1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
/* mpz_perfect_power_p(arg) -- Return non-zero if ARG is a perfect power,
zero otherwise.
Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
/*
We are to determine if c is a perfect power, c = a ^ b.
Assume c is divisible by 2^n and that codd = c/2^n is odd.
Assume a is divisible by 2^m and that aodd = a/2^m is odd.
It is always true that m divides n.
* If n is prime, either 1) a is 2*aodd and b = n
or 2) a = c and b = 1.
So for n prime, we readily have a solution.
* If n is factorable into the non-trivial factors p1,p2,...
Since m divides n, m has a subset of n's factors and b = n / m.
BUG: Should handle negative numbers, since they can be odd perfect powers.
*/
/* This is a naive approach to recognizing perfect powers.
Many things can be improved. In particular, we should use p-adic
arithmetic for computing possible roots. */
#include <stdio.h> /* for NULL */
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"
static unsigned long int gcd _PROTO ((unsigned long int a, unsigned long int b));
static int isprime _PROTO ((unsigned long int t));
static const unsigned short primes[] =
{ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97,101,103,107,109,113,127,131,
137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,
227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,
313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,
419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,
509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,
617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,
727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,
829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,
947,953,967,971,977,983,991,997,0
};
#define SMALLEST_OMITTED_PRIME 1009
int
#if __STDC__
mpz_perfect_power_p (mpz_srcptr u)
#else
mpz_perfect_power_p (u)
mpz_srcptr u;
#endif
{
unsigned long int prime;
unsigned long int n, n2;
int i;
unsigned long int rem;
mpz_t u2, q;
int exact;
mp_size_t uns;
TMP_DECL (marker);
if (mpz_cmp_ui (u, 1) <= 0)
return 0;
n2 = mpz_scan1 (u, 0);
if (n2 == 1)
return 0;
TMP_MARK (marker);
uns = ABSIZ (u) - n2 / BITS_PER_MP_LIMB;
MPZ_TMP_INIT (q, uns);
MPZ_TMP_INIT (u2, uns);
mpz_tdiv_q_2exp (u2, u, n2);
if (isprime (n2))
goto n2prime;
for (i = 1; primes[i] != 0; i++)
{
prime = primes[i];
rem = mpz_tdiv_ui (u2, prime);
if (rem == 0) /* divisable? */
{
rem = mpz_tdiv_q_ui (q, u2, prime * prime);
if (rem != 0)
{
TMP_FREE (marker);
return 0;
}
mpz_swap (q, u2);
for (n = 2;;)
{
rem = mpz_tdiv_q_ui (q, u2, prime);
if (rem != 0)
break;
mpz_swap (q, u2);
n++;
}
n2 = gcd (n2, n);
if (n2 == 1)
{
TMP_FREE (marker);
return 0;
}
/* As soon as n2 becomes a prime number, stop factoring.
Either we have u=x^n2 or u is not a perfect power. */
if (isprime (n2))
goto n2prime;
}
}
if (mpz_cmp_ui (u2, 1) == 0)
{
TMP_FREE (marker);
return 1;
}
if (n2 == 0)
{
unsigned long int nth;
/* We did not find any factors above. We have to consider all values
of n. */
for (nth = 2;; nth++)
{
if (! isprime (nth))
continue;
#if 0
exact = mpz_padic_root (q, u2, nth, PTH);
if (exact)
#endif
exact = mpz_root (q, u2, nth);
if (exact)
{
TMP_FREE (marker);
return 1;
}
if (mpz_cmp_ui (q, SMALLEST_OMITTED_PRIME) < 0)
{
TMP_FREE (marker);
return 0;
}
}
}
else
{
unsigned long int nth;
/* We found some factors above. We just need to consider values of n
that divides n2. */
for (nth = 2; nth <= n2; nth++)
{
if (! isprime (nth))
continue;
if (n2 % nth != 0)
continue;
#if 0
exact = mpz_padic_root (q, u2, nth, PTH);
if (exact)
#endif
exact = mpz_root (q, u2, nth);
if (exact)
{
TMP_FREE (marker);
return 1;
}
if (mpz_cmp_ui (q, SMALLEST_OMITTED_PRIME) < 0)
{
TMP_FREE (marker);
return 0;
}
}
TMP_FREE (marker);
return 0;
}
n2prime:
exact = mpz_root (NULL, u2, n2);
TMP_FREE (marker);
return exact;
}
static unsigned long int
#if __STDC__
gcd (unsigned long int a, unsigned long int b)
#else
gcd (a, b)
unsigned long int a, b;
#endif
{
int an2, bn2, n2;
if (a == 0)
return b;
if (b == 0)
return a;
count_trailing_zeros (an2, a);
a >>= an2;
count_trailing_zeros (bn2, b);
b >>= bn2;
n2 = MIN (an2, bn2);
while (a != b)
{
if (a > b)
{
a -= b;
do
a >>= 1;
while ((a & 1) == 0);
}
else /* b > a. */
{
b -= a;
do
b >>= 1;
while ((b & 1) == 0);
}
}
return a << n2;
}
static int
#if __STDC__
isprime (unsigned long int t)
#else
isprime (t)
unsigned long int t;
#endif
{
unsigned long int q, r, d;
if (t < 3 || (t & 1) == 0)
return t == 2;
for (d = 3, r = 1; r != 0; d += 2)
{
q = t / d;
r = t - q * d;
if (q < d)
return 1;
}
return 0;
}
|