1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
|
C Last change: PGM 8 Nov 2000 1:04 pm
C PROGRAM SOMNEC(INPUT,OUTPUT,TAPE21)
C
C PROGRAM TO GENERATE NEC INTERPOLATION GRIDS FOR FIELDS DUE TO
C GROUND. FIELD COMPONENTS ARE COMPUTED BY NUMERICAL EVALUATION
C OF MODIFIED SOMMERFELD INTEGRALS.
C
C SOMNEC2D IS A DOUBLE PRECISION VERSION OF SOMNEC FOR USE WITH
C NEC2D. AN ALTERNATE VERSION (SOMNEC2SD) IS ALSO PROVIDED IN WHICH
C COMPUTATION IS IN SINGLE PRECISION BUT THE OUTPUT FILE IS WRITTEN
C IN DOUBLE PRECISION FOR USE WITH NEC2D. SOMNEC2SD RUNS ABOUT TWIC
C AS FAST AS THE FULL DOUBLE PRECISION SOMNEC2D. THE DIFFERENCE
C BETWEEN NEC2D RESULTS USING A FOR021 FILE FROM THIS CODE RATHER
C THAN FROM SOMNEC2SD WAS INSIGNFICANT IN THE CASES TESTED.
C
C Changes made by J Bergervoet, 31-5-95:
C Parameter 0. --> 0.D0 in calling of routine TEST
C Status of output files set to 'UNKNOWN'
C***
IMPLICIT REAL*8(A-H,O-Z)
C***
COMPLEX*16 CK1,CK1SQ,ERV,EZV,ERH,EPH,CKSM,CT1,CT2,CT3,CL1,CL2,CON,
1AR1,AR2,AR3,EPSCF
COMMON /EVLCOM/ CKSM,CT1,CT2,CT3,CK1,CK1SQ,CK2,CK2SQ,TKMAG,TSMAG,C
1K1R,ZPH,RHO,JH
COMMON /GGRID/ AR1(11,10,4),AR2(17,5,4),AR3(9,8,4),EPSCF,DXA(3),DY
1A(3),XSA(3),YSA(3),NXA(3),NYA(3)
CHARACTER*3 LCOMP(4)
DATA LCOMP/'ERV','EZV','ERH','EPH'/
WRITE(*,*) 'SOMNEC2D, Last changes: May 31 1995, J. Bergervoet'
WRITE(*,*)
C
Write(*,*)
&'GIVE GROUND PARAMETERS - EPR = RELATIVE DIELECTRIC CONSTANT'
Write(*,*) ' SIG = CONDUCTIVITY (MHOS/M)'
Write(*,*) ' FMHZ = FREQUENCY (MHZ)'
Write(*,*)
&' IPT = 1 TO PRINT GRIDS. =0 OTHERWISE.'
Write(*,*)
&'IF SIG .LT. 0. THEN COMPLEX DIELECTRIC CONSTANT = EPR + J*SIG'
Write(*,*) 'AND FMHZ IS NOT USED.'
C
999 WRITE(*,21)
C 21 FORMAT($,' ENTER EPR,SIG,FMHZ,IPT > ')
READ(*,*,ERR=999) EPR,SIG,FMHZ,IPT
WRITE(*,22)
C 22 FORMAT(' STARTING COMPUTATION OF SOMMERFELD INTEGRAL TABLES')
WRITE(*,*)
WRITE(*,*)
WRITE(*,100) EPR
100 FORMAT(" RELATIVE DIELECTRIC CONSTANT (EPR) = ", D20.5)
WRITE(*,101) SIG
101 FORMAT(" SIGMA [CONDUCTIVITY IN MHOS/METER] = ", D20.5)
WRITE(*,102) FMHZ
102 FORMAT(" FREQUENCY IN MHZ = ", D20.5)
IF(IPT == 1) WRITE(*,*) " GRID FILE [SOM2D.OUT] WILL BE CREATED"
IF(IPT == 0) WRITE(*,*) " NO GRID FILE WILL BE CREATED"
WRITE(*,*)
C***
IF (SIG.LT.0.) GO TO 1
WLAM=299.8/FMHZ
EPSCF=DCMPLX(EPR,-SIG*WLAM*59.96)
GO TO 2
1 EPSCF=DCMPLX(EPR,SIG)
2 CALL SECOND (TST)
CK2=6.283185308
CK2SQ=CK2*CK2
C
C SOMMERFELD INTEGRAL EVALUATION USES EXP(-JWT), NEC USES EXP(+JWT),
C HENCE NEED CONJG(EPSCF). CONJUGATE OF FIELDS OCCURS IN SUBROUTINE
C EVLUA.
