File: tuneup.c

package info (click to toggle)
nessus-libraries 1.0.10-2
  • links: PTS
  • area: main
  • in suites: woody
  • size: 9,536 kB
  • ctags: 12,585
  • sloc: ansic: 72,626; asm: 25,921; sh: 19,570; makefile: 1,974; cpp: 560; pascal: 536; yacc: 234; lex: 203; lisp: 186; perl: 76; fortran: 24
file content (746 lines) | stat: -rw-r--r-- 21,220 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
/* Create tuned thresholds for various algorithms. */

/*
Copyright (C) 1999, 2000 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.
*/

/* Usage: tune [-t] [-t] [-p precision]

   -t turns on some diagnostic traces, a second -t turns on more traces.

   The thresholds are determined as follows.  A crossover may not be a
   single size but rather a range where it oscillates between method A or
   method B faster.  If the threshold is set making B used where A is faster
   (or vice versa) that's bad.  Badness is the percentage time lost and
   total badness is the sum of this over all sizes measured.  The threshold
   is set to minimize total badness.

   Suppose, as sizes increase, method B becomes faster than method A.  The
   effect of the rule is that, as you look at increasing sizes, isolated
   points where B is faster are ignored, but when it's consistently faster,
   or faster on balance, then the threshold is set there.  The same result
   is obtained thinking in the other direction of A becoming faster at
   smaller sizes.

   In practice the thresholds tend to be chosen to bring on the next
   algorithm fairly quickly.

   This rule is attractive because it's got a basis in reason and is fairly
   easy to implement, but no work has been done to actually compare it in
   absolute terms to other possibilities.

   Sometimes running the program twice produces slightly different results.
   This is probably because there's so little separating algorithms near
   their crossover, and on that basis it should make little or no difference
   to the final speed of the relevant routines, but nothing has been done to
   check that carefully.

   Limitations:
   
   The FFTs aren't subject to the same badness rule as the other thresholds,
   so each k is probably being brought on a touch early.  This isn't likely
   to make a difference, and the simpler probing means fewer tests.

*/

#define TUNE_PROGRAM_BUILD  1

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>

#include "gmp.h"
#include "gmp-impl.h"

#include "speed.h"
#include "sqr_basecase.h"

#if !HAVE_DECL_OPTARG
extern char *optarg;
extern int optind, opterr;
#endif


#define MAX_SIZE        1000  /* limbs */
#define STEP_FACTOR     0.01  /* how much to step sizes by (rounded down) */
#define MAX_TABLE       2     /* threshold entries */


#if WANT_FFT
mp_size_t  option_fft_max_size = 50000;  /* limbs */
#else
mp_size_t  option_fft_max_size = 0;
#endif
int        option_trace = 0;
int        option_fft_trace = 0;
struct speed_params  s;

struct dat_t {
  mp_size_t  size;
  double     d;
} *dat = NULL;
int  ndat = 0;
int  allocdat = 0;


/* Each "_threshold" array must be 1 bigger than the number of thresholds
   being tuned in a set, because one() stores an value in the entry above
   the one it's determining. */

mp_size_t  mul_threshold[MAX_TABLE+1] = { MP_SIZE_T_MAX };
mp_size_t  fft_modf_mul_threshold = MP_SIZE_T_MAX;
mp_size_t  sqr_threshold[MAX_TABLE+1] = { MP_SIZE_T_MAX };
mp_size_t  fft_modf_sqr_threshold = MP_SIZE_T_MAX;
mp_size_t  bz_threshold[2] = { MP_SIZE_T_MAX };
mp_size_t  fib_threshold[2] = { MP_SIZE_T_MAX };
mp_size_t  powm_threshold[2] = { MP_SIZE_T_MAX };
mp_size_t  gcd_accel_threshold[2] = { MP_SIZE_T_MAX };
mp_size_t  gcdext_threshold[2] = { MP_SIZE_T_MAX };


