1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
.. _coordinates:
**************************
Coordinate transformations
**************************
Introduction to WCS
===================
To describe the mapping between array elements/pixels and real world coordinates, `ndcube` heavily leverages the World Coordinate System (WCS) framework, specifically the tools written by Astropy that implement this framework in Python.
WCS allows a wide variety of projections, rotations and transformations be stored and executed.
Because it allows coordinates transformations to be stored functionally, rather than in memory-heavy lookup tables, and because it caters for both astronomy-specific coordinate systems (e.g. RA & Dec.) as well as simpler, more common ones (e.g. wavelength), WCS has become the most common coordinate transformation framework in astronomy.
The most commonly used WCS implementation in Python is the `astropy.wcs.WCS` object, which stores critical information describing the coordinate transformations as required by the FITS data model (e.g. the reference pixel and its corresponding coordinate values, ``CRPIX`` and ``CRVAL``, and the projection type, ``CTYPE`` etc.).
It also executes these transformations via methods like `~astropy.wcs.WCS.world_to_pixel` and `~astropy.wcs.WCS.pixel_to_world` which convert between pixel indices and world coordinate values.
However, these methods are independent of the data array and the `~astropy.wcs.WCS` object carries little or no information about the data itself.
That is why the `ndcube` package is needed.
Nonetheless, astropy's WCS implementation is a crucial pillar of `ndcube`, as is the more generalized offshoot, `gWCS <https://gwcs.readthedocs.io/en/stable/>`__, which provides greater generalization outside of the FITS data model.
Crucially though for `ndcube`, both implementations adhere to the `Astropy WCS API <https://docs.astropy.org/en/stable/wcs/wcsapi.html>`__.
A familiarity with WCS and the Astropy and gWCS Python implementations will be helpful (although hopefully not essential) in understanding this guide.
We therefore encourage users to read `Astropy's WCS guide <https://docs.astropy.org/en/stable/wcs/>`__ and the `gWCS documentation <https://gwcs.readthedocs.io/en/stable/>`__ to learn more.
In this section we will discuss the features `ndcube` has built upon these implementations to support the integration of data and coordinates.
.. _cube_coordinates:
NDCube coordinates
==================
Although WCS objects are a powerful and concise way of storing complex functional coordinate transformations, their API can be cumbersome when the coordinates along a whole axis are desired.
Making this process easy and intuitive is the purpose of the :meth:`ndcube.NDCube.axis_world_coords` method.
Using the attached WCS object, information on the data dimensions, and optional inputs from the user, this method returns high level coordinate objects --- e.g. `~astropy.coordinates.SkyCoord`, `~astropy.time.Time`, `~astropy.coordinates.SpectralCoord`, `~astropy.units.Quantity` --- containing the coordinates for each array element.
Say we have a 3-D `~ndcube.NDCube` with a shape of ``(4, 4, 5)`` and physical types of space, space, wavelength.
Now let's say we want the wavelength values along the spectral axis.
We can do this in a couple ways.
First we can provide :meth:`~ndcube.NDCube.axis_world_coords` with the array axis number of the spectral axis.
.. expanding-code-block:: python
:summary: Click to reveal/hide instantiation of the NDCube.
>>> import astropy.wcs
>>> import numpy as np
>>> from ndcube import NDCube
>>> # Define data array.
>>> data = np.random.rand(4, 4, 5)
>>> # Define WCS transformations in an astropy WCS object.