C
CK1SQ=CK2SQ*DCONJG(EPSCF)
CK1=SQRT(CK1SQ)
CK1R=DREAL(CK1)
TKMAG=100.*ABS(CK1)
TSMAG=100.*CK1*DCONJG(CK1)
CKSM=CK2SQ/(CK1SQ+CK2SQ)
CT1=.5*(CK1SQ-CK2SQ)
ERV=CK1SQ*CK1SQ
EZV=CK2SQ*CK2SQ
CT2=.125*(ERV-EZV)
ERV=ERV*CK1SQ
EZV=EZV*CK2SQ
CT3=.0625*(ERV-EZV)
C
C LOOP OVER 3 GRID REGIONS
C
DO 6 K=1,3
NR=NXA(K)
NTH=NYA(K)
DR=DXA(K)
DTH=DYA(K)
R=XSA(K)-DR
IRS=1
IF (K.EQ.1) R=XSA(K)
IF (K.EQ.1) IRS=2
C
C LOOP OVER R. (R=SQRT(RHO**2 + (Z+H)**2))
C
DO 6 IR=IRS,NR
R=R+DR
THET=YSA(K)-DTH
C
C LOOP OVER THETA. (THETA=ATAN((Z+H)/RHO))
C
DO 6 ITH=1,NTH
THET=THET+DTH
RHO=R*COS(THET)
ZPH=R*SIN(THET)
IF (RHO.LT.1.E-7) RHO=1.E-8
IF (ZPH.LT.1.E-7) ZPH=0.
CALL EVLUA (ERV,EZV,ERH,EPH)
RK=CK2*R
CON=-(0.,4.77147)*R/DCMPLX(COS(RK),-SIN(RK))
GO TO (3,4,5), K
3 AR1(IR,ITH,1)=ERV*CON
AR1(IR,ITH,2)=EZV*CON
AR1(IR,ITH,3)=ERH*CON
AR1(IR,ITH,4)=EPH*CON
GO TO 6
4 AR2(IR,ITH,1)=ERV*CON
AR2(IR,ITH,2)=EZV*CON
AR2(IR,ITH,3)=ERH*CON
AR2(IR,ITH,4)=EPH*CON
GO TO 6
5 AR3(IR,ITH,1)=ERV*CON
AR3(IR,ITH,2)=EZV*CON
AR3(IR,ITH,3)=ERH*CON
AR3(IR,ITH,4)=EPH*CON
6 CONTINUE
C
C FILL GRID 1 FOR R EQUAL TO ZERO.
C
CL2=-(0.,188.370)*(EPSCF-1.)/(EPSCF+1.)
CL1=CL2/(EPSCF+1.)
EZV=EPSCF*CL1
THET=-DTH
NTH=NYA(1)
DO 9 ITH=1,NTH
THET=THET+DTH
IF (ITH.EQ.NTH) GO TO 7
TFAC2=COS(THET)
TFAC1=(1.-SIN(THET))/TFAC2
TFAC2=TFAC1/TFAC2
ERV=EPSCF*CL1*TFAC1
ERH=CL1*(TFAC2-1.)+CL2
EPH=CL1*TFAC2-CL2
GO TO 8
7 ERV=0.
ERH=CL2-.5*CL1
EPH=-ERH
8 AR1(1,ITH,1)=ERV
AR1(1,ITH,2)=EZV
AR1(1,ITH,3)=ERH
9 AR1(1,ITH,4)=EPH
CALL SECOND (TIM)
C
C WRITE GRID ON TAPE21
C
OPEN(UNIT=21,FILE='SOM2D.NEC',STATUS='UNKNOWN',FORM='UNFORMATTED')
WRITE (21) AR1,AR2,AR3,EPSCF,DXA,DYA,XSA,YSA,NXA,NYA
REWIND 21
IF (IPT.EQ.0) GO TO 14
C
C PRINT GRID
C
C DEBUGGING CODE
C ---------------------------------------------------
PRINT *,'AR1(1,1,1)= ',AR1(1,1,1)
C PRINT *,'AR2(1,1,1)= ',AR2(1,1,1)
C PRINT *,'AR3(1,1,1)= ',AR3(1,1,1)
PRINT *,'EPSCF= ',EPSCF
PRINT *,'DXA= ',DXA
PRINT *,'DYA= ',DYA
PRINT *,'XSA= ',XSA
PRINT *,'YSA= ',YSA
PRINT *,'NXA= ',NXA
PRINT *,'NYA= ',NYA
