File: ncVar.h

package info (click to toggle)
netcdf-cxx 4.3.1-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 3,456 kB
  • sloc: cpp: 8,506; sh: 4,548; ansic: 4,251; xml: 173; makefile: 145
file content (1151 lines) | stat: -rw-r--r-- 55,264 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
#include <exception>
#include <string>
#include <typeinfo>
#include <map>
#include <vector>
#include "netcdf.h"
#include "ncVarAtt.h"
#include "ncGroup.h"
#include "ncByte.h"
#include "ncUbyte.h"
#include "ncChar.h"
#include "ncShort.h"
#include "ncUshort.h"
#include "ncInt.h"
#include "ncUint.h"
#include "ncInt64.h"
#include "ncUint64.h"
#include "ncFloat.h"
#include "ncDouble.h"
#include "ncString.h"

#ifndef NcVarClass
#define NcVarClass

namespace netCDF
{
  //  class NcGroup;  // forward declaration.
  class NcDim;    // forward declaration.
  //  class NcVarAtt; // forward declaration.
  class NcType;   // forward declaration.

  /*! Class represents a netCDF variable. */
  class NcVar
  {
  public:

    /*! Used for chunking specifications (see NcVar::setChunking,  NcVar::getChunkingParameters). */
    enum ChunkMode
      {
	/*!
	  Chunked storage is used for this variable.
	*/
        nc_CHUNKED    = NC_CHUNKED,
        /*! Contiguous storage is used for this variable. Variables with one or more unlimited
          dimensions cannot use contiguous storage. If contiguous storage is turned on, the
          chunkSizes parameter is ignored.
        */
        nc_CONTIGUOUS = NC_CONTIGUOUS
      };

    /*!
      Used to specifying the endianess of the data, (see NcVar::setEndianness, NcVar::getEndianness). By default this is NC_ENDIAN_NATIVE.
    */
    enum EndianMode
      {
	nc_ENDIAN_NATIVE = NC_ENDIAN_NATIVE, //!< Native endian.
	nc_ENDIAN_LITTLE = NC_ENDIAN_LITTLE, //!< Little endian.
	nc_ENDIAN_BIG    = NC_ENDIAN_BIG     //!< Big endian.
      };

    /*! Used for checksum specification (see NcVar::setChecksum, NcVar::getChecksum). */
    enum ChecksumMode
    {
      nc_NOCHECKSUM = NC_NOCHECKSUM, //!< No checksum (the default).
      nc_FLETCHER32 = NC_FLETCHER32  //!< Selects the Fletcher32 checksum filter.
      };

    /*! destructor */
    ~NcVar(){};

    /*! Constructor generates a \ref isNull "null object". */
    NcVar ();

    /*! Constructor for a variable .

      The variable must already exist in the netCDF file. New netCDF variables can be added using NcGroup::addNcVar();
      \param grp    Parent NcGroup object.
      \param varId  Id of the is NcVar object.
    */
    NcVar (const NcGroup& grp, const int& varId);

    /*! assignment operator  */
    NcVar& operator =(const NcVar& rhs);

    /*! equivalence operator */
    bool operator==(const NcVar& rhs) const;

    /*!  != operator */
    bool operator!=(const NcVar& rhs) const;

    /*! The copy constructor. */
    NcVar(const NcVar& ncVar);

    /*! Name of this NcVar object.*/
    std::string getName() const;

    /*! Gets parent group. */
    NcGroup  getParentGroup() const;

    /*! Returns the variable type. */
    NcType getType() const;


    /*! Rename the variable. */
    void rename( const std::string& newname ) const;

    /*! Define new variable for compression/decompression. */
    void setFilter(unsigned int id, size_t nparams, const unsigned int* parms) const;

    /*! Query filter properties (if a filter has been applied). */
    void getFilter(unsigned int* idp, size_t* nparamsp, unsigned int* params) const;

    /*! Query the length of a given ncType. */
    void getTypeLen(nc_type type) const;