>>> wcs = astropy.wcs.WCS(naxis=3)
>>> wcs.wcs.ctype = 'WAVE', 'HPLT-TAN', 'HPLN-TAN'
>>> wcs.wcs.cunit = 'Angstrom', 'deg', 'deg'
>>> wcs.wcs.cdelt = 0.2, 0.5, 0.4
>>> wcs.wcs.crpix = 0, 2, 2
>>> wcs.wcs.crval = 10, 0.5, 1
>>> # Now instantiate the NDCube
>>> my_cube = NDCube(data, wcs=wcs)
.. code-block:: python
>>> my_cube.axis_world_coords(2)
(<SpectralCoord [1.02e-09, 1.04e-09, 1.06e-09, 1.08e-09, 1.10e-09] m>,)
Alternatively we can provide a unique substring of the physical type of the coordinate, stored in `ndcube.NDCube.wcs.world_axis_physical_types <astropy.wcs.wcsapi.BaseWCSWrapper>`:
.. code-block:: python
>>> my_cube.wcs.world_axis_physical_types
['em.wl', 'custom:pos.helioprojective.lat', 'custom:pos.helioprojective.lon']
>>> # Since 'wl' is unique to the wavelength axis name, let's use that.
>>> my_cube.axis_world_coords('wl')
(<SpectralCoord [1.02e-09, 1.04e-09, 1.06e-09, 1.08e-09, 1.10e-09] m>,)
As discussed above, some WCS axes are not independent.
For those axes, :meth:`~ndcube.NDCube.axis_world_coords` returns objects with the same number of dimensions as dependent axes.
For example, helioprojective longitude and latitude are dependent.
Therefore if we ask for longitude, we will get back a `~astropy.coordinates.SkyCoord` containing 2-D latitude and longitude arrays with the same shape as the array axes to which they correspond.
For example:
.. code-block:: python
>>> celestial = my_cube.axis_world_coords('lon')[0] # Must extract object from returned tuple with [0]
>>> my_cube.shape
(4, 4, 5)
>>> celestial.shape
(4, 4)
>>> celestial
<SkyCoord (Helioprojective: obstime=None, rsun=695700.0 km, observer=None): (Tx, Ty) in arcsec
[[(2160.07821927, 4.56894119e-02), (2159.96856373, 1.79995614e+03),
(2159.85889149, 3.59986658e+03), (2159.74920255, 5.39950295e+03)],
[(3600. , 4.56905253e-02), (3600. , 1.80000000e+03),
(3600. , 3.59995431e+03), (3600. , 5.39963453e+03)],
[(5039.92178073, 4.56894119e-02), (5040.03143627, 1.79995614e+03),
(5040.14110851, 3.59986658e+03), (5040.25079745, 5.39950295e+03)],
[(6479.70323031, 4.56860725e-02), (6479.92250932, 1.79982456e+03),
(6480.14182173, 3.59960344e+03), (6480.36116753, 5.39910830e+03)]]>
It is also possible to request more than one axis's world coordinates by setting ``axes`` to an iterable of data axis number and/or axis type strings.
The coordinate objects are returned in world axis order.
.. code-block:: python
>>> my_cube.axis_world_coords(2, 'lon')
(<SpectralCoord [1.02e-09, 1.04e-09, 1.06e-09, 1.08e-09, 1.10e-09] m>, <SkyCoord (Helioprojective: obstime=None, rsun=695700.0 km, observer=None): (Tx, Ty) in arcsec
[[(2160.07821927, 4.56894119e-02), (2159.96856373, 1.79995614e+03),
(2159.85889149, 3.59986658e+03), (2159.74920255, 5.39950295e+03)],
[(3600. , 4.56905253e-02), (3600. , 1.80000000e+03),
(3600. , 3.59995431e+03), (3600. , 5.39963453e+03)],
[(5039.92178073, 4.56894119e-02), (5040.03143627, 1.79995614e+03),
(5040.14110851, 3.59986658e+03), (5040.25079745, 5.39950295e+03)],
[(6479.70323031, 4.56860725e-02), (6479.92250932, 1.79982456e+03),
(6480.14182173, 3.59960344e+03), (6480.36116753, 5.39910830e+03)]]>)
If the user wants the world coordinates for all the axes, the ``axes`` arg can set to `None` or simply omitted.