PRINT *,'AR1= ',AR1
PRINT *,'AR2= ',AR2
PRINT *,'AR3= ',AR3
PRINT 444,AR1(1,1,1)
444 FORMAT(11HAR1(1,1,1)=,E12.5)
C ---------------------------------------------------
OPEN (UNIT=3,FILE='SOM2D.OUT',STATUS='NEW',ERR=14)
WRITE(3,17) EPSCF
DO 13 K=1,3
NR=NXA(K)
NTH=NYA(K)
WRITE(3,18) K,XSA(K),DXA(K),NR,YSA(K),DYA(K),NTH
DO 13 L=1,4
WRITE(3,19) LCOMP(L)
DO 13 IR=1,NR
GO TO (10,11,12), K
10 WRITE(3,20) IR,(AR1(IR,ITH,L),ITH=1,NTH)
GO TO 13
11 WRITE(3,20) IR,(AR2(IR,ITH,L),ITH=1,NTH)
GO TO 13
12 WRITE(3,20) IR,(AR3(IR,ITH,L),ITH=1,NTH)
13 CONTINUE
14 TIM=TIM-TST
WRITE(*,16) TIM
STOP
C
16 FORMAT (6H TIME=,1PE12.5)
17 FORMAT (30H1NEC GROUND INTERPOLATION GRID,/,21H DIELECTRIC CONSTAN
1T=,1P2E12.5)
18 FORMAT (///,5H GRID,I2,/,4X,5HR(1)=,F7.4,4X,3HDR=,F7.4,4X,3HNR=,I3
1,/,9H THET(1)=,F7.4,3X,4HDTH=,F7.4,3X,4HNTH=,I3,//)
19 FORMAT (///,1X,A3)
20 FORMAT (4H IR=,I3,/,1X,(10E12.5))
21 FORMAT($,' ENTER EPR,SIG,FMHZ,IPT > ')
22 FORMAT(' STARTING COMPUTATION OF SOMMERFELD INTEGRAL TABLES')
END
BLOCK DATA SOMSET
IMPLICIT REAL*8(A-H,O-Z)
COMPLEX*16 AR1,AR2,AR3,EPSCF
COMMON /GGRID/ AR1(11,10,4),AR2(17,5,4),AR3(9,8,4),EPSCF,DXA(3),DY
1A(3),XSA(3),YSA(3),NXA(3),NYA(3)
DATA NXA/11,17,9/,NYA/10,5,8/,XSA/0.,.2,.2/,YSA/0.,0.,.3490658504/
DATA DXA/.02,.05,.1/,DYA/.1745329252,.0872664626,.1745329252/
END
SUBROUTINE BESSEL (Z,J0,J0P)
C
C BESSEL EVALUATES THE ZERO-ORDER BESSEL FUNCTION AND ITS DERIVATIVE
C FOR COMPLEX ARGUMENT Z.
C
IMPLICIT REAL*8(A-H,O-Z)
SAVE
COMPLEX*16 J0,J0P,P0Z,P1Z,Q0Z,Q1Z,Z,ZI,ZI2,ZK,FJ,CZ,SZ,J0X,J0PX
DIMENSION M(101), A1(25), A2(25), FJX(2)
EQUIVALENCE (FJ,FJX)
DATA PI,C3,P10,P20,Q10,Q20/3.141592654,.7978845608,.0703125,.11215
120996,.125,.0732421875/
DATA P11,P21,Q11,Q21/.1171875,.1441955566,.375,.1025390625/
DATA POF,INIT/.7853981635,0/,FJX/0.,1./
IF (INIT.EQ.0) GO TO 5
1 ZMS=Z*DCONJG(Z)
IF (ZMS.GT.1.E-12) GO TO 2
J0=(1.,0.)
J0P=-.5*Z
RETURN
2 IB=0
IF (ZMS.GT.37.21) GO TO 4
IF (ZMS.GT.36.) IB=1
C SERIES EXPANSION
IZ=1.+ZMS
MIZ=M(IZ)
J0=(1.,0.)