    /*! Free memory allocated for a string. */
    void freeString(size_t len, char **data) const;

    /*! Change cache setttings for a chunked variable.  */
    void setChunkCache(size_t size, size_t nelems, float preemption) const;

    /*! Get the variable id. */
    int  getId() const;

    /*! Returns true if this object variable is not defined. */
    bool isNull() const  {return nullObject;}

    /*! comparator operator  */
    friend bool operator<(const NcVar& lhs,const NcVar& rhs);

    /*! comparator operator  */
    friend bool operator>(const NcVar& lhs,const NcVar& rhs);

    /////////////////

    // Information about Dimensions

    /////////////////

    /*! The the number of dimensions. */
    int getDimCount() const ;

    /*! Gets the i'th NcDim object. */
    NcDim getDim(int i) const;

    /*! Gets the set of NcDim objects. */
    std::vector<NcDim> getDims() const;

    /////////////////

    // Information about Attributes

    /////////////////

    /*! Gets the number of attributes. */
    int getAttCount() const;

    /*! Gets attribute by name */
    NcVarAtt getAtt(const std::string& name) const;

    /*! Gets the set of attributes. */
    std::map<std::string,NcVarAtt> getAtts() const;




    /////////////////////////


    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, size_t len, const char** dataValues) const ;

    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const std::string& dataValues) const ;

    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const unsigned char* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const signed char* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, short datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, int datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, long datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, float datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, double datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, unsigned short datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, unsigned int datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, unsigned long long datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, long long datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const short* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const int* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const long* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const float* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const double* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const unsigned short* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const unsigned int* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const unsigned long long* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const long long* dataValues) const ;
    /*!
      Creates a new variable attribute or if already exisiting replaces it.
      If you are writing a _Fill_Value_ attribute, and will tell the HDF5 layer to use
      the specified fill value for that variable.
      \par
      Although it's possible to create attributes of all types, text and double attributes are adequate for most purposes.
      \param name        Name of attribute.
      \param type        The attribute type.
      \param len         The length of the attribute (number of Nctype repeats).
      \param dataValues  Data Values to put into the new attribute.
      If the type of data values differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
      \return            The NcVarAtt object for this new netCDF attribute.
    */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const void* dataValues) const ;



    ////////////////////

    // Chunking details

    ////////////////////

    /*! Sets chunking parameters.
      \param chunkMode   Enumeration type. Allowable parameters are: "nc_CONTIGUOUS", "nc_CHUNKED"
      \param chunksizes  Shape of chunking, used if ChunkMode=nc_CHUNKED.
    */
    void setChunking(ChunkMode chunkMode, std::vector<size_t>& chunksizes) const;

    /*! Gets the chunking parameters
      \param chunkMode   On return contains either: "nc_CONTIGUOUS" or "nc_CHUNKED"
      \param chunksizes  On return contains shape of chunking, used if ChunkMode=nc_CHUNKED.
    */
    void getChunkingParameters(ChunkMode& chunkMode, std::vector<size_t>& chunkSizes) const;



    ////////////////////

    // Fill details

    ////////////////////

    // Sets the fill parameters
    /*!
      \overload
    */
    void setFill(bool fillMode,void* fillValue=NULL) const;

    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      The function can be used for any type, including user-defined types.
      \param fillMode   Setting to true, turns on fill mode.
      \param fillValue  Pointer to fill value.
      Must be the same type as the variable. Ignored if fillMode=.false.
    */
    void setFill(bool fillMode,const void* fillValue=NULL) const;

    /*! Sets the fill parameters
      \param fillMode   Setting to true, turns on fill mode.
      \param fillValue  Fill value for the variable.
      Must be the same type as the variable. Ignored if fillMode=.false.
    */
    template<class T>
      void setFill(bool fillMode, T fillValue) const
      {
	ncCheck(nc_def_var_fill(groupId,myId,static_cast<int> (!fillMode),&fillValue),__FILE__,__LINE__);
      }