.. code-block:: python
>>> my_cube.axis_world_coords()
(<SpectralCoord [1.02e-09, 1.04e-09, 1.06e-09, 1.08e-09, 1.10e-09] m>, <SkyCoord (Helioprojective: obstime=None, rsun=695700.0 km, observer=None): (Tx, Ty) in arcsec
[[(2160.07821927, 4.56894119e-02), (2159.96856373, 1.79995614e+03),
(2159.85889149, 3.59986658e+03), (2159.74920255, 5.39950295e+03)],
[(3600. , 4.56905253e-02), (3600. , 1.80000000e+03),
(3600. , 3.59995431e+03), (3600. , 5.39963453e+03)],
[(5039.92178073, 4.56894119e-02), (5040.03143627, 1.79995614e+03),
(5040.14110851, 3.59986658e+03), (5040.25079745, 5.39950295e+03)],
[(6479.70323031, 4.56860725e-02), (6479.92250932, 1.79982456e+03),
(6480.14182173, 3.59960344e+03), (6480.36116753, 5.39910830e+03)]]>)
By default :meth:`~ndcube.NDCube.axis_world_coords` returns the coordinates at the center of each pixel.
However, the coordinates at the edges of each pixel can be obtained by setting the ``pixel_corners`` keyword argument to `True`.
For example:
.. code-block:: python
>>> my_cube.axis_world_coords(pixel_corners=True)
(<SpectralCoord [1.01e-09, 1.03e-09, 1.05e-09, 1.07e-09, 1.09e-09, 1.11e-09] m>, <SkyCoord (Helioprojective: obstime=None, rsun=695700.0 km, observer=None): (Tx, Ty) in arcsec
[[(1440.24341188, -899.79647591), (1440.07895112, 899.95636786),
(1439.91446531, 2699.84625127), (1439.74995445, 4499.59909505),
(1439.58541853, 6298.94094507)],
[(2880.05774973, -899.84032206), (2880.00292413, 900.00022848),
(2879.94809018, 2699.97783871), (2879.89324788, 4499.81838925),
(2879.83839723, 6299.24788597)],
[(4319.94225027, -899.84032206), (4319.99707587, 900.00022848),
(4320.05190982, 2699.97783871), (4320.10675212, 4499.81838925),
(4320.16160277, 6299.24788597)],
[(5759.75658812, -899.79647591), (5759.92104888, 899.95636786),
(5760.08553469, 2699.84625127), (5760.25004555, 4499.59909505),
(5760.41458147, 6298.94094507)],
[(7199.36047891, -899.70880283), (7199.63452676, 899.86866585),
(7199.90861634, 2699.58313412), (7200.18274766, 4499.1606028 ),
(7200.45692072, 6298.32719784)]]>)
Working with raw coordinates
----------------------------
If users would prefer not to deal with high level coordinate objects, they can elect to use `ndcube.NDCube.axis_world_coords_values`.
The API for this method is the same as :meth:`~ndcube.NDCube.axis_world_coords`.
The only difference is that a `~collections.namedtuple` of `~astropy.units.Quantity` objects are returned, one for each physical type requested.
In the above case this means that there would be separate `~astropy.units.Quantity` objects for latitude and longitude, but they would both have the same 2-D shape.
The `~astropy.units.Quantity` objects are returned in world order and correspond to the physical types in the `astropy.wcs.WCS.world_axis_physical_types`.
The `~astropy.units.Quantity` objects do not contain important contextual information, such as reference frame, which is needed to fully interpret the coordinate values.
However for some use cases this level of completeness is not needed.
.. code-block:: python
>>> my_cube.axis_world_coords_values()
CoordValues(custom_pos_helioprojective_lon=<Quantity [[0.60002173, 0.59999127, 0.5999608 , 0.59993033],
[1. , 1. , 1. , 1. ],
[1.39997827, 1.40000873, 1.4000392 , 1.40006967],
[1.79991756, 1.79997847, 1.80003939, 1.80010032]] deg>, custom_pos_helioprojective_lat=<Quantity [[1.26915033e-05, 4.99987815e-01, 9.99962939e-01,
1.49986193e+00],
[1.26918126e-05, 5.00000000e-01, 9.99987308e-01,
1.49989848e+00],
[1.26915033e-05, 4.99987815e-01, 9.99962939e-01,
1.49986193e+00],
[1.26905757e-05, 4.99951267e-01, 9.99889844e-01,
1.49975231e+00]] deg>, em_wl=<Quantity [1.02e-09, 1.04e-09, 1.06e-09, 1.08e-09, 1.10e-09] m>)
.. _extra_coords:
ExtraCoords
===========
So far we have seen how `~ndcube.NDCube` uses its WCS object (``NDCube.wcs``) to store and perform coordinates transformations.