J0P=J0
ZK=J0
ZI=Z*Z
DO 3 K=1,MIZ
ZK=ZK*A1(K)*ZI
J0=J0+ZK
3 J0P=J0P+A2(K)*ZK
J0P=-.5*Z*J0P
IF (IB.EQ.0) RETURN
J0X=J0
J0PX=J0P
C ASYMPTOTIC EXPANSION
4 ZI=1./Z
ZI2=ZI*ZI
P0Z=1.+(P20*ZI2-P10)*ZI2
P1Z=1.+(P11-P21*ZI2)*ZI2
Q0Z=(Q20*ZI2-Q10)*ZI
Q1Z=(Q11-Q21*ZI2)*ZI
ZK=EXP(FJ*(Z-POF))
ZI2=1./ZK
CZ=.5*(ZK+ZI2)
SZ=FJ*.5*(ZI2-ZK)
ZK=C3*SQRT(ZI)
J0=ZK*(P0Z*CZ-Q0Z*SZ)
J0P=-ZK*(P1Z*SZ+Q1Z*CZ)
IF (IB.EQ.0) RETURN
ZMS=COS((SQRT(ZMS)-6.)*31.41592654)
J0=.5*(J0X*(1.+ZMS)+J0*(1.-ZMS))
J0P=.5*(J0PX*(1.+ZMS)+J0P*(1.-ZMS))
RETURN
C INITIALIZATION OF CONSTANTS
5 DO 6 K=1,25
A1(K)=-.25D0/(K*K)
6 A2(K)=1.D0/(K+1.D0)
DO 8 I=1,101
TEST=1.D0
DO 7 K=1,24
INIT=K
TEST=-TEST*I*A1(K)
IF (TEST.LT.1.D-6) GO TO 8
7 CONTINUE
8 M(I)=INIT
GO TO 1
END
SUBROUTINE EVLUA (ERV,EZV,ERH,EPH)
C
C EVALUA CONTROLS THE INTEGRATION CONTOUR IN THE COMPLEX LAMBDA
C PLANE FOR EVALUATION OF THE SOMMERFELD INTEGRALS.
C
IMPLICIT REAL*8(A-H,O-Z)
SAVE
COMPLEX*16 ERV,EZV,ERH,EPH,A,B,CK1,CK1SQ,BK,SUM,DELTA,ANS,DELTA2,
1CP1,CP2,CP3,CKSM,CT1,CT2,CT3
COMMON /CNTOUR/ A,B
COMMON /EVLCOM/ CKSM,CT1,CT2,CT3,CK1,CK1SQ,CK2,CK2SQ,TKMAG,TSMAG,C
1K1R,ZPH,RHO,JH
DIMENSION SUM(6), ANS(6)
DATA PTP/.6283185308/
DEL=ZPH
IF (RHO.GT.DEL) DEL=RHO
IF (ZPH.LT.2.*RHO) GO TO 4
C
C BESSEL FUNCTION FORM OF SOMMERFELD INTEGRALS
C
JH=0
A=(0.,0.)
DEL=1./DEL
IF (DEL.LE.TKMAG) GO TO 2
B=DCMPLX(.1*TKMAG,-.1*TKMAG)
CALL ROM1 (6,SUM,2)
A=B
B=DCMPLX(DEL,-DEL)
CALL ROM1 (6,ANS,2)
DO 1 I=1,6
1 SUM(I)=SUM(I)+ANS(I)
GO TO 3
2 B=DCMPLX(DEL,-DEL)
CALL ROM1 (6,SUM,2)
3 DELTA=PTP*DEL
CALL GSHANK (B,DELTA,ANS,6,SUM,0,B,B)
GO TO 10
C
C HANKEL FUNCTION FORM OF SOMMERFELD INTEGRALS
C
4 JH=1
CP1=DCMPLX(0.D0,.4*CK2)
CP2=DCMPLX(.6*CK2,-.2*CK2)
CP3=DCMPLX(1.02*CK2,-.2*CK2)
A=CP1
B=CP2
CALL ROM1 (6,SUM,2)
A=CP2
B=CP3
CALL ROM1 (6,ANS,2)
DO 5 I=1,6
5 SUM(I)=-(SUM(I)+ANS(I))
C PATH FROM IMAGINARY AXIS TO -INFINITY
SLOPE=1000.
IF (ZPH.GT..001*RHO) SLOPE=RHO/ZPH
DEL=PTP/DEL
DELTA=DCMPLX(-1.D0,SLOPE)*DEL/SQRT(1.+SLOPE*SLOPE)
DELTA2=-DCONJG(DELTA)
CALL GSHANK (CP1,DELTA,ANS,6,SUM,0,BK,BK)
RMIS=RHO*(DREAL(CK1)-CK2)
IF (RMIS.LT.2.*CK2) GO TO 8
IF (RHO.LT.1.E-10) GO TO 8
IF (ZPH.LT.1.E-10) GO TO 6
BK=DCMPLX(-ZPH,RHO)*(CK1-CP3)
RMIS=-DREAL(BK)/ABS(DIMAG(BK))
IF(RMIS.GT.4.*RHO/ZPH)GO TO 8
C INTEGRATE UP BETWEEN BRANCH CUTS, THEN TO + INFINITY
6 CP1=CK1-(.1,.2)
CP2=CP1+.2
BK=DCMPLX(0.D0,DEL)
CALL GSHANK (CP1,BK,SUM,6,ANS,0,BK,BK)
A=CP1
B=CP2
CALL ROM1 (6,ANS,1)
DO 7 I=1,6
7 ANS(I)=ANS(I)-SUM(I)
CALL GSHANK (CP3,BK,SUM,6,ANS,0,BK,BK)
CALL GSHANK (CP2,DELTA2,ANS,6,SUM,0,BK,BK)
GO TO 10
C INTEGRATE BELOW BRANCH POINTS, THEN TO + INFINITY
8 DO 9 I=1,6
9 SUM(I)=-ANS(I)
RMIS=DREAL(CK1)*1.01
IF (CK2+1..GT.RMIS) RMIS=CK2+1.