    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      The function can be used for any type, including user-defined types.
      \param fillMode   On return set to true  if fill mode is enabled.
      \param fillValue  On return containts a pointer to fill value.
      Must be the same type as the variable. Ignored if fillMode=.false.
    */
    void getFillModeParameters(bool& fillMode, void* fillValue=NULL) const;


    /*! Gets the fill parameters
      \param On return set to true  if fill mode is enabled.
      \param On return  is set to the fill value.
    */
    template <class T> void getFillModeParameters(bool& fillMode,T& fillValue) const{
       int fillModeInt;
      ncCheck(nc_inq_var_fill(groupId,myId,&fillModeInt,&fillValue),__FILE__,__LINE__);
      fillMode= static_cast<bool> (fillModeInt == 0);
    }




    ////////////////////

    // Compression details

    ////////////////////


    /*! Sets the compression parameters
      \param enableShuffleFilter Set to true to turn on shuffle filter.
      \param enableDeflateFilter Set to true to turn on deflate filter.
      \param deflateLevel        The deflate level, must be 0 and 9.
    */
    void setCompression(bool enableShuffleFilter, bool enableDeflateFilter, int deflateLevel) const;

    /*! Gets the compression parameters
      \param enableShuffleFilter  On return set to true if the shuffle filter is enabled.
      \param enableDeflateFilter  On return set to true if the deflate filter is enabled.
      \param deflateLevel         On return set to the deflate level.
    */
    void getCompressionParameters(bool& shuffleFilterEnabled, bool& deflateFilterEnabled, int& deflateLevel) const;



    ////////////////////

    // Endianness details

    ////////////////////


    /*! Sets the endianness of the variable.
      \param Endianness enumeration type. Allowable parameters are: "nc_ENDIAN_NATIVE" (the default), "nc_ENDIAN_LITTLE", "nc_ENDIAN_BIG"
    */
    void setEndianness(EndianMode endianMode) const;

    /*! Gets the endianness of the variable.
      \return Endianness enumeration type. Allowable parameters are: "nc_ENDIAN_NATIVE" (the default), "nc_ENDIAN_LITTLE", "nc_ENDIAN_BIG"
    */
    EndianMode getEndianness() const;



    ////////////////////

    // Checksum details

    ////////////////////


    /*! Sets the checksum parameters of a variable.
      \param ChecksumMode Enumeration type. Allowable parameters are: "nc_NOCHECKSUM", "nc_FLETCHER32".
    */
    void setChecksum(ChecksumMode checksumMode) const;

    /*! Gets the checksum parameters of the variable.
      \return ChecksumMode Enumeration type. Allowable parameters are: "nc_NOCHECKSUM", "nc_FLETCHER32".
    */
    ChecksumMode getChecksum() const;



    ////////////////////

    //  data  reading

    ////////////////////



    // Reads the entire data into the netCDF variable.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void getVar(void* dataValues) const;
    /*! \overload
     */
    void getVar(char** dataValues) const;
    /*! \overload
     */
    void getVar(char* dataValues) const;
    /*! \overload
     */
    void getVar(unsigned char* dataValues) const;
    /*! \overload
     */
    void getVar(signed char* dataValues) const;
    /*! \overload
     */
    void getVar(short* dataValues) const;
    /*! \overload
     */
    void getVar(int* dataValues) const;
    /*! \overload
     */
    void getVar(long* dataValues) const;
    /*! \overload
     */
    void getVar(float* dataValues) const;
    /*! \overload
     */
    void getVar(double* dataValues) const;
    /*! \overload
     */
    void getVar(unsigned short* dataValues) const;
    /*! \overload
     */
    void getVar(unsigned int* dataValues) const;
    /*! \overload
     */
    void getVar(unsigned long long* dataValues) const;
    /*!
      Reads the entire data from an netCDF variable.
      This is the simplest interface to use for reading the value of a scalar variable
      or when all the values of a multidimensional variable can be read at once. The values
      are read into consecutive locations with the last dimension varying fastest.