But what if we have alternative or additional coordinates that are not represented by the WCS?
For example, say we have a raster scan from a scanning slit spectrograph whose x-axis is folded in with time.
This occurs because the x-axis is built up over sequential exposures taken at different slit positions.
Our ``NDCube.wcs`` might describe latitude and longitude, but omit time.
So how can we represent time without having to construct a whole new custom WCS object?
One way is to use the `ndcube.ExtraCoords` class located at `ndcube.NDCube.extra_coords`.
It provides a mechanism of attaching coordinates to `~ndcube.NDCube` instances in addition to those in the primary WCS object.
This may be desired because, as above, the primary WCS omits a physical type.
Or it may be that the users have an alternative set of coordinates to the primary set at ``.wcs``.
To demonstrate how to use `~ndcube.ExtraCoords`, let's start by creating a `~astropy.time.Time` object representing the time at each location along the first axis of ``my_cube``.
.. code-block:: python
>>> from astropy.time import Time, TimeDelta
>>> base_time = Time('2000-01-01', format='fits', scale='utc')
>>> timestamps = Time([base_time + TimeDelta(60 * i, format='sec') for i in range(data.shape[0])])
By default an `~ndcube.NDCube` is instantiated with an empty `~ndcube.ExtraCoords` object.
So let's add a time coordinate to the `~ndcube.ExtraCoords` instance at ``my_cube.extra_coords``.
To do this we need to supply the physical type of the coordinate, the array axis to which is corresponds, and the values of the coordinate.
The number of values should equal the axis's length (or shape if it corresponds to more than one axis) and the physical type must be a valid `IVOA UCD1+ controlled words <http://www.ivoa.net/documents/REC/UCD/UCDlist-20070402.html>`__ word.
If one does not exist for your coordinate, prepend the type with ``custom:``.
.. code-block:: python
>>> my_cube.extra_coords.add('time', (0,), timestamps)
An indefinite number of coordinates can be added in this way.
The names of the coordinates can be accessed via the `~ndcube.ExtraCoords.keys` method.
.. code-block:: python
>>> my_cube.extra_coords.keys()
('time',)
The physical types of extra coordinates are also returned by `~ndcube.NDCube.array_axis_physical_types`.
.. code-block:: python
>>> my_cube.array_axis_physical_types
[('custom:pos.helioprojective.lat', 'custom:pos.helioprojective.lon', 'time'), ('custom:pos.helioprojective.lat', 'custom:pos.helioprojective.lon'), ('em.wl',)]
The values of the extra coordinates at each array index can be retrieved using and combination of :meth:`ndcube.NDCube.axis_world_coords` and `ndcube.NDCube.combined_wcs`.
See :ref:`combined_wcs` below.
.. _combined_wcs:
Combined WCS
------------
The `~ndcube.NDCube.combined_wcs` generates a WCS that combines the extra coords with those stored in the primary WCS.