#ifndef KARATSUBA_SQR_MAX
#define KARATSUBA_SQR_MAX  0 /* meaning no limit */
#endif

struct param_t {
  const char  *name[MAX_TABLE];
  int         stop_since_change;
  mp_size_t   min_size;
  mp_size_t   max_size[MAX_TABLE];
};


/* Add an entry to the end of the dat[] array, reallocing to make it bigger
   if necessary.  */
void
add_dat (mp_size_t size, double d)
{
#define ALLOCDAT_STEP  500

  ASSERT_ALWAYS (ndat <= allocdat);

  if (ndat == allocdat)
    {
      dat = (struct dat_t *) _mp_allocate_or_reallocate
        (dat, allocdat * sizeof(dat[0]),
         (allocdat+ALLOCDAT_STEP) * sizeof(dat[0]));
      allocdat += ALLOCDAT_STEP;
    }

  dat[ndat].size = size;
  dat[ndat].d = d;
  ndat++;
}


/* Return the threshold size based on the data accumulated. */
mp_size_t
analyze_dat (int i, int final)
{
  double  x, min_x;
  int     j, min_j;

  /* If the threshold is set at dat[0].size, any positive values are bad. */
  x = 0.0;
  for (j = 0; j < ndat; j++)
    if (dat[j].d > 0.0)
      x += dat[j].d;

  if (option_trace >= 2 && final)
    {
      printf ("\n");
      printf ("x is the sum of the badness from setting thresh at given size\n");
      printf ("  (minimum x is sought)\n");
      printf ("i=%d size=%ld  first x=%.4f\n", i, dat[j].size, x);
    }

  min_x = x;
  min_j = 0;


  /* When stepping to the next dat[j].size, positive values are no longer
     bad (so subtracted), negative values become bad (so add the absolute
     value, meaning subtract). */
  for (j = 0; j < ndat; x -= dat[j].d, j++)
    {
      if (option_trace >= 2 && final)
        printf ("i=%d size=%ld  x=%.4f\n", i, dat[j].size, x);

      if (x < min_x)
        {
          min_x = x;
          min_j = j;
        }
    }
   
  return min_j;
}


double
tuneup_measure (speed_function_t fun, struct speed_params *s)
{
  static mp_ptr  xp, yp;
  double   t;
  TMP_DECL (marker);

  TMP_MARK (marker);
  s->xp = SPEED_TMP_ALLOC_LIMBS (s->size, 0);
  s->yp = SPEED_TMP_ALLOC_LIMBS (s->size, 0);

  mpn_random (s->xp, s->size);
  mpn_random (s->yp, s->size);

  t = speed_measure (fun, s);

  TMP_FREE (marker);
  return t;
}  


void
print_define (const char *name, mp_size_t value)
{
  printf ("#ifndef %s\n", name);
  printf ("#define %-23s  ", name);
  if (value == MP_SIZE_T_MAX)
    printf ("MP_SIZE_T_MAX\n");
  else
    printf ("%5ld\n", value);
  printf ("#endif\n");
}


/* table[i+1] needs to be set to a sensible value when testing method i+1
   because mpn_mul_n uses TOOM3_MUL_THRESHOLD to size the temporary
   workspace for mpn_kara_mul_n. */

void
one (speed_function_t function, mp_size_t table[], size_t max_table,
     struct param_t *param)
{
  static struct param_t  dummy;
  int  i;

  if (param == NULL)  param = &dummy;

#define DEFAULT(x,n)  if (param->x == 0)  param->x = (n);

