1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
/*
* Copyright 2015 ARM Limited and Contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of ARM Limited nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY ARM LIMITED AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ARM LIMITED BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* license of Kiss FFT */
/*
Copyright (c) 2003-2010, Mark Borgerding
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the author nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NE10 Library : dsp/NE10_fft_generic_int32.cpp
*/
#include "NE10_types.h"
#include "NE10_macros.h"
#include "NE10_fft.h"
#include "NE10_fft_generic_int32.h"
/**
* @brief Generic butterfly function for 32-bit fixed point.
* @tparam RADIX Radix of this stage. One among {2, 3, 4, 5 }
* @tparam is_first_stage Whether this stags is the first. If it is, multiplication
* with twiddles is optimizied because all twiddles are \f$ 1 \f$.
* @tparam is_inverse Whether it is the inverse (backward) FFT.
* @tparam is_scaled Whether output of this stage is scaled. For fixed-point,
* output is scaled by RADIX during each stage.
* @param[out] Fout Pointing to output buffer.
* @param[in] Fin Pointing to input buffer.
* @param[in] twiddles Pointint to twiddles buffer. If is_first_stage is set true,
* twiddles will be ignored.
* @param[in] fstride Number of butterfly groups.
* @param[in] out_step Step between output data.
* @param[in] nfft Size of the input array.
*/
template<int RADIX, bool is_first_stage, bool is_inverse, bool is_scaled>
inline void ne10_radix_butterfly_int32_c (ne10_fft_cpx_int32_t *Fout,
const ne10_fft_cpx_int32_t *Fin,
const ne10_fft_cpx_int32_t *twiddles,
const ne10_int32_t fstride,
const ne10_int32_t out_step,
const ne10_int32_t nfft)
{
const ne10_int32_t in_step = nfft / RADIX;
ne10_int32_t f_count;
ne10_int32_t m_count;
for (f_count = fstride; f_count > 0; f_count--)
{
for (m_count = out_step; m_count > 0; m_count--)
{
ne10_fft_cpx_int32_t scratch_in[RADIX];
ne10_fft_cpx_int32_t scratch_out[RADIX];
// Load from input buffer.
NE10_LOAD_BY_STEP <RADIX> (scratch_in, Fin, in_step);
if (is_inverse)
{
// Conjugate all elements in scratch_in.
NE10_CONJ<RADIX> (scratch_in);
}
if (is_scaled)
{
// All elements in scratch_in are divided by radix of this stage.
NE10_SCALED<RADIX> (scratch_in, RADIX);
}
if (!is_first_stage)
{
// Multiply twiddles for all stages but the first one.
ne10_fft_cpx_int32_t scratch_tw[RADIX - 1];
ne10_fft_cpx_int32_t scratch[RADIX];
// Load twiddles from twiddles buffer.
NE10_LOAD_BY_STEP<RADIX - 1> (scratch_tw, twiddles, out_step);
FFT_MUL_TW<RADIX> (scratch, scratch_in, scratch_tw);
// Copy from temp buff scratch to scratch_in.
NE10_LOAD_BY_STEP<RADIX> (scratch_in, scratch, 1);
}
// Radix -2, -3, -4 or -5 butterfly
// From scratch_in to scratch_out.
FFT_FCU<RADIX> (scratch_out, scratch_in);
if (is_inverse)
{
// Conjugate all elements in scratch_out.
NE10_CONJ<RADIX> (scratch_out);
}
// Store to output buffer.
NE10_STORE_BY_STEP<RADIX> (Fout, scratch_out, out_step);
// Update input, output and twiddles pointers.
Fin++;
if (!is_first_stage)
{
Fout++;
twiddles++;
}
else
{
Fout += RADIX;
}
}
if (!is_first_stage)
{
// Roll back twiddles.
twiddles -= out_step;
// Next output groups.
Fout += (RADIX - 1) * out_step;
}
}
}
/**
* @brief Generic butterfly function for 32-bit fixed point.
* @tparam is_inverse Whether it is the inverse (backward) FFT.
* @tparam is_scaled Whether output of this stage is scaled. For fixed-point,
* output is scaled by RADIX during each stage.