Unlike `ndcube.ExtraCoords.wcs`, `~ndcube.NDCube.combined_wcs` is a valid WCS for describing the `~ndcube.NDCube` data array and so can be used with the `~ndcube.NDCube` coordinate transformation and plotting features, e.g:
.. code-block:: python
>>> my_cube.axis_world_coords(wcs=my_cube.combined_wcs)
(<SpectralCoord [1.02e-09, 1.04e-09, 1.06e-09, 1.08e-09, 1.10e-09] m>, <SkyCoord (Helioprojective: obstime=None, rsun=695700.0 km, observer=None): (Tx, Ty) in arcsec
[[(2160.07821927, 4.56894119e-02), (2159.96856373, 1.79995614e+03),
(2159.85889149, 3.59986658e+03), (2159.74920255, 5.39950295e+03)],
[(3600. , 4.56905253e-02), (3600. , 1.80000000e+03),
(3600. , 3.59995431e+03), (3600. , 5.39963453e+03)],
[(5039.92178073, 4.56894119e-02), (5040.03143627, 1.79995614e+03),
(5040.14110851, 3.59986658e+03), (5040.25079745, 5.39950295e+03)],
[(6479.70323031, 4.56860725e-02), (6479.92250932, 1.79982456e+03),
(6480.14182173, 3.59960344e+03), (6480.36116753, 5.39910830e+03)]]>, <Time object: scale='utc' format='fits' value=['2000-01-01T00:00:00.000' '2000-01-01T00:01:00.000'
'2000-01-01T00:02:00.000' '2000-01-01T00:03:00.000']>)
Note that the extra coordinate of time is now also returned.
.. _global_coords:
GlobalCoords
============
Sometimes coordinates are not associated with any axis.
Take the case of a 2-D `~ndcube.NDCube` representing a single image.
The time at which that image was taken is important piece of coordinate information.
But because the data does not have a 3rd dimension, it cannot be stored in the WCS or `~ndcube.ExtraCoords` objects.
Storing such coordinates is the role of the `ndcube.GlobalCoords` class.
`~ndcube.NDCube` is instantiated with an empty `~ndcube.GlobalCoords` object already attached at `ndcube.NDCube.global_coords`.
Coordinates can be added to this object if and when the user sees fit.
Let's attach a scalar global coordinate to ``my_cube`` representing some kind of distance.
We do this by supplying the coordinate's name, physical type and value via the `~ndcube.GlobalCoords.add` method.
.. code-block:: python
>>> import astropy.units as u
>>> my_cube.global_coords.add('distance', 'pos.distance', 1 * u.m)
Because `~ndcube.GlobalCoords` allows multiple coordinates of the same physical type, a unique coordinate name must be provided.
Furthermore the physical type must be a valid `IVOA UCD1+ controlled words <http://www.ivoa.net/documents/REC/UCD/UCDlist-20070402.html>`__ word.
If one does not exist for your coordinate, prepend the type with ``custom:``.
The value of the coordinate can be accessed by indexing the `~ndcube.GlobalCoords` instance with the coordinate name.
.. code-block:: python
>>> my_cube.global_coords['distance']
<Quantity 1. m>
The coordinate's physical type can be accessed via the `~ndcube.GlobalCoords.physical_types` `dict` property.
.. code-block:: python
>>> my_cube.global_coords.physical_types['distance']
'pos.distance'
Because `~ndcube.GlobalCoords` inherits from `~collections.abc.Mapping`, it contains a number of mixin methods similar to those of `dict`.
.. code-block:: python
>>> list(my_cube.global_coords.keys()) # Returns a list of global coordinate names
['distance']
>>> list(my_cube.global_coords.values()) # Returns a list of coordinate values
[<Quantity 1. m>]
>>> list(my_cube.global_coords.items()) # Returns a list of (name, value) pairs
[('distance', <Quantity 1. m>)]
A common use case for `~ndcube.GlobalCoords` is associated with slicing (:ref:`cube_slicing`).
In addition to tracking and updating the `~ndcube.NDCube.wcs` and `~ndcube.NDCube.extra_coords` objects, `~ndcube.NDCube`'s slicing infrastructure also identifies when the array axes to which a coordinate corresponds are dropped.
The values of dropped coordinates at the position where the `~ndcube.NDCube` was sliced are stored in the `astropy.wcs.WCS` instance from where `~ndcube.GlobalCoords` can access and return them.
