File: somnec2d.f

package info (click to toggle)
necpp 1.2.6%2Bcvs20070816-1.3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 3,772 kB
  • ctags: 5,989
  • sloc: cpp: 30,761; ansic: 10,162; fortran: 8,339; python: 2,948; makefile: 189; sh: 1
file content (777 lines) | stat: -rw-r--r-- 22,206 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
C     Last change:  PGM   8 Nov 2000    1:04 pm
C     PROGRAM SOMNEC(INPUT,OUTPUT,TAPE21)
C
C     PROGRAM TO GENERATE NEC INTERPOLATION GRIDS FOR FIELDS DUE TO
C     GROUND.  FIELD COMPONENTS ARE COMPUTED BY NUMERICAL EVALUATION
C     OF MODIFIED SOMMERFELD INTEGRALS.
C
C     SOMNEC2D IS A DOUBLE PRECISION VERSION OF SOMNEC FOR USE WITH
C     NEC2D.  AN ALTERNATE VERSION (SOMNEC2SD) IS ALSO PROVIDED IN WHICH
C     COMPUTATION IS IN SINGLE PRECISION BUT THE OUTPUT FILE IS WRITTEN
C     IN DOUBLE PRECISION FOR USE WITH NEC2D.  SOMNEC2SD RUNS ABOUT TWIC
C     AS FAST AS THE FULL DOUBLE PRECISION SOMNEC2D.  THE DIFFERENCE
C     BETWEEN NEC2D RESULTS USING A FOR021 FILE FROM THIS CODE RATHER
C     THAN FROM SOMNEC2SD WAS INSIGNFICANT IN THE CASES TESTED.
C
C     Changes made by J Bergervoet, 31-5-95:
C         Parameter 0. --> 0.D0 in calling of routine TEST
C         Status of output files set to 'UNKNOWN'
C***
      IMPLICIT REAL*8(A-H,O-Z)
C***
      COMPLEX*16 CK1,CK1SQ,ERV,EZV,ERH,EPH,CKSM,CT1,CT2,CT3,CL1,CL2,CON,
     1AR1,AR2,AR3,EPSCF
      COMMON /EVLCOM/ CKSM,CT1,CT2,CT3,CK1,CK1SQ,CK2,CK2SQ,TKMAG,TSMAG,C
     1K1R,ZPH,RHO,JH
      COMMON /GGRID/ AR1(11,10,4),AR2(17,5,4),AR3(9,8,4),EPSCF,DXA(3),DY
     1A(3),XSA(3),YSA(3),NXA(3),NYA(3)
      CHARACTER*3  LCOMP(4)
      DATA LCOMP/'ERV','EZV','ERH','EPH'/
      WRITE(*,*) 'SOMNEC2D,  Last changes: May 31 1995,  J. Bergervoet'
      WRITE(*,*)
C
      Write(*,*)
     &'GIVE GROUND PARAMETERS - EPR = RELATIVE DIELECTRIC CONSTANT'
      Write(*,*) '                         SIG = CONDUCTIVITY (MHOS/M)'
      Write(*,*) '                         FMHZ = FREQUENCY (MHZ)'
      Write(*,*)
     &'                         IPT = 1 TO PRINT GRIDS.  =0 OTHERWISE.'
      Write(*,*)
     &'IF SIG .LT. 0. THEN COMPLEX DIELECTRIC CONSTANT = EPR + J*SIG'
      Write(*,*) 'AND FMHZ IS NOT USED.'
C
999   WRITE(*,21)
C             21    FORMAT($,' ENTER EPR,SIG,FMHZ,IPT > ')
      READ(*,*,ERR=999) EPR,SIG,FMHZ,IPT
      WRITE(*,22)
C             22    FORMAT(' STARTING COMPUTATION OF SOMMERFELD INTEGRAL TABLES')
      WRITE(*,*)
      WRITE(*,*)

      WRITE(*,100) EPR
100   FORMAT("  RELATIVE DIELECTRIC CONSTANT (EPR)  = ", D20.5)
      WRITE(*,101) SIG
101   FORMAT("  SIGMA [CONDUCTIVITY IN MHOS/METER]  = ", D20.5)
      WRITE(*,102) FMHZ
102   FORMAT("                     FREQUENCY IN MHZ = ", D20.5)
      IF(IPT == 1) WRITE(*,*) "   GRID FILE [SOM2D.OUT] WILL BE CREATED"
      IF(IPT == 0) WRITE(*,*) "   NO GRID FILE WILL BE CREATED"
      WRITE(*,*)
C***
      IF (SIG.LT.0.) GO TO 1
      WLAM=299.8/FMHZ
      EPSCF=DCMPLX(EPR,-SIG*WLAM*59.96)
      GO TO 2
1     EPSCF=DCMPLX(EPR,SIG)
2     CALL SECOND (TST)
      CK2=6.283185308
      CK2SQ=CK2*CK2
C
C     SOMMERFELD INTEGRAL EVALUATION USES EXP(-JWT), NEC USES EXP(+JWT),
C     HENCE NEED CONJG(EPSCF).  CONJUGATE OF FIELDS OCCURS IN SUBROUTINE
C     EVLUA.