* @param[out] Fout Pointing to output buffer.
* @param[in] Fin Pointing to input buffer.
* @param[in] twiddles Pointint to twiddles buffer.
* @param[in] radix Radix of this stage.
* @param[in] in_step Step between input data.
* @param[in] out_step Step between output data.
*/
template<bool is_inverse, bool is_scaled>
static inline void ne10_radix_generic_butterfly_int32_c (ne10_fft_cpx_int32_t *Fout,
const ne10_fft_cpx_int32_t *Fin,
const ne10_fft_cpx_int32_t *twiddles,
const ne10_int32_t radix,
const ne10_int32_t in_step,
const ne10_int32_t out_step)
{
ne10_int32_t q, q1;
ne10_int32_t f_count = in_step;
ne10_fft_cpx_int32_t tmp;
ne10_fft_cpx_int32_t *scratch;
scratch = (ne10_fft_cpx_int32_t *) NE10_MALLOC (radix *
sizeof (ne10_fft_cpx_int32_t));
for (; f_count > 0; f_count--)
{
// load
for (q1 = 0; q1 < radix; q1++)
{
scratch[q1] = Fin[in_step * q1];
if (is_inverse)
{
scratch[q1].i = -scratch[q1].i;
}
if (is_scaled)
{
NE10_F2I32_FIXDIV (scratch[q1], radix);
}
} // q1
// compute Fout[q1 * out_step] from definition
for (q1 = 0; q1 < radix; q1++)
{
ne10_int32_t twidx = 0;
Fout[q1 * out_step] = scratch[0];
for (q = 1; q < radix; q++)
{
twidx += 1 * q1;
if (twidx >= radix)
{
twidx -= radix;
}
NE10_CPX_MUL_F32 (tmp, scratch[q], twiddles[twidx]);
NE10_CPX_ADDTO (Fout[q1 * out_step], tmp);
} // q
if (is_inverse)
{
Fout[q1 * out_step].i = -Fout[q1 * out_step].i;
}
} // q1
Fout += radix;
Fin++;
}
NE10_FREE (scratch);
}
/**
* @brief Generic FFT function for 32-bit fixed point.
* @tparam is_inverse Whether it is the inverse (backward) FFT.
* @tparam is_scaled Whether output is scaled by size of FFT.
* @param[out] Fout Pointing to output buffer.
* @param[in] Fin Pointing to input buffer.
* @param[in] factors Pointing to factors buffer.
* @param[in] twiddles Pointing to twiddles buffer.
* @param[in] buffer Pointing to temp buffer so that Fin is not polluted.
*/
template<bool is_inverse, bool is_scaled>
inline void ne10_mixed_radix_generic_butterfly_int32_impl_c (ne10_fft_cpx_int32_t *Fout,
const ne10_fft_cpx_int32_t *Fin,
const ne10_int32_t *factors,
const ne10_fft_cpx_int32_t *twiddles,
ne10_fft_cpx_int32_t *buffer)
{
ne10_int32_t fstride, mstride, radix;
ne10_int32_t stage_count;
ne10_int32_t nfft;
// init fstride, mstride, radix, nfft
stage_count = factors[0];
fstride = factors[1];
mstride = 1;
radix = factors[stage_count << 1]; // radix of first stage
nfft = fstride * radix;
if (stage_count % 2 == 0)
{
ne10_swap_ptr (buffer, Fout);
}
// first stage
switch (radix)
{
case 2:
ne10_radix_butterfly_int32_c<2, true, is_inverse, is_scaled> (Fout, Fin,
NULL, // Twiddles are not used for first stage.
fstride, 1, nfft);
break;
case 4:
ne10_radix_butterfly_int32_c<4, true, is_inverse, is_scaled> (Fout, Fin,
NULL, // Same as above.
fstride, 1, nfft);
break;
case 3:
ne10_radix_butterfly_int32_c<3, true, is_inverse, is_scaled> (Fout, Fin,
NULL, // Same as above.
fstride, 1, nfft);
break;
case 5:
ne10_radix_butterfly_int32_c<5, true, is_inverse, is_scaled> (Fout, Fin,
NULL, // Same as above.