      Take care when using the simplest forms of this interface with record variables when you
      don't specify how many records are to be read. If you try to read all the values of a
      record variable into an array but there are more records in the file than you assume,
      more data will be read than you expect, which may cause a segmentation violation.

      \param dataValues Pointer to the location into which the data value is read. If the type of
      data value differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
    */
    void getVar(long long* dataValues) const;


    //////////////////////

    // Reads a single datum value from a variable of an open netCDF dataset.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void getVar(const std::vector<size_t>& index, void* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, char** datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, char* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, unsigned char* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, signed char* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, short* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, int* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, long* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, float* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, double* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, unsigned short* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, unsigned int* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, unsigned long long* datumValue) const;
    /*! Reads a single datum value from a variable of an open netCDF dataset.
      The value is converted from the external data type of the variable, if necessary.

      \param index       Vector specifying the index of the data value to be read.
      The indices are relative to 0, so for example, the first data value of a two-dimensional
      variable would have index (0,0). The elements of index must correspond to the variable's dimensions.
      Hence, if the variable is a record variable, the first index is the record number.

      \param datumValue Pointer to the location into which the data value is read. If the type of
      data value differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
    */
    void getVar(const std::vector<size_t>& index, long long* datumValue) const;

    //////////////////////

    // Reads an array of values from a netCDF variable of an open netCDF dataset.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, void* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, char** dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, unsigned char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, signed char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, short* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, int* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, long* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, float* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, double* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, unsigned short* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, unsigned int* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, unsigned long long* dataValues) const;
    /*!
      Reads an array of values from a netCDF variable of an open netCDF dataset.
      The array is specified by giving a corner and a vector of edge lengths.
      The values are read into consecutive locations with the last dimension varying fastest.

      \param start
      Vector specifying the index in the variable where the first of the data values will be read.
      The indices are relative to 0, so for example, the first data value of a variable would have index (0, 0, ... , 0).
      The length of start must be the same as the number of dimensions of the specified variable.
      The elements of start correspond, in order, to the variable's dimensions. Hence, if the variable is a record variable,
      the first index would correspond to the starting record number for reading the data values.

      \param count
      Vector specifying the edge lengths along each dimension of the block of data values to be read.
      To read a single value, for example, specify count as (1, 1, ... , 1). The length of count is the number of
      dimensions of the specified variable. The elements of count correspond, in order, to the variable's dimensions.
      Hence, if the variable is a record variable, the first element of count corresponds to a count of the number of records to read.
      Note: setting any element of the count array to zero causes the function to exit without error, and without doing anything.

      \param dataValues Pointer to the location into which the data value is read. If the type of
      data value differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
    */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, long long* dataValues) const;

    //////////////////////

    // Reads a subsampled (strided) array section of values from a netCDF variable.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, void* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, char** dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, unsigned char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, signed char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, short* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, int* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, long* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, float* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, double* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, unsigned short* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, unsigned int* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, unsigned long long* dataValues) const;
    /*!
      Reads a subsampled (strided) array section of values from a netCDF variable.
      The subsampled array section is specified by giving a corner, a vector of edge lengths, and a stride vector.
      The values are read with the last dimension of the netCDF variable varying fastest.

      \param start
      Vector specifying the index in the variable where the first of the data values will be read.
      The indices are relative to 0, so for example, the first data value of a variable would have index (0, 0, ... , 0).
      The length of start must be the same as the number of dimensions of the specified variable.
      The elements of start correspond, in order, to the variable's dimensions. Hence, if the variable is a record variable,
      the first index would correspond to the starting record number for reading the data values.

      \param count
      Vector specifying the edge lengths along each dimension of the block of data values to be read.
      To read a single value, for example, specify count as (1, 1, ... , 1). The length of count is the number of
      dimensions of the specified variable. The elements of count correspond, in order, to the variable's dimensions.
      Hence, if the variable is a record variable, the first element of count corresponds to a count of the number of records to read.
      Note: setting any element of the count array to zero causes the function to exit without error, and without doing anything.