C
      CK1SQ=CK2SQ*DCONJG(EPSCF)
      CK1=SQRT(CK1SQ)
      CK1R=DREAL(CK1)
      TKMAG=100.*ABS(CK1)
      TSMAG=100.*CK1*DCONJG(CK1)
      CKSM=CK2SQ/(CK1SQ+CK2SQ)
      CT1=.5*(CK1SQ-CK2SQ)
      ERV=CK1SQ*CK1SQ
      EZV=CK2SQ*CK2SQ
      CT2=.125*(ERV-EZV)
      ERV=ERV*CK1SQ
      EZV=EZV*CK2SQ
      CT3=.0625*(ERV-EZV)
C
C     LOOP OVER 3 GRID REGIONS
C
      DO 6 K=1,3
      NR=NXA(K)
      NTH=NYA(K)
      DR=DXA(K)
      DTH=DYA(K)
      R=XSA(K)-DR
      IRS=1
      IF (K.EQ.1) R=XSA(K)
      IF (K.EQ.1) IRS=2
C
C     LOOP OVER R.  (R=SQRT(RHO**2 + (Z+H)**2))
C
      DO 6 IR=IRS,NR
      R=R+DR
      THET=YSA(K)-DTH
C
C     LOOP OVER THETA.  (THETA=ATAN((Z+H)/RHO))
C
      DO 6 ITH=1,NTH
      THET=THET+DTH
      RHO=R*COS(THET)
      ZPH=R*SIN(THET)
      IF (RHO.LT.1.E-7) RHO=1.E-8
      IF (ZPH.LT.1.E-7) ZPH=0.
      CALL EVLUA (ERV,EZV,ERH,EPH)
      RK=CK2*R
      CON=-(0.,4.77147)*R/DCMPLX(COS(RK),-SIN(RK))
      GO TO (3,4,5), K
3     AR1(IR,ITH,1)=ERV*CON
      AR1(IR,ITH,2)=EZV*CON
      AR1(IR,ITH,3)=ERH*CON
      AR1(IR,ITH,4)=EPH*CON
      GO TO 6
4     AR2(IR,ITH,1)=ERV*CON
      AR2(IR,ITH,2)=EZV*CON
      AR2(IR,ITH,3)=ERH*CON
      AR2(IR,ITH,4)=EPH*CON
      GO TO 6
5     AR3(IR,ITH,1)=ERV*CON
      AR3(IR,ITH,2)=EZV*CON
      AR3(IR,ITH,3)=ERH*CON
      AR3(IR,ITH,4)=EPH*CON
6     CONTINUE
C
C     FILL GRID 1 FOR R EQUAL TO ZERO.
C
      CL2=-(0.,188.370)*(EPSCF-1.)/(EPSCF+1.)
      CL1=CL2/(EPSCF+1.)
      EZV=EPSCF*CL1
      THET=-DTH
      NTH=NYA(1)
      DO 9 ITH=1,NTH
      THET=THET+DTH
      IF (ITH.EQ.NTH) GO TO 7
      TFAC2=COS(THET)