  DEFAULT (stop_since_change, 80);
  DEFAULT (min_size, 10);
  for (i = 0; i < numberof (param->max_size); i++)
    DEFAULT (max_size[i], MAX_SIZE);

  s.size = param->min_size;

  for (i = 0; i < max_table && s.size < MAX_SIZE; i++)
    {
      int  since_positive, since_thresh_change;
      int  thresh_idx, new_thresh_idx;

      ndat = 0;
      since_positive = 0;
      since_thresh_change = 0;
      thresh_idx = 0;

      if (option_trace >= 2)
        {
          printf ("             algorithm-A  algorithm-B   ratio  possible\n");
          printf ("              (seconds)    (seconds)    diff    thresh\n");
        }

      for ( ; s.size < MAX_SIZE; 
            s.size += MAX ((mp_size_t) floor (s.size * STEP_FACTOR), 1))
        {
          double   ti, tiplus1, d;

          /* If there's a size limit and it's reached then it should still
             be sensible to analyze the data since we want the threshold put
             either at or near the limit.  */
          if (s.size >= param->max_size[i])
            {
              if (option_trace)
                printf ("Reached maximum size (%ld) without otherwise stopping\n",
                        param->max_size[i]);
              break;
            }

          /*
            FIXME: check minimum size requirements are met, possibly by just
            checking for the -1 returns from the speed functions.
            if (s.size < MPN_TOOM_TABLE_TO_MINSIZE (i))
            continue;
          */

          /* using method i at this size */
          table[i] = s.size+1;
          table[i+1] = MAX_SIZE;
          ti = tuneup_measure (function, &s);
          if (ti == -1.0)
            abort ();

          /* using method i+1 at this size */
          table[i] = s.size;
          table[i+1] = s.size+1;
          tiplus1 = tuneup_measure (function, &s);
          if (tiplus1 == -1.0)
            abort ();

          /* Calculate the fraction by which the one or the other routine is
             slower.  */
          if (tiplus1 >= ti)
            d = (tiplus1 - ti) / tiplus1;  /* negative */
          else
            d = (tiplus1 - ti) / ti;       /* positive */

          add_dat (s.size, d);

          new_thresh_idx = analyze_dat (i, 0);


          if (option_trace >= 2)
            printf ("i=%d size=%ld  %.9f  %.9f  % .4f %c  %d\n",
                    i, s.size, ti, tiplus1, d,
                    ti > tiplus1 ? '#' : ' ',
                    dat[new_thresh_idx].size);

          /* Stop if the last time method i was faster was more than a
             certain number of measurements ago.  */
#define STOP_SINCE_POSITIVE  200
          if (d >= 0)
            since_positive = 0;            
          else
            if (++since_positive > STOP_SINCE_POSITIVE)
              {
                if (option_trace >= 1)
                  printf ("i=%d stopped due to since_positive (%d)\n",
                          i, STOP_SINCE_POSITIVE);
                break;
              }

          /* Stop if method i has become slower by a certain factor. */
#define STOP_FACTOR   1.2
          if (ti >= tiplus1 * STOP_FACTOR)
            {
              if (option_trace >= 1)
                printf ("i=%d stopped due to ti >= tiplus1 * factor (%.1f)\n",
                        i, STOP_FACTOR);
              break;
            }

          /* Stop if the threshold implied hasn't changed in a certain
             number of measurements.  (It's this condition that ususally
             stops the loop.) */
          if (thresh_idx != new_thresh_idx)
            since_thresh_change = 0, thresh_idx = new_thresh_idx;
          else
            if (++since_thresh_change > param->stop_since_change)
              {
                if (option_trace >= 1)
                  printf ("i=%d stopped due to since_thresh_change (%d)\n",
                          i, param->stop_since_change);
                break;
              }

          /* Stop if the threshold implied is more than a certain number of
             measurements ago.  */
#define STOP_SINCE_AFTER   500
          if (ndat - thresh_idx > STOP_SINCE_AFTER)
            {
              if (option_trace >= 1)
                printf ("i=%d stopped due to ndat - thresh_idx > amount (%d)\n",
                        i, STOP_SINCE_AFTER);
              break;
            }
        }