      \param stride
      Vector specifying the interval between selected indices. The elements of the stride vector correspond, in order,
      to the variable's dimensions. A value of 1 accesses adjacent values of the netCDF variable in the corresponding
      dimension; a value of 2 accesses every other value of the netCDF variable in the corresponding dimension; and so
      on. A NULL stride argument is treated as (1, 1, ... , 1).

      \param dataValues Pointer to the location into which the data value is read. If the type of
      data value differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
    */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, long long* dataValues) const;


    //////////////////////

    // Reads a mapped array section of values from a netCDF variable.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, void* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, char** dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, unsigned char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, signed char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, short* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, int* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, long* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, float* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, double* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, unsigned short* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, unsigned int* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, unsigned long long* dataValues) const;
    /*!
      Reads a mapped array section of values from a netCDF variable.
      The mapped array section is specified by giving a corner, a vector of edge lengths, a stride vector, and an
      index mapping vector. The index mapping vector is a vector of integers that specifies the mapping between the
      dimensions of a netCDF variable and the in-memory structure of the internal data array. No assumptions are
      made about the ordering or length of the dimensions of the data array.

      \param start
      Vector specifying the index in the variable where the first of the data values will be read.
      The indices are relative to 0, so for example, the first data value of a variable would have index (0, 0, ... , 0).
      The length of start must be the same as the number of dimensions of the specified variable.
      The elements of start correspond, in order, to the variable's dimensions. Hence, if the variable is a record variable,
      the first index would correspond to the starting record number for reading the data values.

      \param count
      Vector specifying the edge lengths along each dimension of the block of data values to be read.
      To read a single value, for example, specify count as (1, 1, ... , 1). The length of count is the number of
      dimensions of the specified variable. The elements of count correspond, in order, to the variable's dimensions.
      Hence, if the variable is a record variable, the first element of count corresponds to a count of the number of records to read.
      Note: setting any element of the count array to zero causes the function to exit without error, and without doing anything.

      \param stride
      Vector specifying the interval between selected indices. The elements of the stride vector correspond, in order,
      to the variable's dimensions. A value of 1 accesses adjacent values of the netCDF variable in the corresponding
      dimension; a value of 2 accesses every other value of the netCDF variable in the corresponding dimension; and so
      on. A NULL stride argument is treated as (1, 1, ... , 1).

      \param imap
      Vector of integers that specifies the mapping between the dimensions of a netCDF variable and the in-memory
      structure of the internal data array. imap[0] gives the distance between elements of the internal array corresponding
      to the most slowly varying dimension of the netCDF variable. imap[n-1] (where n is the rank of the netCDF variable)
      gives the distance between elements of the internal array corresponding to the most rapidly varying dimension of the
      netCDF variable. Intervening imap elements correspond to other dimensions of the netCDF variable in the obvious way.
      Distances between elements are specified in type-independent units of elements (the distance between internal elements
      that occupy adjacent memory locations is 1 and not the element's byte-length as in netCDF 2).

      \param dataValues Pointer to the location into which the data value is read. If the type of
      data value differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
    */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, long long* dataValues) const;



    ////////////////////

    //  data writing

    ////////////////////


    // Writes the entire data into the netCDF variable.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void putVar(const void* dataValues) const;
    /*! \overload
     */
    void putVar(const char** dataValues) const;
    /*!  \overload
    */
    void putVar(const char* dataValues) const;
    /*!  \overload
    */
    void putVar(const unsigned char* dataValues) const;
    /*!  \overload
    */
    void putVar(const signed char* dataValues) const;
    /*!  \overload
    */
    void putVar(const short* dataValues) const;
    /*!  \overload
    */
    void putVar(const int* dataValues) const;
    /*!  \overload
    */
    void putVar(const long* dataValues) const;
    /*!  \overload
    */
    void putVar(const float* dataValues) const;
    /*!  \overload
    */
    void putVar(const double* dataValues) const;
    /*!  \overload
    */
    void putVar(const unsigned short* dataValues) const;
    /*!  \overload
    */
    void putVar(const unsigned int* dataValues) const;
    /*!  \overload
    */
    void putVar(const unsigned long long* dataValues) const;
    /*!
      Writes the entire data into the netCDF variable.
      This is the simplest interface to use for writing a value in a scalar variable
      or whenever all the values of a multidimensional variable can all be
      written at once. The values to be written are associated with the
      netCDF variable by assuming that the last dimension of the netCDF
      variable varies fastest in the C interface.