      TFAC1=(1.-SIN(THET))/TFAC2
      TFAC2=TFAC1/TFAC2
      ERV=EPSCF*CL1*TFAC1
      ERH=CL1*(TFAC2-1.)+CL2
      EPH=CL1*TFAC2-CL2
      GO TO 8
7     ERV=0.
      ERH=CL2-.5*CL1
      EPH=-ERH
8     AR1(1,ITH,1)=ERV
      AR1(1,ITH,2)=EZV
      AR1(1,ITH,3)=ERH
9     AR1(1,ITH,4)=EPH
      CALL SECOND (TIM)
C
C     WRITE GRID ON TAPE21
C
      OPEN(UNIT=21,FILE='SOM2D.NEC',STATUS='UNKNOWN',FORM='UNFORMATTED')
      WRITE (21) AR1,AR2,AR3,EPSCF,DXA,DYA,XSA,YSA,NXA,NYA
      REWIND 21
      IF (IPT.EQ.0) GO TO 14
C
C     PRINT GRID
C
C	DEBUGGING CODE
C      ---------------------------------------------------
      PRINT *,'AR1(1,1,1)= ',AR1(1,1,1)
C      PRINT *,'AR2(1,1,1)= ',AR2(1,1,1)
C      PRINT *,'AR3(1,1,1)= ',AR3(1,1,1)
      PRINT *,'EPSCF= ',EPSCF
      PRINT *,'DXA= ',DXA
      PRINT *,'DYA= ',DYA
      PRINT *,'XSA= ',XSA
      PRINT *,'YSA= ',YSA
      PRINT *,'NXA= ',NXA
      PRINT *,'NYA= ',NYA
      PRINT *,'AR1= ',AR1
      PRINT *,'AR2= ',AR2
      PRINT *,'AR3= ',AR3
      PRINT 444,AR1(1,1,1)
444   FORMAT(11HAR1(1,1,1)=,E12.5)	

C      ---------------------------------------------------

      OPEN (UNIT=3,FILE='SOM2D.OUT',STATUS='NEW',ERR=14)
      WRITE(3,17) EPSCF
      DO 13 K=1,3
      NR=NXA(K)
      NTH=NYA(K)
      WRITE(3,18) K,XSA(K),DXA(K),NR,YSA(K),DYA(K),NTH
      DO 13 L=1,4
      WRITE(3,19) LCOMP(L)
      DO 13 IR=1,NR
      GO TO (10,11,12), K
10    WRITE(3,20) IR,(AR1(IR,ITH,L),ITH=1,NTH)
      GO TO 13
11    WRITE(3,20) IR,(AR2(IR,ITH,L),ITH=1,NTH)
      GO TO 13
12    WRITE(3,20) IR,(AR3(IR,ITH,L),ITH=1,NTH)
13    CONTINUE
14    TIM=TIM-TST
      WRITE(*,16) TIM
      STOP
C
16    FORMAT (6H TIME=,1PE12.5)
17    FORMAT (30H1NEC GROUND INTERPOLATION GRID,/,21H DIELECTRIC CONSTAN
     1T=,1P2E12.5)
18    FORMAT (///,5H GRID,I2,/,4X,5HR(1)=,F7.4,4X,3HDR=,F7.4,4X,3HNR=,I3
     1,/,9H THET(1)=,F7.4,3X,4HDTH=,F7.4,3X,4HNTH=,I3,//)
19    FORMAT (///,1X,A3)
20    FORMAT (4H IR=,I3,/,1X,(10E12.5))
21    FORMAT($,' ENTER EPR,SIG,FMHZ,IPT > ')
22    FORMAT(' STARTING COMPUTATION OF SOMMERFELD INTEGRAL TABLES')
      END
      BLOCK DATA SOMSET
      IMPLICIT REAL*8(A-H,O-Z)
      COMPLEX*16 AR1,AR2,AR3,EPSCF
      COMMON /GGRID/ AR1(11,10,4),AR2(17,5,4),AR3(9,8,4),EPSCF,DXA(3),DY
     1A(3),XSA(3),YSA(3),NXA(3),NYA(3)
      DATA NXA/11,17,9/,NYA/10,5,8/,XSA/0.,.2,.2/,YSA/0.,0.,.3490658504/
      DATA DXA/.02,.05,.1/,DYA/.1745329252,.0872664626,.1745329252/
      END
      SUBROUTINE BESSEL (Z,J0,J0P)
C
C     BESSEL EVALUATES THE ZERO-ORDER BESSEL FUNCTION AND ITS DERIVATIVE
C     FOR COMPLEX ARGUMENT Z.
C
      IMPLICIT REAL*8(A-H,O-Z)
      SAVE
      COMPLEX*16 J0,J0P,P0Z,P1Z,Q0Z,Q1Z,Z,ZI,ZI2,ZK,FJ,CZ,SZ,J0X,J0PX
      DIMENSION M(101), A1(25), A2(25), FJX(2)
      EQUIVALENCE (FJ,FJX)
      DATA PI,C3,P10,P20,Q10,Q20/3.141592654,.7978845608,.0703125,.11215
     120996,.125,.0732421875/
      DATA P11,P21,Q11,Q21/.1171875,.1441955566,.375,.1025390625/
      DATA POF,INIT/.7853981635,0/,FJX/0.,1./
      IF (INIT.EQ.0) GO TO 5
1     ZMS=Z*DCONJG(Z)
      IF (ZMS.GT.1.E-12) GO TO 2
      J0=(1.,0.)
      J0P=-.5*Z
      RETURN
2     IB=0
      IF (ZMS.GT.37.21) GO TO 4
      IF (ZMS.GT.36.) IB=1
C     SERIES EXPANSION
      IZ=1.+ZMS
      MIZ=M(IZ)
      J0=(1.,0.)