      /* Stop when the size limit is reached before the end of the
         crossover, without a specified param->max_size[i]. */
      if (s.size >= MAX_SIZE)
        {
          fprintf (stderr, "%s\n", param->name[i]);
          fprintf (stderr, "i=%d sizes %ld to %ld total %d measurements\n",
                   i, dat[0].size, dat[ndat-1].size, ndat);
          fprintf (stderr, "    max size reached before end of crossover\n");
          break;
        }

      if (option_trace >= 1)
        printf ("i=%d sizes %ld to %ld total %d measurements\n",
                i, dat[0].size, dat[ndat-1].size, ndat);

      if (ndat == 0)
        break;

      table[i] = dat[analyze_dat (i, 1)].size;

      print_define (param->name[i], table[i]);

      /* Look for the next threshold starting from the current one, but back
         a bit. */
      s.size = table[i]+1;
    }      
}


/* Special probing for the fft thresholds.  The size restrictions on the
   FFTs mean the graph of time vs size has a step effect.  See this for
   example using

       ./speed -s 4096-16384 -t 128 -P foo mpn_mul_fft.8 mpn_mul_fft.9
       gnuplot foo.gnuplot

   The current approach is to compare routines at the midpoint of relevant
   steps.  Arguably a more sophisticated system of threshold data is wanted
   if this step effect remains. */

struct fft_param_t {
  const char        *table_name;
  const char        *threshold_name;
  const char        *modf_threshold_name;
  mp_size_t         *p_threshold;
  mp_size_t         *p_modf_threshold;
  mp_size_t         first_size;
  mp_size_t         max_size;
  speed_function_t  function;
  speed_function_t  mul_function;
  mp_size_t         sqr;
};

/* mpn_mul_fft requires pl a multiple of 2^k limbs, but with
   N=pl*BIT_PER_MP_LIMB it internally also pads out so N/2^k is a multiple
   of 2^(k-1) bits. */

mp_size_t
fft_step_size (int k)
{
  if (2*k-1 > BITS_PER_INT)
    {
      printf ("Can't handle k=%d\n", k);
      abort ();
    }
  return (1<<k) * (MAX (1<<(k-1), BITS_PER_MP_LIMB)) / BITS_PER_MP_LIMB;
}

mp_size_t
fft_next_size (mp_size_t pl, int k)
{
  mp_size_t  m = fft_step_size (k);

/*    printf ("[k=%d %ld] %ld ->", k, m, pl); */

  if (pl == 0 || (pl & (m-1)) != 0)
    pl = (pl | (m-1)) + 1;

/*    printf (" %ld\n", pl); */
  return pl;
}

void
fft (struct fft_param_t *p)
{
  mp_size_t  size;
  int        i, k;

  for (i = 0; i < numberof (mpn_fft_table[p->sqr]); i++)
    mpn_fft_table[p->sqr][i] = MP_SIZE_T_MAX;

  *p->p_threshold = MP_SIZE_T_MAX;
  *p->p_modf_threshold = MP_SIZE_T_MAX;

  option_trace = MAX (option_trace, option_fft_trace);

  printf ("#ifndef %s\n", p->table_name);
  printf ("#define %s  {", p->table_name);
  if (option_trace >= 2)
    printf ("\n");

  k = FFT_FIRST_K;
  size = p->first_size;
  for (;;)
    {
      double  tk, tk1;

      size = fft_next_size (size+1, k+1);

      if (size >= p->max_size)
        break;
      if (k >= FFT_FIRST_K + numberof (mpn_fft_table[p->sqr]))
        break;

      usleep(10000);

      /* compare k to k+1 in the middle of the current k+1 step */
      s.size = size + fft_step_size (k+1) / 2;
      s.r = k;
      tk = tuneup_measure (p->function, &s);
      if (tk == -1.0)
        abort ();

      usleep(10000);

      s.r = k+1;
      tk1 = tuneup_measure (p->function, &s);
      if (tk1 == -1.0)
        abort ();

      if (option_trace >= 2)
        printf ("at %ld   size=%ld  k=%d  %.9lf   k=%d %.9lf\n",
                size, s.size, k, tk, k+1, tk1);

