depending on whether
or not the material is crystalline. Note that comments describing the origin of
the @DYNINFO sections extracted from the ENDF files will be inserted in the
relevant @DYNINFO sections. The --filehdr should include the string
'<<STDNOTICE>>' on a separate line, which will be expanded to a notice about
availability of files for other temperatures.
If the --filehdr argument is not provided, a dummy header will be
automatically generated, with a fake @DENSITY section, using the density of
water (1g/cm3). This allows the file to be technically valid, but will of
course result in incorrect physics in case the file is used for simulations.
As each ENDF file contains a list of temperatures for which scattering kernels
are available, one NCMAT file will be generated for each such temperature. The
resulting filename will be <basename>_T<temperature>K.ncmat, where <basename>
will default to the input filename unless --outbn is provided.
The script internally relies on the Python Nuclear Engineering Toolkit
(http://pyne.io/) for ENDF parsing, so this must be installed on the system.
Input ENDF files can for instance be downloaded from:
https://www.nndc.bnl.gov/endf/b8.0/download.html
(download and open zip-file from the "Thermal Neutron Scattering Sublibrary").
"""
parser = argparse.ArgumentParser(description=descr,
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('ENDFFILE',help="Primary ENDF file with tsl data.",type=str)
parser.add_argument('--secondary',metavar='ENDFFILE2:fraction',
type=str,
help="ENDF file for secondary element, along with the fraction of that element")
parser.add_argument("--filehdr",help="File containing initial part of generated files.",type=str)
parser.add_argument("--outbn",type=str,help="Basename of generated ncmat files.")
parser.add_argument("--ignoretemp",type=float,nargs='+',metavar='T',
help="If some temperature blocks in input should be ignored, provide the temperature values here (kelvin).")
def to_path(parser,fn):
_ = pathlib.Path(fn)
if not _.exists():
parser.error(f'File not found: {_}')
return _
args=parser.parse_args()
args.ENDFFILE = to_path(parser,args.ENDFFILE)
args.fraction1='1'
args.fraction2=None
if not args.secondary:
args.ENDFFILE2=None
else:
if not args.secondary.count(':')==1:
parser.error('Argument to --secondary must contain exactly one semicolon (:)')
sn,fr2 = args.secondary.split(':',1)
args.secondary = True
if fr2.count('/')==1:
a,b = [int(e) for e in fr2.split('/')]
if b<=0 or not ( 0 < a < b ):
parser.error('Invalid fraction specified in --secondary')
args.fraction1=f'{b-a}/{b}'
args.fraction2=f'{a}/{b}'
else:
args.fraction2=fr2
if not ( 0.0 < float(fr2) < 1.0):
parser.error('Invalid fraction specified in --secondary')
args.fraction1=f'{1.0-float(fr2):10}'
args.ENDFFILE2 = to_path(parser,sn)
if args.filehdr:
_filehdrtxt=to_path(parser,args.filehdr).read_text()
else:
_filehdrtxt=f"""
NCMAT v2
#
# Material with scattering kernel extracted from ENDF file.
#
<<STDNOTICE>>
#
@DENSITY
1 g_per_cm3 #FIX{""}ME. Dummy number!!! (update or add unit cell sections and then remove @DENSITY section)
"""
args.filehdr = [l.rstrip() for l in _filehdrtxt.strip().splitlines()]
if not any('<<STDNOTICE>>' in l for l in args.filehdr):
parser.error('ERROR: File specified with --filehdr should contain the string "<<STDNOTICE>>" on a separate line (just before the first data section)')
if not args.outbn:
if args.ENDFFILE2:
parser.error('--outbn is required when providing two input files')
else:
args.outbn=args.ENDFFILE.name
if args.outbn.endswith('.endf'):
args.outbn=args.outbn[0:-5]
assert args.outbn
return args
def genstdheaders():
def do_write(fn,suggestedcmdopts,content):
pathlib.Path(fn).write_text(content)
print(f'Wrote {fn}')
progname=os.path.basename(sys.argv[0])
print( f' -> Suggested conversion cmd: {progname} {suggestedcmdopts}')
fixstr='NO'+'COMM'+'IT/FI'+'XME'
do_write('hdrH2O.txt',
'tsl-HinH2O.endf --outbn LiquidWaterH2O --filehdr=hdrH2O.txt --ignoretemp 650 800',