BK=DCMPLX(RMIS,.99*DIMAG(CK1))
DELTA=BK-CP3
DELTA=DELTA*DEL/ABS(DELTA)
CALL GSHANK (CP3,DELTA,ANS,6,SUM,1,BK,DELTA2)
10 ANS(6)=ANS(6)*CK1
C CONJUGATE SINCE NEC USES EXP(+JWT)
ERV=DCONJG(CK1SQ*ANS(3))
EZV=DCONJG(CK1SQ*(ANS(2)+CK2SQ*ANS(5)))
ERH=DCONJG(CK2SQ*(ANS(1)+ANS(6)))
EPH=-DCONJG(CK2SQ*(ANS(4)+ANS(6)))
RETURN
END
SUBROUTINE GSHANK (START,DELA,SUM,NANS,SEED,IBK,BK,DELB)
C
C GSHANK INTEGRATES THE 6 SOMMERFELD INTEGRALS FROM START TO
C INFINITY (UNTIL CONVERGENCE) IN LAMBDA. AT THE BREAK POINT, BK,
C THE STEP INCREMENT MAY BE CHANGED FROM DELA TO DELB. SHANK S
C ALGORITHM TO ACCELERATE CONVERGENCE OF A SLOWLY CONVERGING SERIES
C IS USED
C
IMPLICIT REAL*8(A-H,O-Z)
SAVE
COMPLEX*16 START,DELA,SUM,SEED,BK,DELB,A,B,Q1,Q2,ANS1,ANS2,A1,A2,
1AS1,AS2,DEL,AA
COMMON /CNTOUR/ A,B
DIMENSION Q1(6,20), Q2(6,20), ANS1(6), ANS2(6), SUM(6), SEED(6)
DATA CRIT/1.E-4/,MAXH/20/
RBK=DREAL(BK)
DEL=DELA
IBX=0
IF (IBK.EQ.0) IBX=1
DO 1 I=1,NANS
1 ANS2(I)=SEED(I)
B=START
2 DO 20 INT=1,MAXH
INX=INT
A=B
B=B+DEL
IF (IBX.EQ.0.AND.DREAL(B).GE.RBK) GO TO 5
CALL ROM1 (NANS,SUM,2)
DO 3 I=1,NANS
3 ANS1(I)=ANS2(I)+SUM(I)
A=B
B=B+DEL
IF (IBX.EQ.0.AND.DREAL(B).GE.RBK) GO TO 6
CALL ROM1 (NANS,SUM,2)
DO 4 I=1,NANS
4 ANS2(I)=ANS1(I)+SUM(I)
GO TO 11
C HIT BREAK POINT. RESET SEED AND START OVER.
5 IBX=1
GO TO 7
6 IBX=2
7 B=BK
DEL=DELB
CALL ROM1 (NANS,SUM,2)