      J0P=J0
      ZK=J0
      ZI=Z*Z
      DO 3 K=1,MIZ
      ZK=ZK*A1(K)*ZI
      J0=J0+ZK
3     J0P=J0P+A2(K)*ZK
      J0P=-.5*Z*J0P
      IF (IB.EQ.0) RETURN
      J0X=J0
      J0PX=J0P
C     ASYMPTOTIC EXPANSION
4     ZI=1./Z
      ZI2=ZI*ZI
      P0Z=1.+(P20*ZI2-P10)*ZI2
      P1Z=1.+(P11-P21*ZI2)*ZI2
      Q0Z=(Q20*ZI2-Q10)*ZI
      Q1Z=(Q11-Q21*ZI2)*ZI
      ZK=EXP(FJ*(Z-POF))
      ZI2=1./ZK
      CZ=.5*(ZK+ZI2)
      SZ=FJ*.5*(ZI2-ZK)
      ZK=C3*SQRT(ZI)
      J0=ZK*(P0Z*CZ-Q0Z*SZ)
      J0P=-ZK*(P1Z*SZ+Q1Z*CZ)
      IF (IB.EQ.0) RETURN
      ZMS=COS((SQRT(ZMS)-6.)*31.41592654)
      J0=.5*(J0X*(1.+ZMS)+J0*(1.-ZMS))
      J0P=.5*(J0PX*(1.+ZMS)+J0P*(1.-ZMS))
      RETURN
C     INITIALIZATION OF CONSTANTS
5     DO 6 K=1,25
      A1(K)=-.25D0/(K*K)
6     A2(K)=1.D0/(K+1.D0)
      DO 8 I=1,101
      TEST=1.D0
      DO 7 K=1,24
      INIT=K
      TEST=-TEST*I*A1(K)
      IF (TEST.LT.1.D-6) GO TO 8
7     CONTINUE
8     M(I)=INIT
      GO TO 1
      END
      SUBROUTINE EVLUA (ERV,EZV,ERH,EPH)
C
C     EVALUA CONTROLS THE INTEGRATION CONTOUR IN THE COMPLEX LAMBDA
C     PLANE FOR EVALUATION OF THE SOMMERFELD INTEGRALS.
C
      IMPLICIT REAL*8(A-H,O-Z)
      SAVE
      COMPLEX*16 ERV,EZV,ERH,EPH,A,B,CK1,CK1SQ,BK,SUM,DELTA,ANS,DELTA2,
     1CP1,CP2,CP3,CKSM,CT1,CT2,CT3
      COMMON /CNTOUR/ A,B
      COMMON /EVLCOM/ CKSM,CT1,CT2,CT3,CK1,CK1SQ,CK2,CK2SQ,TKMAG,TSMAG,C
     1K1R,ZPH,RHO,JH
      DIMENSION SUM(6), ANS(6)
      DATA PTP/.6283185308/
      DEL=ZPH
      IF (RHO.GT.DEL) DEL=RHO
      IF (ZPH.LT.2.*RHO) GO TO 4
C
C     BESSEL FUNCTION FORM OF SOMMERFELD INTEGRALS
C
      JH=0
      A=(0.,0.)
      DEL=1./DEL
      IF (DEL.LE.TKMAG) GO TO 2
      B=DCMPLX(.1*TKMAG,-.1*TKMAG)
      CALL ROM1 (6,SUM,2)
      A=B
      B=DCMPLX(DEL,-DEL)
      CALL ROM1 (6,ANS,2)
      DO 1 I=1,6
1     SUM(I)=SUM(I)+ANS(I)
      GO TO 3
2     B=DCMPLX(DEL,-DEL)
      CALL ROM1 (6,SUM,2)
3     DELTA=PTP*DEL
      CALL GSHANK (B,DELTA,ANS,6,SUM,0,B,B)
      GO TO 10
C
C     HANKEL FUNCTION FORM OF SOMMERFELD INTEGRALS
C
4     JH=1
      CP1=DCMPLX(0.D0,.4*CK2)
      CP2=DCMPLX(.6*CK2,-.2*CK2)
      CP3=DCMPLX(1.02*CK2,-.2*CK2)
      A=CP1
      B=CP2
      CALL ROM1 (6,SUM,2)
      A=CP2
      B=CP3
      CALL ROM1 (6,ANS,2)
      DO 5 I=1,6
5     SUM(I)=-(SUM(I)+ANS(I))
C     PATH FROM IMAGINARY AXIS TO -INFINITY
      SLOPE=1000.
      IF (ZPH.GT..001*RHO) SLOPE=RHO/ZPH
      DEL=PTP/DEL
      DELTA=DCMPLX(-1.D0,SLOPE)*DEL/SQRT(1.+SLOPE*SLOPE)
      DELTA2=-DCONJG(DELTA)
      CALL GSHANK (CP1,DELTA,ANS,6,SUM,0,BK,BK)
      RMIS=RHO*(DREAL(CK1)-CK2)
      IF (RMIS.LT.2.*CK2) GO TO 8
      IF (RHO.LT.1.E-10) GO TO 8
      IF (ZPH.LT.1.E-10) GO TO 6
      BK=DCMPLX(-ZPH,RHO)*(CK1-CP3)
      RMIS=-DREAL(BK)/ABS(DIMAG(BK))
      IF(RMIS.GT.4.*RHO/ZPH)GO TO 8
C     INTEGRATE UP BETWEEN BRANCH CUTS, THEN TO + INFINITY
6     CP1=CK1-(.1,.2)
      CP2=CP1+.2
      BK=DCMPLX(0.D0,DEL)
      CALL GSHANK (CP1,BK,SUM,6,ANS,0,BK,BK)
      A=CP1
      B=CP2
      CALL ROM1 (6,ANS,1)
      DO 7 I=1,6
7     ANS(I)=ANS(I)-SUM(I)
      CALL GSHANK (CP3,BK,SUM,6,ANS,0,BK,BK)
      CALL GSHANK (CP2,DELTA2,ANS,6,SUM,0,BK,BK)
      GO TO 10
C     INTEGRATE BELOW BRANCH POINTS, THEN TO + INFINITY
8     DO 9 I=1,6
9     SUM(I)=-ANS(I)
      RMIS=DREAL(CK1)*1.01
      IF (CK2+1..GT.RMIS) RMIS=CK2+1.