      /* declare the k+1 threshold as soon as it's faster at its midpoint */
      if (tk1 < tk)
        {
          mpn_fft_table[p->sqr][k-FFT_FIRST_K] = s.size;
          printf (" %ld,", s.size);
          if (option_trace >= 2) printf ("\n");
          k++;
        }
    }

  mpn_fft_table[p->sqr][k-FFT_FIRST_K] = 0;
  printf (" 0 }\n");
  printf ("#endif\n");


  size = p->first_size;
  
  /* Declare an FFT faster than a plain toom3 etc multiplication found as
     soon as one faster measurement obtained.  A multiplication in the
     middle of the FFT step is tested.  */
  for (;;)
    {
      int     modf = (*p->p_modf_threshold == MP_SIZE_T_MAX);
      double  tk, tm;

      /* k=7 should be the first FFT which can beat toom3 on a full
         multiply, so jump to that threshold and save some probing after the
         modf threshold is found.  */
      if (!modf && size < mpn_fft_table[p->sqr][2])
        {
          size = mpn_fft_table[p->sqr][2];
          if (option_trace >= 2)
            printf ("jump to size=%ld\n", size);
        }

      size = fft_next_size (size+1, mpn_fft_best_k (size, p->sqr));
      k = mpn_fft_best_k (size, p->sqr);

      if (size >= p->max_size)
        break;

      usleep(10000);

      s.size = size + fft_step_size (k) / 2;
      s.r = k;
      tk = tuneup_measure (p->function, &s);
      if (tk == -1.0)
        abort ();

      usleep(10000);

      if (!modf)  s.size /= 2;
      tm = tuneup_measure (p->mul_function, &s);
      if (tm == -1.0)
        abort ();

      if (option_trace >= 2)
        printf ("at %ld   size=%ld   k=%d  %.9lf   size=%ld %s mul %.9lf\n",
                size,
                size + fft_step_size (k) / 2, k, tk,
                s.size, modf ? "modf" : "full", tm);

      if (tk < tm)
        {
          if (modf)
            {
              *p->p_modf_threshold = s.size;
              print_define (p->modf_threshold_name, *p->p_modf_threshold);
            }
          else
            {
              *p->p_threshold = s.size;
              print_define (p->threshold_name,      *p->p_threshold);
              break;
            }
        }
    }

}


void
all (void)
{
  TMP_DECL (marker);

  TMP_MARK (marker);
  s.xp_block = SPEED_TMP_ALLOC_LIMBS (SPEED_BLOCK_SIZE, 0);
  s.yp_block = SPEED_TMP_ALLOC_LIMBS (SPEED_BLOCK_SIZE, 0);

  speed_time_init ();
  fprintf (stderr, "speed_precision %d, speed_unittime %.2e\n",
           speed_precision, speed_unittime);
  fprintf (stderr, "MAX_SIZE %ld, fft_max_size %ld, STEP_FACTOR %.3f\n",
           MAX_SIZE, option_fft_max_size, STEP_FACTOR);
  fprintf (stderr, "\n");

  {
    struct tm  *tp;
    time_t     t;
    time (&t);
    tp = localtime (&t);
    printf ("/* Generated by tuneup.c, %d-%02d-%02d. */\n\n",
            tp->tm_year+1900, tp->tm_mon+1, tp->tm_mday);
  }

  {
    static struct param_t  param;
    param.name[0] = "KARATSUBA_MUL_THRESHOLD";
    param.name[1] = "TOOM3_MUL_THRESHOLD";
    param.max_size[1] = TOOM3_MUL_THRESHOLD_LIMIT;
    one (speed_mpn_mul_n, mul_threshold, numberof(mul_threshold)-1, &param);
  }
  printf("\n");