      Take care when using the simplest forms of this interface with
      record variables when you don't specify how many records are to be
      written. If you try to write all the values of a record variable
      into a netCDF file that has no record data yet (hence has 0 records),
      nothing will be written. Similarly, if you try to write all of a record
      variable but there are more records in the file than you assume, more data
      may be written to the file than you supply, which may result in a
      segmentation violation.

      \param dataValues The data values. The order in which the data will be written to the netCDF variable is with the last
      dimension of the specified variable varying fastest. If the type of data values differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
    */
    void putVar(const long long* dataValues) const;



    /////////////////////////


    // Writes a single datum into the netCDF variable.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void putVar(const std::vector<size_t>& index, const void* datumValue) const;
    /*! \overload
     */
    void putVar(const std::vector<size_t>& index, const char** datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const std::string& datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const unsigned char* datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const signed char* datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const short datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const int datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const long datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const float datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const double datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const unsigned short datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const unsigned int datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const unsigned long long datumValue) const;
    /*!
      Writes a single datum into the netCDF variable.

      \param index      Vector specifying the index where the data values will be written. The indices are relative to 0, so for example,
      the first data value of a two-dimensional variable would have index (0,0). The elements of index must correspond to the variable's dimensions.
      Hence, if the variable uses the unlimited dimension, the first index would correspond to the unlimited dimension.

      \param datumValue The data value. If the type of data values differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
    */
    void putVar(const std::vector<size_t>& index, const long long datumValue) const;


    /////////////////////////



    // Writes an array of values into the netCDF variable.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const void* dataValues) const;
    /*! \overload
     */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const char** dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const unsigned char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const signed char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const short* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const int* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const long* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const float* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const double* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const unsigned short* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const unsigned int* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const unsigned long long* dataValues) const;
    /*!
      Writes an array of values into the netCDF variable.
      The portion of the netCDF variable to write is specified by giving a corner and a vector of edge lengths
      that refer to an array section of the netCDF variable. The values to be written are associated with
      the netCDF variable by assuming that the last dimension of the netCDF variable varies fastest.

      \param startp  Vector specifying the index where the first data values will be written.  The indices are relative to 0, so for
      example, the first data value of a variable would have index (0, 0, ... , 0). The elements of start correspond, in order, to the
      variable's dimensions. Hence, if the variable is a record variable, the first index corresponds to the starting record number for writing the data values.

      \param countp  Vector specifying the number of indices selected along each dimension.
      To write a single value, for example, specify count as (1, 1, ... , 1). The elements of
      count correspond, in order, to the variable's dimensions. Hence, if the variable is a record
      variable, the first element of count corresponds to a count of the number of records to write. Note: setting any element
      of the count array to zero causes the function to exit without error, and without doing anything.

      \param dataValues The data values. The order in which the data will be written to the netCDF variable is with the last
      dimension of the specified variable varying fastest. If the type of data values differs from the netCDF variable
      type, type conversion will occur. (However, no type conversion is
      carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const long long* dataValues) const;


    ////////////////



    // Writes a set of subsampled array values into the netCDF variable.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const void* dataValues) const;
    /*! \overload
     */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const char** dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const unsigned char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const signed char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const short* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const int* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const long* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const float* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const double* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const unsigned short* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const unsigned int* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const unsigned long long* dataValues) const;
    /*!
      Writes an array of values into the netCDF variable.
      The subsampled array section is specified by giving a corner, a vector of counts, and a stride vector.