      BK=DCMPLX(RMIS,.99*DIMAG(CK1))
      DELTA=BK-CP3
      DELTA=DELTA*DEL/ABS(DELTA)
      CALL GSHANK (CP3,DELTA,ANS,6,SUM,1,BK,DELTA2)
10    ANS(6)=ANS(6)*CK1
C     CONJUGATE SINCE NEC USES EXP(+JWT)
      ERV=DCONJG(CK1SQ*ANS(3))
      EZV=DCONJG(CK1SQ*(ANS(2)+CK2SQ*ANS(5)))
      ERH=DCONJG(CK2SQ*(ANS(1)+ANS(6)))
      EPH=-DCONJG(CK2SQ*(ANS(4)+ANS(6)))
      RETURN
      END
      SUBROUTINE GSHANK (START,DELA,SUM,NANS,SEED,IBK,BK,DELB)
C
C     GSHANK INTEGRATES THE 6 SOMMERFELD INTEGRALS FROM START TO
C     INFINITY (UNTIL CONVERGENCE) IN LAMBDA.  AT THE BREAK POINT, BK,
C     THE STEP INCREMENT MAY BE CHANGED FROM DELA TO DELB.  SHANK S
C     ALGORITHM TO ACCELERATE CONVERGENCE OF A SLOWLY CONVERGING SERIES
C     IS USED
C
      IMPLICIT REAL*8(A-H,O-Z)
      SAVE
      COMPLEX*16 START,DELA,SUM,SEED,BK,DELB,A,B,Q1,Q2,ANS1,ANS2,A1,A2,
     1AS1,AS2,DEL,AA
      COMMON /CNTOUR/ A,B
      DIMENSION Q1(6,20), Q2(6,20), ANS1(6), ANS2(6), SUM(6), SEED(6)
      DATA CRIT/1.E-4/,MAXH/20/
      RBK=DREAL(BK)
      DEL=DELA
      IBX=0
      IF (IBK.EQ.0) IBX=1
      DO 1 I=1,NANS
1     ANS2(I)=SEED(I)
      B=START
2     DO 20 INT=1,MAXH
      INX=INT
      A=B
      B=B+DEL
      IF (IBX.EQ.0.AND.DREAL(B).GE.RBK) GO TO 5
      CALL ROM1 (NANS,SUM,2)
      DO 3 I=1,NANS
3     ANS1(I)=ANS2(I)+SUM(I)
      A=B
      B=B+DEL
      IF (IBX.EQ.0.AND.DREAL(B).GE.RBK) GO TO 6
      CALL ROM1 (NANS,SUM,2)
      DO 4 I=1,NANS
4     ANS2(I)=ANS1(I)+SUM(I)
      GO TO 11
C     HIT BREAK POINT.  RESET SEED AND START OVER.
5     IBX=1
      GO TO 7
6     IBX=2
7     B=BK
      DEL=DELB
      CALL ROM1 (NANS,SUM,2)