  {
    static struct param_t  param;
    param.name[0] = "KARATSUBA_SQR_THRESHOLD";
    param.name[1] = "TOOM3_SQR_THRESHOLD";
    param.max_size[0] = KARATSUBA_SQR_MAX;
    one (speed_mpn_sqr_n, sqr_threshold, numberof(sqr_threshold)-1, &param);
  }
  printf("\n");

  {
    static struct param_t  param;
    param.name[0] = "BZ_THRESHOLD";
    one (speed_mpn_bz_tdiv_qr, bz_threshold, 1, &param);
  }
  printf("\n");

  {
    static struct param_t  param;
    param.name[0] = "FIB_THRESHOLD";
    one (speed_mpz_fib_ui, fib_threshold, 1, &param);
  }
  printf("\n");

  /* mpz_powm becomes slow before long, so stop soon after the determined
     threshold stops changing. */
  {
    static struct param_t  param;
    param.name[0] = "POWM_THRESHOLD";
    param.stop_since_change = 15;
    one (speed_mpz_powm, powm_threshold, 1, &param);
  }
  printf("\n");

  {
    static struct param_t  param;
    param.name[0] = "GCD_ACCEL_THRESHOLD";
    param.min_size = 1;
    one (speed_mpn_gcd, gcd_accel_threshold, 1, &param);
  }
  {
    static struct param_t  param;
    param.name[0] = "GCDEXT_THRESHOLD";
    param.min_size = 1;
    param.max_size[0] = 200;
    one (speed_mpn_gcdext, gcdext_threshold, 1, &param);
  }
  printf("\n");

  if (option_fft_max_size != 0)
    {
      {
        static struct fft_param_t  param;
        param.table_name          = "FFT_MUL_TABLE";
        param.threshold_name      = "FFT_MUL_THRESHOLD";
        param.p_threshold         = &FFT_MUL_THRESHOLD;
        param.modf_threshold_name = "FFT_MODF_MUL_THRESHOLD";
        param.p_modf_threshold    = &FFT_MODF_MUL_THRESHOLD;
        param.first_size          = TOOM3_MUL_THRESHOLD / 2;
        param.max_size            = option_fft_max_size;
        param.function            = speed_mpn_mul_fft;
        param.mul_function        = speed_mpn_mul_n;
        param.sqr = 0;
        fft (&param);
      }
      printf("\n");
      {
        static struct fft_param_t  param;
        param.table_name          = "FFT_SQR_TABLE";
        param.threshold_name      = "FFT_SQR_THRESHOLD";
        param.p_threshold         = &FFT_SQR_THRESHOLD;
        param.modf_threshold_name = "FFT_MODF_SQR_THRESHOLD";
        param.p_modf_threshold    = &FFT_MODF_SQR_THRESHOLD;
        param.first_size          = TOOM3_SQR_THRESHOLD / 2;
        param.max_size            = option_fft_max_size;
        param.function            = speed_mpn_mul_fft_sqr;
        param.mul_function        = speed_mpn_sqr_n;
        param.sqr = 0;
        fft (&param);
      }
      printf ("\n");
    }

  TMP_FREE (marker);
}


int
main (int argc, char *argv[])
{
  int  opt;

  /* Unbuffered so if output is redirected to a file it isn't lost if the
     program is killed part way through.  */
  setbuf (stdout, NULL);
  setbuf (stderr, NULL);

  while ((opt = getopt(argc, argv, "f:o:p:t")) != EOF)
    {
      switch (opt) {
      case 'f':
        if (optarg[0] == 't')
          option_fft_trace = 2;
        else
          option_fft_max_size = atol (optarg);
        break;
      case 'o':
        speed_option_set (optarg);
        break;
      case 'p':
        speed_precision = atoi (optarg);
        break;
      case 't':
        option_trace++;
        break;
      case '?':
        exit(1);
      }
    }
		
  all ();
  return 0;
}