f"""NCMAT v2
#
# Water (H2O) based on ENDF/B-VIII.0 scattering kernels by J.I. Marquez Damian,
# et. al. (see below for references). Please check the @DENSITY carefully below, as
# the density of liquid water depends on the material pressure.
<<STDNOTICE>>
#
# In case your local installation does not provide all these files, they can be
# downloaded from: https://github.com/mctools/ncrystal-extra/tree/master/data
#
@DENSITY
#{fixstr}: Edit to leave just the relevant line (and the relevant comment for the reference):
#NB: Density depends on pressure (value here provided by https://www.thermexcel.com/english/tables/eau_atm.htm):
#Uncomment for T=283.6K: 0.99973 g_per_cm3 #(at 1atm pressure)
#Uncomment for T=293.6K: 0.99820 g_per_cm3 #(at 1atm pressure)
#Uncomment for T=300.0K: 0.99663 g_per_cm3 #(at 1atm pressure)
#Uncomment for T=323.6K: 0.98781 g_per_cm3 #(at 1atm pressure)
#Uncomment for T=350.0K: 0.97355 g_per_cm3 #(at 1atm pressure)
#NB: Density depends on pressure (value here provided by engineeringtoolbox.com):
#Uncomment for T=373.6K: 0.95805 g_per_cm3 #(at saturation pressure of 1.0171atm)
#Uncomment for T=400.0K: 0.9376 g_per_cm3 #(at saturation pressure of 2.41atm)
#Uncomment for T=423.6K: 0.9162 g_per_cm3 #(at saturation pressure of 4.77atm)
#Uncomment for T=450.0K: 0.8903 g_per_cm3 #(at saturation pressure of 9.21atm)
#Uncomment for T=473.6K: 0.8645 g_per_cm3 #(at saturation pressure of 15.48atm)
#Uncomment for T=500.0K: 0.8315 g_per_cm3 #(at saturation pressure of 26.03atm)
#Uncomment for T=523.6K: 0.7979 g_per_cm3 #(at saturation pressure of 39.55atm)
#Uncomment for T=550.0K: 0.7554 g_per_cm3 #(at saturation pressure of 60.39atm)
#Uncomment for T=573.6K: 0.7116 g_per_cm3 #(at saturation pressure of 85.29atm)
#Uncomment for T=600.0K: 0.6499 g_per_cm3 #(at saturation pressure of 121.8atm)
#Uncomment for T=623.6K: 0.5709 g_per_cm3 #(at saturation pressure of 164.06atm)
1 g_per_cm3 #DUMMY {fixstr}
#{fixstr}Also pick appropriate egrid max and move down to @DYNINFO(H) section:
#Uncomment and place below for T=283.6K: egrid 3.92 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=293.6K: egrid 4.02 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=300.0K: egrid 4.04 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=323.6K: egrid 4.3 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=350.0K: egrid 4.65 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=373.6K: egrid 4.9 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=400.0K: egrid 5.4 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=423.6K: egrid 5.65 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=450.0K: egrid 5.95 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=473.6K: egrid 6.2 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=500.0K: egrid 6.55 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=523.6K: egrid 6.85# Value tuned manually by T. Kittelmann
#Uncomment and place below for T=550.0K: egrid 7.2 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=573.6K: egrid 7.6 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=600.0K: egrid 7.95 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=623.6K: egrid 8.35 # Value tuned manually by T. Kittelmann
""")
do_write('hdrD2O.txt',
'tsl-DinD2O.endf --secondary tsl-OinD2O.endf:1/3 --outbn LiquidHeavyWaterD2O --filehdr=hdrD2O.txt --ignoretemp=650',