IF (IBX.EQ.2) GO TO 9
DO 8 I=1,NANS
8 ANS2(I)=ANS2(I)+SUM(I)
GO TO 2
9 DO 10 I=1,NANS
10 ANS2(I)=ANS1(I)+SUM(I)
GO TO 2
11 DEN=0.
DO 18 I=1,NANS
AS1=ANS1(I)
AS2=ANS2(I)
IF (INT.LT.2) GO TO 17
DO 16 J=2,INT
JM=J-1
AA=Q2(I,JM)
A1=Q1(I,JM)+AS1-2.*AA
IF (DREAL(A1).EQ.0..AND.DIMAG(A1).EQ.0.) GO TO 12
A2=AA-Q1(I,JM)
A1=Q1(I,JM)-A2*A2/A1
GO TO 13
12 A1=Q1(I,JM)
13 A2=AA+AS2-2.*AS1
IF (DREAL(A2).EQ.0..AND.DIMAG(A2).EQ.0.) GO TO 14
A2=AA-(AS1-AA)*(AS1-AA)/A2
GO TO 15
14 A2=AA
15 Q1(I,JM)=AS1
Q2(I,JM)=AS2
AS1=A1
16 AS2=A2
17 Q1(I,INT)=AS1
Q2(I,INT)=AS2
AMG=ABS(DREAL(AS2))+ABS(DIMAG(AS2))
IF (AMG.GT.DEN) DEN=AMG
18 CONTINUE
DENM=1.E-3*DEN*CRIT
JM=INT-3
IF (JM.LT.1) JM=1
DO 19 J=JM,INT
DO 19 I=1,NANS
A1=Q2(I,J)
DEN=(ABS(DREAL(A1))+ABS(DIMAG(A1)))*CRIT
IF (DEN.LT.DENM) DEN=DENM
A1=Q1(I,J)-A1
AMG=ABS(DREAL(A1))+ABS(DIMAG(A1))
IF (AMG.GT.DEN) GO TO 20
19 CONTINUE
GO TO 22
20 CONTINUE
WRITE(*,24)
DO 21 I=1,NANS
21 WRITE(*,25) Q1(I,INX),Q2(I,INX)
22 DO 23 I=1,NANS
23 SUM(I)=.5*(Q1(I,INX)+Q2(I,INX))
RETURN
C
24 FORMAT (46H **** NO CONVERGENCE IN SUBROUTINE GSHANK ****)
25 FORMAT (1X,1P10E12.5)
END
SUBROUTINE HANKEL (Z,H0,H0P)
C
C HANKEL EVALUATES HANKEL FUNCTION OF THE FIRST KIND, ORDER ZERO,
C AND ITS DERIVATIVE FOR COMPLEX ARGUMENT Z.
C
IMPLICIT REAL*8(A-H,O-Z)
SAVE
COMPLEX*16 CLOGZ,H0,H0P,J0,J0P,P0Z,P1Z,Q0Z,Q1Z,Y0,Y0P,Z,ZI,ZI2,ZK,
1FJ
DIMENSION M(101), A1(25), A2(25), A3(25), A4(25), FJX(2)
EQUIVALENCE (FJ,FJX)
DATA PI,GAMMA,C1,C2,C3,P10,P20/3.141592654,.5772156649,-.024578509
15,.3674669052,.7978845608,.0703125,.1121520996/
DATA Q10,Q20,P11,P21,Q11,Q21/.125,.0732421875,.1171875,.1441955566
1,.375,.1025390625/
DATA POF,INIT/.7853981635,0/,FJX/0.,1./
IF (INIT.EQ.0) GO TO 5
1 ZMS=Z*DCONJG(Z)
IF (ZMS.NE.0.) GO TO 2
WRITE(*,9)
STOP
2 IB=0
IF (ZMS.GT.16.81) GO TO 4
IF (ZMS.GT.16.) IB=1
C SERIES EXPANSION
IZ=1.+ZMS
MIZ=M(IZ)
J0=(1.,0.)
J0P=J0
Y0=(0.,0.)
Y0P=Y0
ZK=J0
ZI=Z*Z
DO 3 K=1,MIZ
ZK=ZK*A1(K)*ZI
J0=J0+ZK
J0P=J0P+A2(K)*ZK
Y0=Y0+A3(K)*ZK
3 Y0P=Y0P+A4(K)*ZK
J0P=-.5*Z*J0P
CLOGZ=LOG(.5*Z)
Y0=(2.*J0*CLOGZ-Y0)/PI+C2
Y0P=(2./Z+2.*J0P*CLOGZ+.5*Y0P*Z)/PI+C1*Z
H0=J0+FJ*Y0
H0P=J0P+FJ*Y0P
IF (IB.EQ.0) RETURN
Y0=H0
Y0P=H0P
C ASYMPTOTIC EXPANSION
4 ZI=1./Z
ZI2=ZI*ZI
P0Z=1.+(P20*ZI2-P10)*ZI2
P1Z=1.+(P11-P21*ZI2)*ZI2
Q0Z=(Q20*ZI2-Q10)*ZI
Q1Z=(Q11-Q21*ZI2)*ZI
ZK=EXP(FJ*(Z-POF))*SQRT(ZI)*C3
H0=ZK*(P0Z+FJ*Q0Z)
H0P=FJ*ZK*(P1Z+FJ*Q1Z)
IF (IB.EQ.0) RETURN
ZMS=COS((SQRT(ZMS)-4.)*31.41592654)
H0=.5*(Y0*(1.+ZMS)+H0*(1.-ZMS))
H0P=.5*(Y0P*(1.+ZMS)+H0P*(1.-ZMS))
RETURN
C INITIALIZATION OF CONSTANTS
5 PSI=-GAMMA
DO 6 K=1,25
A1(K)=-.25D0/(K*K)
A2(K)=1.D0/(K+1.D0)
PSI=PSI+1.D0/K
A3(K)=PSI+PSI
6 A4(K)=(PSI+PSI+1.D0/(K+1.D0))/(K+1.D0)
DO 8 I=1,101
TEST=1.D0
DO 7 K=1,24
INIT=K
TEST=-TEST*I*A1(K)
IF (TEST*A3(K).LT.1.D-6) GO TO 8
7 CONTINUE
8 M(I)=INIT
GO TO 1
C
9 FORMAT (34H ERROR - HANKEL NOT VALID FOR Z=0.)
END
SUBROUTINE LAMBDA (T,XLAM,DXLAM)
C
C COMPUTE INTEGRATION PARAMETER XLAM=LAMBDA FROM PARAMETER T.