      \param startp  Vector specifying the index where the first data values will be written.  The indices are relative to 0, so for
      example, the first data value of a variable would have index (0, 0, ... , 0). The elements of start correspond, in order, to the
      variable's dimensions. Hence, if the variable is a record variable, the first index corresponds to the starting record number for writing the data values.

      \param countp  Vector specifying the number of indices selected along each dimension.
      To write a single value, for example, specify count as (1, 1, ... , 1). The elements of
      count correspond, in order, to the variable's dimensions. Hence, if the variable is a record
      variable, the first element of count corresponds to a count of the number of records to write. Note: setting any element
      of the count array to zero causes the function to exit without error, and without doing anything.

      \param stridep  A vector of ptrdiff_t integers that specifies the sampling interval along each dimension of the netCDF variable.
      The elements of the stride vector correspond, in order, to the netCDF variable's dimensions (stride[0] gives the sampling interval
      along the most slowly varying dimension of the netCDF variable). Sampling intervals are specified in type-independent units of
      elements (a value of 1 selects consecutive elements of the netCDF variable along the corresponding dimension, a value of 2 selects
      every other element, etc.). A NULL stride argument is treated as (1, 1, ... , 1).

      \param dataValues The data values. The order in which the data will be written to the netCDF variable is with the last
      dimension of the specified variable varying fastest. If the type of data values differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is  carried out for variables using the user-defined data types: nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const long long* dataValues) const;

    ////////////////

    // Writes a mapped array section of values into the netCDF variable.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const void* dataValues) const;
    /*! \overload
     */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const char** dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const unsigned char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const signed char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const short* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const int* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const long* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const float* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const double* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const unsigned short* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const unsigned int* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const unsigned long long* dataValues) const;
    /*!
      Writes a mapped array section of values into the netCDF variable.
      The mapped array section is specified by giving a corner, a vector of counts, a stride vector, and an index mapping vector.
      The index mapping vector is a vector of integers that specifies the mapping between the dimensions of a netCDF variable and the in-memory structure of the internal data array.
      No assumptions are made about the ordering or length of the dimensions of the data array.

      \param countp  Vector specifying the number of indices selected along each dimension.
      To write a single value, for example, specify count as (1, 1, ... , 1). The elements of
      count correspond, in order, to the variable's dimensions. Hence, if the variable is a record
      variable, the first element of count corresponds to a count of the number of records to write. Note: setting any element
      of the count array to zero causes the function to exit without error, and without doing anything.

      \param stridep  A vector of ptrdiff_t integers that specifies the sampling interval along each dimension of the netCDF variable.
      The elements of the stride vector correspond, in order, to the netCDF variable's dimensions (stride[0] gives the sampling interval
      along the most slowly varying dimension of the netCDF variable). Sampling intervals are specified in type-independent units of
      elements (a value of 1 selects consecutive elements of the netCDF variable along the corresponding dimension, a value of 2 selects
      every other element, etc.). A NULL stride argument is treated as (1, 1, ... , 1).

      \param imap Vector  specifies the mapping between the dimensions of a netCDF variable and the in-memory structure of the internal data array.
      The elements of the index mapping vector correspond, in order, to the netCDF variable's dimensions (imap[0] gives the distance between elements
      of the internal array corresponding to the most slowly varying dimension of the netCDF variable). Distances between elements are
      specified in type-independent units of elements (the distance between internal elements that occupy adjacent memory locations is
      1 and not the element's byte-length as in netCDF 2). A NULL argument means the memory-resident values have the same structure as
      the associated netCDF variable.

      \param dataValues The data values. The order in which the data will be written to the netCDF variable is with the last
      dimension of the specified variable varying fastest. If the type of data values differs from the netCDF variable type, type conversion will occur.
     (However, no type conversion is carried out for variables using the user-defined data types:  nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
*/
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const long long* dataValues) const;



  private:

    bool nullObject;

    int myId;

    int groupId;

  };


}



#endif