f"""NCMAT v2
#
# Heavy water (D2O) based on ENDF/B-VIII.0 scattering kernels by J.I. Marquez
# Damian, et. al. (see below for references). Please check the @DENSITY
# carefully below, as the density of liquid water depends on the material
# pressure.
<<STDNOTICE>>
#
# In case your local installation does not provide all these files, they can be
# downloaded from: https://github.com/mctools/ncrystal-extra/tree/master/data
#
@DENSITY
#{fixstr}: Edit to leave just the relevant line (and the relevant comment for the reference):
#NB: Density depends on pressure (value here provided by engineeringtoolbox.com):
#Uncomment for T=283.6K: 1.10586 g_per_cm3 #(at 1atm pressure)
#Uncomment for T=293.6K: 1.10526 g_per_cm3 #(at 1atm pressure)
#Uncomment for T=300.0K: 1.10404 g_per_cm3 #(at 1atm pressure)
#Uncomment for T=323.6K: 1.09547 g_per_cm3 #(at 1atm pressure)
#Uncomment for T=350.0K: 1.08037 g_per_cm3 #(at 1atm pressure)
#Uncomment for T=373.6K: 1.06312 g_per_cm3 #(at 1atm pressure)
#NB: Density depends on pressure (value here from P.G., MacMillan, et. al. (1981),
# "Tables of thermodynamic properties of heavy water in SI units"):
#Uncomment for T=400.0K: 1.04019 g_per_cm3 #(at saturation pressure of 2.34atm)
#Uncomment for T=423.6K: 1.01678 g_per_cm3 #(at saturation pressure of 4.65atm)
#Uncomment for T=450.0K: 0.987245 g_per_cm3 #(at saturation pressure of 9.08atm)
#Uncomment for T=473.6K: 0.957643 g_per_cm3 #(at saturation pressure of 15.4atm)
#Uncomment for T=500.0K: 0.920446 g_per_cm3 #(at saturation pressure of 26.1atm)
#Uncomment for T=523.6K: 0.883010 g_per_cm3 #(at saturation pressure of 39.7atm)
#Uncomment for T=550.0K: 0.834808 g_per_cm3 #(at saturation pressure of 60.9atm)
#Uncomment for T=573.6K: 0.783788 g_per_cm3 #(at saturation pressure of 86.3atm)
#Uncomment for T=600.0K: 0.712194 g_per_cm3 #(at saturation pressure of 123.6atm)
#Uncomment for T=623.6K: 0.621322 g_per_cm3 #(at saturation pressure of 166.9atm)
1 g_per_cm3 #DUMMY {fixstr}
#{fixstr}Also pick appropriate egrid max and move down to @DYNINFO(H) section:
#Uncomment and place below for T=283.6K D: egrid 3.6 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=283.6K O: egrid 10.0 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=293.6K D: egrid 3.7 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=293.6K O: egrid 10.0 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=300.0K D: egrid 3.8 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=300.0K O: egrid 10.0 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=323.6K D: egrid 4.1 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=323.6K O: egrid 10.0 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=350.0K D: egrid 4.4 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=350.0K O: egrid 10.0 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=373.6K D: egrid 4.7 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=373.6K O: egrid 10.0 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=400.0K D: egrid 5.1 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=400.0K O: egrid 10.0 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=423.6K D: egrid 5.3 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=423.6K O: egrid 10.0 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=450.0K D: egrid 5.55 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=450.0K O: egrid 10.0 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=473.6K D: egrid 6.1 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=473.6K O: egrid 10.0 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=500.0K D: egrid 6.4 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=500.0K O: egrid 10.0 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=523.6K D: egrid 6.8 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=523.6K O: egrid 10.0 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=550.0K D: egrid 7.1 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=550.0K O: egrid 10.0 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=573.6K D: egrid 7.4 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=573.6K O: egrid 10.0 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=600.0K D: egrid 7.6 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=600.0K O: egrid 10.0 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=623.6K D: egrid 8.1 # Value tuned manually by T. Kittelmann
#Uncomment and place below for T=623.6K O: egrid 10.0 # Value tuned manually by T. Kittelmann
""")
print(f"\nNOTICE: Some files produced by above commands contain FIX{'ME'}s (might need density values updated for given temperature)")
print("\nNOTICE: It might also be worth investigating each file in order to manually provide kernel egrid max via egrid keyword.")