fstride, 1, nfft);
break;
default:
ne10_radix_generic_butterfly_int32_c<is_inverse, is_scaled> (Fout, Fin,
twiddles, // Twiddles for butterfly.
radix, fstride, 1);
break;
}
stage_count--;
if (!stage_count) // finish
{
return;
}
if (radix % 2)
{
twiddles += radix;
}
// other stages
while (stage_count > 0)
{
ne10_swap_ptr (buffer, Fout);
mstride *= radix;
// update radix
radix = factors[stage_count << 1];
assert ((radix > 1) && (radix < 6));
fstride /= radix;
switch (radix)
{
case 2:
ne10_radix_butterfly_int32_c<2, false, is_inverse, is_scaled> (Fout,
buffer, twiddles, fstride, mstride, nfft);
break;
case 3:
ne10_radix_butterfly_int32_c<3, false, is_inverse, is_scaled> (Fout,
buffer, twiddles, fstride, mstride, nfft);
break;
case 4:
ne10_radix_butterfly_int32_c<4, false, is_inverse, is_scaled> (Fout,
buffer, twiddles, fstride, mstride, nfft);
break;
case 5:
ne10_radix_butterfly_int32_c<5, false, is_inverse, is_scaled> (Fout,
buffer, twiddles, fstride, mstride, nfft);
break;
} // switch (radix)
twiddles += mstride * (radix - 1);
stage_count--;
} // while (stage_count)
}
/**
* @brief Generic (forward) FFT function for 32-bit fixed point.
* @param[out] Fout Pointing to output buffer.
* @param[in] Fin Pointing to input buffer.
* @param[in] factors Pointing to factors buffer.
* @param[in] twiddles Pointing to twiddles buffer.
* @param[in] buffer Pointing to temp buffer so that Fin is not polluted.
* @param[in] is_scaled Whether output is scaled by size of FFT.
*/
void ne10_mixed_radix_generic_butterfly_int32_c (ne10_fft_cpx_int32_t *Fout,
const ne10_fft_cpx_int32_t *Fin,
const ne10_int32_t *factors,
const ne10_fft_cpx_int32_t *twiddles,
ne10_fft_cpx_int32_t *buffer,
const ne10_int32_t is_scaled)
{
const bool is_inverse = false;
if (is_scaled)
{
const bool is_scaled_flag = true;
ne10_mixed_radix_generic_butterfly_int32_impl_c<is_inverse,
is_scaled_flag> (Fout, Fin, factors, twiddles, buffer);
}
else
{
const bool is_scaled_flag = false;
ne10_mixed_radix_generic_butterfly_int32_impl_c<is_inverse,
is_scaled_flag> (Fout, Fin, factors, twiddles, buffer);
}
}
/**
* @brief Generic IFFT function for 32-bit fixed point.
* @param[out] Fout Pointing to output buffer.
* @param[in] Fin Pointing to input buffer.
* @param[in] factors Pointing to factors buffer.
* @param[in] twiddles Pointing to twiddles buffer.
* @param[in] buffer Pointing to temp buffer so that Fin is not polluted.
* @param[in] is_scaled Whether output is scaled by size of FFT.
*/
void ne10_mixed_radix_generic_butterfly_inverse_int32_c (
ne10_fft_cpx_int32_t *Fout,
const ne10_fft_cpx_int32_t *Fin,
const ne10_int32_t *factors,
const ne10_fft_cpx_int32_t *twiddles,
ne10_fft_cpx_int32_t *buffer,
const ne10_int32_t is_scaled)
{
const bool is_inverse = true;
if (is_scaled)
{
const bool is_scaled_flag = true;
ne10_mixed_radix_generic_butterfly_int32_impl_c<is_inverse,
is_scaled_flag> (Fout, Fin, factors, twiddles, buffer);
}
else
{
const bool is_scaled_flag = false;
ne10_mixed_radix_generic_butterfly_int32_impl_c<is_inverse,
is_scaled_flag> (Fout, Fin, factors, twiddles, buffer);
}
}
|