.. code-block:: python
>>> my_2d_cube = my_cube[:, :, 0]
>>> my_2d_cube.array_axis_physical_types # Note the wavelength axis is now gone.
[('custom:pos.helioprojective.lat', 'custom:pos.helioprojective.lon', 'time'), ('custom:pos.helioprojective.lat', 'custom:pos.helioprojective.lon')]
>>> # The wavelength value at the slicing location is now in the GLobalCoords object.
>>> list(my_2d_cube.global_coords.keys())
['distance', 'em.wl']
>>> my_2d_cube.global_coords.physical_types['em.wl']
'em.wl'
>>> my_2d_cube.global_coords['em.wl']
<SpectralCoord 1e-9 m>
.. _sequence_coordinates:
NDCubeSequence coordinates
==========================
Sequence axis coordinates
-------------------------
As described in the :ref:`ndcubesequence` section, the sequence axis can be thought of as an additional array axis perpendicular to those of the cubes within an `~ndcube.NDCubeSequence`.
In that model, the `~ndcube.GlobalCoords` on each `~ndcube.NDCube` represent coordinate values along the sequence axis.
The `ndcube.NDCubeSequence.sequence_axis_coords` property collates a list for each global coordinate with each element giving the coordinate value from the corresponding `~ndcube.NDCube`.
These lists are returned as a `dict` with the keys being the coordinate names.
To demonstrate this, let's call `ndcube.NDCubeSequence.sequence_axis_coords` on an `~ndcube.NDCubeSequence` whose cubes have `~ndcube.GlobalCoords`.
.. expanding-code-block:: python
:summary: Click the here to reveal the code used to create the NDCubeSequence.
>>> import astropy.units as u
>>> import astropy.wcs
>>> import numpy as np
>>> from ndcube import NDCube, NDCubeSequence
>>> # Define data arrays.
>>> shape = (4, 4, 5)
>>> data0 = np.random.rand(*shape)
>>> data1 = np.random.rand(*shape)
>>> data2 = np.random.rand(*shape)
>>> data3 = np.random.rand(*shape)
>>> # Define WCS transformations.
>>> wcs = astropy.wcs.WCS(naxis=3)
>>> wcs.wcs.ctype = 'WAVE', 'HPLT-TAN', 'HPLN-TAN'
>>> wcs.wcs.cunit = 'Angstrom', 'deg', 'deg'
>>> wcs.wcs.cdelt = 0.2, 0.5, 0.4
>>> wcs.wcs.crpix = 0, 2, 2
>>> wcs.wcs.crval = 10, 0.5, 1
>>> # Instantiate NDCubes.
>>> cube0 = NDCube(data0, wcs=wcs)
>>> cube0.global_coords.add('distance', 'pos.distance', 1*u.m)
>>> cube1 = NDCube(data1, wcs=wcs)
>>> cube1.global_coords.add('distance', 'pos.distance', 2*u.m)
>>> cube2 = NDCube(data2, wcs=wcs)
>>> cube2.global_coords.add('distance', 'pos.distance', 3*u.m)
>>> cube3 = NDCube(data3, wcs=wcs)
>>> cube3.global_coords.add('distance', 'pos.distance', 4*u.m)
>>> my_sequence = NDCubeSequence([cube0, cube1, cube2, cube3])
.. code-block:: python
>>> my_sequence.sequence_axis_coords
{'distance': [<Quantity 1. m>, <Quantity 2. m>, <Quantity 3. m>, <Quantity 4. m>]}
As with any `dict`, the coordinate names can be seen via the ``.keys()`` method, while the values of a coordinate can be retrieved by indexing with the coordinate name.
.. code-block:: python
>>> my_sequence.sequence_axis_coords.keys()
dict_keys(['distance'])
>>> my_sequence.sequence_axis_coords['distance']
[<Quantity 1. m>, <Quantity 2. m>, <Quantity 3. m>, <Quantity 4. m>]
Common axis coordinates
-----------------------
The :ref:`ndcubesequence` section also explains how a common axis can be defined for a `~ndcube.NDCubeSequence`, signifying that the sequence axis is parallel to one of the `~ndcube.NDCube` array axes.