      IF (IBX.EQ.2) GO TO 9
      DO 8 I=1,NANS
8     ANS2(I)=ANS2(I)+SUM(I)
      GO TO 2
9     DO 10 I=1,NANS
10    ANS2(I)=ANS1(I)+SUM(I)
      GO TO 2
11    DEN=0.
      DO 18 I=1,NANS
      AS1=ANS1(I)
      AS2=ANS2(I)
      IF (INT.LT.2) GO TO 17
      DO 16 J=2,INT
      JM=J-1
      AA=Q2(I,JM)
      A1=Q1(I,JM)+AS1-2.*AA
      IF (DREAL(A1).EQ.0..AND.DIMAG(A1).EQ.0.) GO TO 12
      A2=AA-Q1(I,JM)
      A1=Q1(I,JM)-A2*A2/A1
      GO TO 13
12    A1=Q1(I,JM)
13    A2=AA+AS2-2.*AS1
      IF (DREAL(A2).EQ.0..AND.DIMAG(A2).EQ.0.) GO TO 14
      A2=AA-(AS1-AA)*(AS1-AA)/A2
      GO TO 15
14    A2=AA
15    Q1(I,JM)=AS1
      Q2(I,JM)=AS2
      AS1=A1
16    AS2=A2
17    Q1(I,INT)=AS1
      Q2(I,INT)=AS2
      AMG=ABS(DREAL(AS2))+ABS(DIMAG(AS2))
      IF (AMG.GT.DEN) DEN=AMG
18    CONTINUE
      DENM=1.E-3*DEN*CRIT
      JM=INT-3
      IF (JM.LT.1) JM=1
      DO 19 J=JM,INT
      DO 19 I=1,NANS
      A1=Q2(I,J)
      DEN=(ABS(DREAL(A1))+ABS(DIMAG(A1)))*CRIT
      IF (DEN.LT.DENM) DEN=DENM
      A1=Q1(I,J)-A1
      AMG=ABS(DREAL(A1))+ABS(DIMAG(A1))
      IF (AMG.GT.DEN) GO TO 20
19    CONTINUE
      GO TO 22
20    CONTINUE
      WRITE(*,24)
      DO 21 I=1,NANS
21    WRITE(*,25) Q1(I,INX),Q2(I,INX)
22    DO 23 I=1,NANS
23    SUM(I)=.5*(Q1(I,INX)+Q2(I,INX))
      RETURN
C
24    FORMAT (46H **** NO CONVERGENCE IN SUBROUTINE GSHANK ****)
25    FORMAT (1X,1P10E12.5)
      END
      SUBROUTINE HANKEL (Z,H0,H0P)
C
C     HANKEL EVALUATES HANKEL FUNCTION OF THE FIRST KIND, ORDER ZERO,
C     AND ITS DERIVATIVE FOR COMPLEX ARGUMENT Z.
C
      IMPLICIT REAL*8(A-H,O-Z)
      SAVE
      COMPLEX*16 CLOGZ,H0,H0P,J0,J0P,P0Z,P1Z,Q0Z,Q1Z,Y0,Y0P,Z,ZI,ZI2,ZK,
     1FJ
      DIMENSION M(101), A1(25), A2(25), A3(25), A4(25), FJX(2)
      EQUIVALENCE (FJ,FJX)
      DATA PI,GAMMA,C1,C2,C3,P10,P20/3.141592654,.5772156649,-.024578509
     15,.3674669052,.7978845608,.0703125,.1121520996/
      DATA Q10,Q20,P11,P21,Q11,Q21/.125,.0732421875,.1171875,.1441955566
     1,.375,.1025390625/
      DATA POF,INIT/.7853981635,0/,FJX/0.,1./
      IF (INIT.EQ.0) GO TO 5
1     ZMS=Z*DCONJG(Z)
      IF (ZMS.NE.0.) GO TO 2
      WRITE(*,9)
      STOP
2     IB=0
      IF (ZMS.GT.16.81) GO TO 4
      IF (ZMS.GT.16.) IB=1
C     SERIES EXPANSION
      IZ=1.+ZMS
      MIZ=M(IZ)
      J0=(1.,0.)
      J0P=J0
      Y0=(0.,0.)
      Y0P=Y0
      ZK=J0
      ZI=Z*Z
      DO 3 K=1,MIZ
      ZK=ZK*A1(K)*ZI
      J0=J0+ZK
      J0P=J0P+A2(K)*ZK
      Y0=Y0+A3(K)*ZK
3     Y0P=Y0P+A4(K)*ZK
      J0P=-.5*Z*J0P
      CLOGZ=LOG(.5*Z)
      Y0=(2.*J0*CLOGZ-Y0)/PI+C2
      Y0P=(2./Z+2.*J0P*CLOGZ+.5*Y0P*Z)/PI+C1*Z
      H0=J0+FJ*Y0
      H0P=J0P+FJ*Y0P
      IF (IB.EQ.0) RETURN
      Y0=H0
      Y0P=H0P
C     ASYMPTOTIC EXPANSION
4     ZI=1./Z
      ZI2=ZI*ZI
      P0Z=1.+(P20*ZI2-P10)*ZI2
      P1Z=1.+(P11-P21*ZI2)*ZI2
      Q0Z=(Q20*ZI2-Q10)*ZI
      Q1Z=(Q11-Q21*ZI2)*ZI
      ZK=EXP(FJ*(Z-POF))*SQRT(ZI)*C3
      H0=ZK*(P0Z+FJ*Q0Z)
      H0P=FJ*ZK*(P1Z+FJ*Q1Z)
      IF (IB.EQ.0) RETURN
      ZMS=COS((SQRT(ZMS)-4.)*31.41592654)
      H0=.5*(Y0*(1.+ZMS)+H0*(1.-ZMS))
      H0P=.5*(Y0P*(1.+ZMS)+H0P*(1.-ZMS))
      RETURN
C     INITIALIZATION OF CONSTANTS
5     PSI=-GAMMA
      DO 6 K=1,25
      A1(K)=-.25D0/(K*K)
      A2(K)=1.D0/(K+1.D0)
      PSI=PSI+1.D0/K
      A3(K)=PSI+PSI
6     A4(K)=(PSI+PSI+1.D0/(K+1.D0))/(K+1.D0)
      DO 8 I=1,101
      TEST=1.D0
      DO 7 K=1,24
      INIT=K
      TEST=-TEST*I*A1(K)
      IF (TEST*A3(K).LT.1.D-6) GO TO 8
7     CONTINUE
8     M(I)=INIT
      GO TO 1
C
9     FORMAT (34H ERROR - HANKEL NOT VALID FOR Z=0.)
      END
      SUBROUTINE LAMBDA (T,XLAM,DXLAM)
C
C     COMPUTE INTEGRATION PARAMETER XLAM=LAMBDA FROM PARAMETER T.