C
IMPLICIT REAL*8(A-H,O-Z)
SAVE
COMPLEX*16 A,B,XLAM,DXLAM
COMMON /CNTOUR/ A,B
DXLAM=B-A
XLAM=A+DXLAM*T
RETURN
END
SUBROUTINE ROM1 (N,SUM,NX)
C
C ROM1 INTEGRATES THE 6 SOMMERFELD INTEGRALS FROM A TO B IN LAMBDA.
C THE METHOD OF VARIABLE INTERVAL WIDTH ROMBERG INTEGRATION IS USED.
C
IMPLICIT REAL*8(A-H,O-Z)
SAVE
COMPLEX*16 A,B,SUM,G1,G2,G3,G4,G5,T00,T01,T10,T02,T11,T20
COMMON /CNTOUR/ A,B
DIMENSION SUM(6), G1(6), G2(6), G3(6), G4(6), G5(6), T01(6), T10(6
1), T20(6)
DATA NM,NTS,RX/131072,4,1.E-4/
LSTEP=0
Z=0.
ZE=1.
S=1.
EP=S/(1.E4*NM)
ZEND=ZE-EP
DO 1 I=1,N
1 SUM(I)=(0.,0.)
NS=NX
NT=0
CALL SAOA (Z,G1)
2 DZ=S/NS
IF (Z+DZ.LE.ZE) GO TO 3
DZ=ZE-Z
IF (DZ.LE.EP) GO TO 17
3 DZOT=DZ*.5
CALL SAOA (Z+DZOT,G3)
CALL SAOA (Z+DZ,G5)
4 NOGO=0
DO 5 I=1,N
T00=(G1(I)+G5(I))*DZOT
T01(I)=(T00+DZ*G3(I))*.5
T10(I)=(4.*T01(I)-T00)/3.
C TEST CONVERGENCE OF 3 POINT ROMBERG RESULT
CALL TEST (DREAL(T01(I)),DREAL(T10(I)),TR,DIMAG(T01(I)),DIMAG(T10
1(I)),TI,0.d0)
IF (TR.GT.RX.OR.TI.GT.RX) NOGO=1
5 CONTINUE
IF (NOGO.NE.0) GO TO 7
DO 6 I=1,N
6 SUM(I)=SUM(I)+T10(I)
NT=NT+2
GO TO 11
7 CALL SAOA (Z+DZ*.25,G2)
CALL SAOA (Z+DZ*.75,G4)
NOGO=0
DO 8 I=1,N
T02=(T01(I)+DZOT*(G2(I)+G4(I)))*.5
T11=(4.*T02-T01(I))/3.
T20(I)=(16.*T11-T10(I))/15.
C TEST CONVERGENCE OF 5 POINT ROMBERG RESULT
CALL TEST (DREAL(T11),DREAL(T20(I)),TR,DIMAG(T11),DIMAG(T20(I)),TI
1,0.d0)
IF (TR.GT.RX.OR.TI.GT.RX) NOGO=1
8 CONTINUE
IF (NOGO.NE.0) GO TO 13
9 DO 10 I=1,N
10 SUM(I)=SUM(I)+T20(I)
NT=NT+1
11 Z=Z+DZ
IF (Z.GT.ZEND) GO TO 17
DO 12 I=1,N
12 G1(I)=G5(I)
IF (NT.LT.NTS.OR.NS.LE.NX) GO TO 2
NS=NS/2
NT=1
GO TO 2
13 NT=0
IF (NS.LT.NM) GO TO 15
IF (LSTEP.EQ.1) GO TO 9
LSTEP=1
CALL LAMBDA (Z,T00,T11)
WRITE(*,18) T00
WRITE(*,19) Z,DZ,A,B
DO 14 I=1,N
14 WRITE(*,19) G1(I),G2(I),G3(I),G4(I),G5(I)
GO TO 9
15 NS=NS*2
DZ=S/NS
DZOT=DZ*.5
DO 16 I=1,N
G5(I)=G3(I)
16 G3(I)=G2(I)
GO TO 4
17 CONTINUE
RETURN
C
18 FORMAT (38H ROM1 -- STEP SIZE LIMITED AT LAMBDA =,1P2E12.5)
19 FORMAT (1X,1P10E12.5)
END
SUBROUTINE SAOA (T,ANS)
C
C SAOA COMPUTES THE INTEGRAND FOR EACH OF THE 6
