1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
|
#example2.nec (modified in order to get several excitations) :
#
#CMEXAMPLE 2. CENTER FED LINEAR ANTENNA.
#CM CURRENT SLOPE DISCONTINUITY SOURCE.
#CM 1. THIN PERFECTLY CONDUCTING WIRE
#CE 2. THIN ALUMINUM WIRE
#GW 0 8 0. 0. -.25 0. 0. .25 .00001
#GE
#FR 0 3 0 0 200. 50.
#EX 5 0 5 1 1. 0. 50.
#EX 5 0 4 1 1. 0. 50.
#XQ
#EN
print('beginning of the test')
print('import of the module')
from PyNEC import *
print('begininning of card input')
#creation of a nec context
context=nec_context()
#get the associated geometry
geo = context.get_geometry()
#add a wire to the geometry
geo.wire(0, 8, 0, 0, -.25, 0, 0, .25, .00001, 1, 1)
#end of the geometry input
context.geometry_complete(0)
#add a "fr" card to specify the frequency
context.fr_card(0, 3, 200e6, 50e6)
#add a "ex" card to specify an excitation
context.ex_card(5, 0, 5, 0, 0, 1, 0, 0, 0, 0, 0)
#add an other "ex" card to specify a second excitation
context.ex_card(5, 0, 4, 0, 0, 1, 0, 0, 0, 0, 0)
#add a "xq" card to force the simulation execution
context.xq_card(0)
print('end of card input\n')
print('get the first antenna_input (there are several ones, each one corresponding to one single frequency)\n')
ai=context.get_antenna_input(0)
print('get some of the available results')
print('get the array of segments numbers')
print(ai.get_segment())
print('\nget the array of complex currents')
print(ai.get_current())
print('\nget the array of powers')
print(ai.get_power())
print('\nend of the test - you can compare the results with the ones provided by NEC-2 using test_ai.nec as the input file\n')
|