C
      IMPLICIT REAL*8(A-H,O-Z)
      SAVE
      COMPLEX*16 A,B,XLAM,DXLAM
      COMMON /CNTOUR/ A,B
      DXLAM=B-A
      XLAM=A+DXLAM*T
      RETURN
      END
      SUBROUTINE ROM1 (N,SUM,NX)
C
C     ROM1 INTEGRATES THE 6 SOMMERFELD INTEGRALS FROM A TO B IN LAMBDA.
C     THE METHOD OF VARIABLE INTERVAL WIDTH ROMBERG INTEGRATION IS USED.
C
      IMPLICIT REAL*8(A-H,O-Z)
      SAVE
      COMPLEX*16 A,B,SUM,G1,G2,G3,G4,G5,T00,T01,T10,T02,T11,T20
      COMMON /CNTOUR/ A,B
      DIMENSION SUM(6), G1(6), G2(6), G3(6), G4(6), G5(6), T01(6), T10(6
     1), T20(6)
      DATA NM,NTS,RX/131072,4,1.E-4/
      LSTEP=0
      Z=0.
      ZE=1.
      S=1.
      EP=S/(1.E4*NM)
      ZEND=ZE-EP
      DO 1 I=1,N
1     SUM(I)=(0.,0.)
      NS=NX
      NT=0
      CALL SAOA (Z,G1)
2     DZ=S/NS
      IF (Z+DZ.LE.ZE) GO TO 3
      DZ=ZE-Z
      IF (DZ.LE.EP) GO TO 17
3     DZOT=DZ*.5
      CALL SAOA (Z+DZOT,G3)
      CALL SAOA (Z+DZ,G5)
4     NOGO=0
      DO 5 I=1,N
      T00=(G1(I)+G5(I))*DZOT
      T01(I)=(T00+DZ*G3(I))*.5
      T10(I)=(4.*T01(I)-T00)/3.
C     TEST CONVERGENCE OF 3 POINT ROMBERG RESULT
      CALL TEST (DREAL(T01(I)),DREAL(T10(I)),TR,DIMAG(T01(I)),DIMAG(T10
     1(I)),TI,0.d0)
      IF (TR.GT.RX.OR.TI.GT.RX) NOGO=1
5     CONTINUE
      IF (NOGO.NE.0) GO TO 7
      DO 6 I=1,N
6     SUM(I)=SUM(I)+T10(I)
      NT=NT+2
      GO TO 11
7     CALL SAOA (Z+DZ*.25,G2)
      CALL SAOA (Z+DZ*.75,G4)
      NOGO=0
      DO 8 I=1,N
      T02=(T01(I)+DZOT*(G2(I)+G4(I)))*.5
      T11=(4.*T02-T01(I))/3.
      T20(I)=(16.*T11-T10(I))/15.