C SOMMERFELD INTEGRALS FOR SOURCE AND OBSERVER ABOVE GROUND
C
IMPLICIT REAL*8(A-H,O-Z)
SAVE
COMPLEX*16 ANS,XL,DXL,CGAM1,CGAM2,B0,B0P,COM,CK1,CK1SQ,CKSM,CT1,
1CT2,CT3,DGAM,DEN1,DEN2
COMMON /EVLCOM/ CKSM,CT1,CT2,CT3,CK1,CK1SQ,CK2,CK2SQ,TKMAG,TSMAG,C
1K1R,ZPH,RHO,JH
DIMENSION ANS(6)
CALL LAMBDA (T,XL,DXL)
IF (JH.GT.0) GO TO 1
C BESSEL FUNCTION FORM
CALL BESSEL (XL*RHO,B0,B0P)
B0=2.*B0
B0P=2.*B0P
CGAM1=SQRT(XL*XL-CK1SQ)
CGAM2=SQRT(XL*XL-CK2SQ)
IF (DREAL(CGAM1).EQ.0.) CGAM1=DCMPLX(0.D0,-ABS(DIMAG(CGAM1)))
IF (DREAL(CGAM2).EQ.0.) CGAM2=DCMPLX(0.D0,-ABS(DIMAG(CGAM2)))
GO TO 2
C HANKEL FUNCTION FORM
1 CALL HANKEL (XL*RHO,B0,B0P)
COM=XL-CK1
CGAM1=SQRT(XL+CK1)*SQRT(COM)
IF (DREAL(COM).LT.0..AND.DIMAG(COM).GE.0.) CGAM1=-CGAM1
COM=XL-CK2
CGAM2=SQRT(XL+CK2)*SQRT(COM)
IF (DREAL(COM).LT.0..AND.DIMAG(COM).GE.0.) CGAM2=-CGAM2
2 XLR=XL*DCONJG(XL)
IF (XLR.LT.TSMAG) GO TO 3
IF (DIMAG(XL).LT.0.) GO TO 4
XLR=DREAL(XL)
IF (XLR.LT.CK2) GO TO 5
IF (XLR.GT.CK1R) GO TO 4
3 DGAM=CGAM2-CGAM1
GO TO 7
4 SIGN=1.
GO TO 6
5 SIGN=-1.
6 DGAM=1./(XL*XL)
DGAM=SIGN*((CT3*DGAM+CT2)*DGAM+CT1)/XL
7 DEN2=CKSM*DGAM/(CGAM2*(CK1SQ*CGAM2+CK2SQ*CGAM1))
DEN1=1./(CGAM1+CGAM2)-CKSM/CGAM2
COM=DXL*XL*EXP(-CGAM2*ZPH)
ANS(6)=COM*B0*DEN1/CK1
COM=COM*DEN2
IF (RHO.EQ.0.) GO TO 8
B0P=B0P/RHO
ANS(1)=-COM*XL*(B0P+B0*XL)
ANS(4)=COM*XL*B0P
GO TO 9
8 ANS(1)=-COM*XL*XL*.5
ANS(4)=ANS(1)
9 ANS(2)=COM*CGAM2*CGAM2*B0
ANS(3)=-ANS(4)*CGAM2*RHO
ANS(5)=COM*B0
RETURN
END
SUBROUTINE TEST (F1R,F2R,TR,F1I,F2I,TI,DMIN)
C
C TEST FOR CONVERGENCE IN NUMERICAL INTEGRATION
C
IMPLICIT REAL*8(A-H,O-Z)
SAVE
DEN=ABS(F2R)
TR=ABS(F2I)
IF (DEN.LT.TR) DEN=TR
IF (DEN.LT.DMIN) DEN=DMIN
IF (DEN.LT.1.E-37) GO TO 1
TR=ABS((F1R-F2R)/DEN)
TI=ABS((F1I-F2I)/DEN)
RETURN
1 TR=0.
TI=0.
RETURN
END
SUBROUTINE SECOND (CPUSECD)
C Purpose:
C SECOND returns cpu time in seconds. Must be customized!!!
REAL*8 CPUSECD
integer Iticks
C-- Not customized:
C Cpusecd = 0.0 ! if we have no clock routine
C-- MACINTOSH:
C CPUSECD= LONG(362)/60.0
C-- Lahey fortran
C Call Timer(Iticks)
C cpusecd = Iticks/100.d0
END
|