Take the example of an `~ndcube.NDCubeSequence` of four 3-D NDCubes with axes of space-space-wavelength.
Suppose that each cube represents a different interval in the spectral dimension and that the cubes are arranged in ascending wavelength order within the `~ndcube.NDCubeSequence`, i.e. ``common_axis=2``.
If each NDCube has a shape of ``(4, 4, 5)``, then there are 20 positions along the common axis (5 array elements x 4 NDCubes).
The purpose of `ndcube.NDCubeSequence.common_axis_coords` is to make it easy to get the value of a coordinate at any point along the common axis, irrespective of the cube to which it corresponds.
It determines which coordinates within the NDCubes' WCS and `~ndcube.ExtraCoords` objects correspond to the common axis and are present in all cubes.
For each of these coordinates, a list is produced with the same length as the common axis.
Each entry gives the coordinate value(s) at that position along the common axis.
The coordinates are returned in world axis order.
.. expanding-code-block:: python
:summary: Click to see instantiation of NDCubeSequence
>>> from copy import deepcopy
>>> import astropy.units as u
>>> import astropy.wcs
>>> import numpy as np
>>> from ndcube import NDCube, NDCubeSequence
>>> # Define data arrays.
>>> shape = (4, 4, 5)
>>> data0 = np.random.rand(*shape)
>>> data1 = np.random.rand(*shape)
>>> data2 = np.random.rand(*shape)
>>> data3 = np.random.rand(*shape)
>>> # Define WCS transformations.
>>> wcs0 = astropy.wcs.WCS(naxis=3)
>>> wcs0.wcs.ctype = 'WAVE', 'HPLT-TAN', 'HPLN-TAN'
>>> wcs0.wcs.cunit = 'm', 'deg', 'deg'
>>> wcs0.wcs.cdelt = 2e-11, 0.5, 0.4
>>> wcs0.wcs.crpix = 0, 2, 2
>>> wcs0.wcs.crval = 1e-9, 0.5, 1
>>> wcs1 = deepcopy(wcs0)
>>> wcs1.wcs.crval[0] = 1.1e-9
>>> wcs2 = deepcopy(wcs0)
>>> wcs2.wcs.crval[0] = 1.2e-9
>>> wcs3 = deepcopy(wcs0)
>>> wcs3.wcs.crval[0] = 1.3e-9
>>> # Instantiate NDCubes.
>>> cube0 = NDCube(data0, wcs=wcs0)
>>> cube1 = NDCube(data1, wcs=wcs1)
>>> cube2 = NDCube(data2, wcs=wcs2)
>>> cube3 = NDCube(data3, wcs=wcs3)
# Instantiate NDCubeSequence.
>>> my_sequence = NDCubeSequence([cube0, cube1, cube2, cube3], common_axis=2)
.. code-block:: python
>>> my_sequence.common_axis_coords
[[<SpectralCoord 1.02e-09 m>,
<SpectralCoord 1.04e-09 m>,
<SpectralCoord 1.06e-09 m>,
<SpectralCoord 1.08e-09 m>,
<SpectralCoord 1.1e-09 m>,
<SpectralCoord 1.12e-09 m>,
<SpectralCoord 1.14e-09 m>,
<SpectralCoord 1.16e-09 m>,
<SpectralCoord 1.18e-09 m>,
<SpectralCoord 1.2e-09 m>,
<SpectralCoord 1.22e-09 m>,
<SpectralCoord 1.24e-09 m>,
<SpectralCoord 1.26e-09 m>,
<SpectralCoord 1.28e-09 m>,
<SpectralCoord 1.3e-09 m>,
<SpectralCoord 1.32e-09 m>,
<SpectralCoord 1.34e-09 m>,
<SpectralCoord 1.36e-09 m>,
<SpectralCoord 1.38e-09 m>,
<SpectralCoord 1.4e-09 m>]]
|