C     TEST CONVERGENCE OF 5 POINT ROMBERG RESULT
      CALL TEST (DREAL(T11),DREAL(T20(I)),TR,DIMAG(T11),DIMAG(T20(I)),TI
     1,0.d0)
      IF (TR.GT.RX.OR.TI.GT.RX) NOGO=1
8     CONTINUE
      IF (NOGO.NE.0) GO TO 13
9     DO 10 I=1,N
10    SUM(I)=SUM(I)+T20(I)
      NT=NT+1
11    Z=Z+DZ
      IF (Z.GT.ZEND) GO TO 17
      DO 12 I=1,N
12    G1(I)=G5(I)
      IF (NT.LT.NTS.OR.NS.LE.NX) GO TO 2
      NS=NS/2
      NT=1
      GO TO 2
13    NT=0
      IF (NS.LT.NM) GO TO 15
      IF (LSTEP.EQ.1) GO TO 9
      LSTEP=1
      CALL LAMBDA (Z,T00,T11)
      WRITE(*,18) T00
      WRITE(*,19) Z,DZ,A,B
      DO 14 I=1,N
14    WRITE(*,19) G1(I),G2(I),G3(I),G4(I),G5(I)
      GO TO 9
15    NS=NS*2
      DZ=S/NS
      DZOT=DZ*.5
      DO 16 I=1,N
      G5(I)=G3(I)
16    G3(I)=G2(I)
      GO TO 4
17    CONTINUE
      RETURN
C
18    FORMAT (38H ROM1 -- STEP SIZE LIMITED AT LAMBDA =,1P2E12.5)
19    FORMAT (1X,1P10E12.5)
      END
      SUBROUTINE SAOA (T,ANS)
C
C     SAOA COMPUTES THE INTEGRAND FOR EACH OF THE 6
C     SOMMERFELD INTEGRALS FOR SOURCE AND OBSERVER ABOVE GROUND
C
      IMPLICIT REAL*8(A-H,O-Z)
      SAVE
      COMPLEX*16 ANS,XL,DXL,CGAM1,CGAM2,B0,B0P,COM,CK1,CK1SQ,CKSM,CT1,
     1CT2,CT3,DGAM,DEN1,DEN2
      COMMON /EVLCOM/ CKSM,CT1,CT2,CT3,CK1,CK1SQ,CK2,CK2SQ,TKMAG,TSMAG,C
     1K1R,ZPH,RHO,JH
      DIMENSION ANS(6)
      CALL LAMBDA (T,XL,DXL)
      IF (JH.GT.0) GO TO 1
C     BESSEL FUNCTION FORM
      CALL BESSEL (XL*RHO,B0,B0P)
      B0=2.*B0
      B0P=2.*B0P
      CGAM1=SQRT(XL*XL-CK1SQ)
      CGAM2=SQRT(XL*XL-CK2SQ)
      IF (DREAL(CGAM1).EQ.0.) CGAM1=DCMPLX(0.D0,-ABS(DIMAG(CGAM1)))
      IF (DREAL(CGAM2).EQ.0.) CGAM2=DCMPLX(0.D0,-ABS(DIMAG(CGAM2)))
      GO TO 2
C     HANKEL FUNCTION FORM
1     CALL HANKEL (XL*RHO,B0,B0P)
      COM=XL-CK1
      CGAM1=SQRT(XL+CK1)*SQRT(COM)
      IF (DREAL(COM).LT.0..AND.DIMAG(COM).GE.0.) CGAM1=-CGAM1
      COM=XL-CK2
      CGAM2=SQRT(XL+CK2)*SQRT(COM)
      IF (DREAL(COM).LT.0..AND.DIMAG(COM).GE.0.) CGAM2=-CGAM2
2     XLR=XL*DCONJG(XL)
      IF (XLR.LT.TSMAG) GO TO 3
      IF (DIMAG(XL).LT.0.) GO TO 4
      XLR=DREAL(XL)
      IF (XLR.LT.CK2) GO TO 5
      IF (XLR.GT.CK1R) GO TO 4
3     DGAM=CGAM2-CGAM1
      GO TO 7
4     SIGN=1.
      GO TO 6
5     SIGN=-1.
6     DGAM=1./(XL*XL)
      DGAM=SIGN*((CT3*DGAM+CT2)*DGAM+CT1)/XL
7     DEN2=CKSM*DGAM/(CGAM2*(CK1SQ*CGAM2+CK2SQ*CGAM1))
      DEN1=1./(CGAM1+CGAM2)-CKSM/CGAM2
      COM=DXL*XL*EXP(-CGAM2*ZPH)
      ANS(6)=COM*B0*DEN1/CK1
      COM=COM*DEN2
      IF (RHO.EQ.0.) GO TO 8
      B0P=B0P/RHO
      ANS(1)=-COM*XL*(B0P+B0*XL)
      ANS(4)=COM*XL*B0P
      GO TO 9
8     ANS(1)=-COM*XL*XL*.5
      ANS(4)=ANS(1)
9     ANS(2)=COM*CGAM2*CGAM2*B0
      ANS(3)=-ANS(4)*CGAM2*RHO
      ANS(5)=COM*B0
      RETURN
      END
      SUBROUTINE TEST (F1R,F2R,TR,F1I,F2I,TI,DMIN)
C
C     TEST FOR CONVERGENCE IN NUMERICAL INTEGRATION
C
      IMPLICIT REAL*8(A-H,O-Z)
      SAVE
      DEN=ABS(F2R)
      TR=ABS(F2I)
      IF (DEN.LT.TR) DEN=TR
      IF (DEN.LT.DMIN) DEN=DMIN
      IF (DEN.LT.1.E-37) GO TO 1
      TR=ABS((F1R-F2R)/DEN)
      TI=ABS((F1I-F2I)/DEN)
      RETURN
1     TR=0.
      TI=0.
      RETURN
      END

      SUBROUTINE SECOND (CPUSECD)
C     Purpose:
C     SECOND returns cpu time in seconds.  Must be customized!!!
      REAL*8 CPUSECD
      integer Iticks

C--   Not customized:
C       Cpusecd = 0.0            ! if we have no clock routine
C--   MACINTOSH:
C       CPUSECD= LONG(362)/60.0
C--   Lahey fortran
C        Call Timer(Iticks)
C        cpusecd = Iticks/100.d0
      END