if __name__=='__main__':
if '--genstdheaders' in sys.argv[1:]:
#Hidden option to prepare some conversions as used for official NCrystal files.
genstdheaders()
sys.exit(0)
args=_parseArgs()
p1=parse_endf_file(args.ENDFFILE)
p2=parse_endf_file(args.ENDFFILE2) if args.ENDFFILE2 else None
temperatures1 = [ _["T"] for _ in p1['result_datablocks'] ]
if p2:
temperatures2 = [ _["T"] for _ in p2['result_datablocks'] ]
temperatures_combined = [ t1 for t1 in temperatures1 if min(abs(t1-t2) for t2 in temperatures2)<1e-5 ]
if len(temperatures_combined)<len(temperatures1):
print(f"WARNING: {len(temperatures1)-len(temperatures_combined)} temperature blocks in {args.ENDFFILE} could not be used due to missing data in other file!")
if len(temperatures_combined)<len(temperatures2):
print(f"WARNING: {len(temperatures2)-len(temperatures_combined)} temperature blocks in {args.ENDFFILE} could not be used due to missing data in other file!")
else:
temperatures_combined = temperatures1
temperatures_combined=sorted(list(set(temperatures_combined)))
for t in (args.ignoretemp or []):
removed=False
for _ in temperatures_combined:
if abs(t-_)<1e-6:
temperatures_combined.remove(_)
print (f"Ignoring T={_}K as requested")
removed=True
break
if not removed:
raise SystemExit(f'ERROR: Asked to ignore T={t}K, but no such temperature was found in the input')
if p2 and (p1['non_principal_data'] or p2['non_principal_data']):
raise SystemExit("ERROR: When providing two ENDF files as input both must files must be without non-principal"
+" elements! If you know how to handle this, You can try to convert separately and combine the"
+" resulting .ncmat files manually.")
for t in temperatures_combined:
fn=pathlib.Path(f'{args.outbn}_T{t}K.ncmat')
with fn.open('wt') as fh:
print(f' -> Writing {fn}')
fh.write('NCMAT v2\n')
stdnotice = f'#\n# Notice: This NCMAT file is valid at T={t}K only.'
if len(temperatures_combined)>1:
stdnotice+=' Other files alternatively provide\n'
stdnotice+='# the same material at temperatures:\n#\n'
nperline=7
t_to_write=list(_ for _ in temperatures_combined if _!=t)
for i in range(0,len(t_to_write),nperline):
stdnotice += ('# '+' '.join((f'{_}K' for _ in t_to_write[i:i+nperline]))+'\n')
for l in args.filehdr:
if l.startswith('NCMAT '):
continue
if stdnotice and '<<STDNOTICE>>' in l:
l=l.replace('<<STDNOTICE>>',stdnotice)
stdnotice=''
fh.write(l if l.endswith('\n') else f'{l}\n')
if stdnotice:
fh.write(stdnotice)
for elementName,count_,effmass,fraction_str in p1['non_principal_data']:
assert not p2
fh.write('@DYNINFO\n')
fh.write(f' element {elementName}\n')
fh.write(f' fraction {fraction_str}\n')
fh.write(' type freegas\n')
fh.write(format_endf_block_as_ncmatdyninfo_for_principal_element(p1,t,
args.fraction1 if p2 else None))
if p2:
fh.write(format_endf_block_as_ncmatdyninfo_for_principal_element(p2,t,args.fraction2))
print(' -> Testing that NCrystal can load this file')
NCrystal.createScatter(f'{fn};dcutoff=0.8')
print("All done.")
|