File: pres_temp_4D_wr.f90

package info (click to toggle)
netcdf-fortran 4.4.4%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 8,420 kB
  • ctags: 8,797
  • sloc: fortran: 51,087; f90: 20,357; sh: 11,601; ansic: 7,034; makefile: 548; pascal: 313; xml: 173
file content (175 lines) | stat: -rw-r--r-- 6,897 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
! This is part of the netCDF package.
! Copyright 2006 University Corporation for Atmospheric Research/Unidata.
! See COPYRIGHT file for conditions of use.

! This is an example program which writes some 4D pressure and
! temperatures. It is intended to illustrate the use of the netCDF
! fortran 90 API. The companion program pres_temp_4D_rd.f shows how
! to read the netCDF data file created by this program.

! This program is part of the netCDF tutorial:
! http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial

! Full documentation of the netCDF Fortran 90 API can be found at:
! http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-f90

! $Id: pres_temp_4D_wr.f90,v 1.10 2010/04/06 19:32:09 ed Exp $

program pres_temp_4D_wr
  use netcdf
  implicit none

  ! This is the name of the data file we will create.
  character (len = *), parameter :: FILE_NAME = "pres_temp_4D.nc"
  integer :: ncid

  ! We are writing 4D data, a 12 x 6 x 2 lon-lat-lvl grid, with 2
  ! timesteps of data.
  integer, parameter :: NDIMS = 4, NRECS = 2
  integer, parameter :: NLVLS = 2, NLATS = 6, NLONS = 12
  character (len = *), parameter :: LVL_NAME = "level"
  character (len = *), parameter :: LAT_NAME = "latitude"
  character (len = *), parameter :: LON_NAME = "longitude"
  character (len = *), parameter :: REC_NAME = "time"
  integer :: lvl_dimid, lon_dimid, lat_dimid, rec_dimid

  ! The start and count arrays will tell the netCDF library where to
  ! write our data.
  integer :: start(NDIMS), count(NDIMS)

  ! These program variables hold the latitudes and longitudes.
  real :: lats(NLATS), lons(NLONS)
  integer :: lon_varid, lat_varid

  ! We will create two netCDF variables, one each for temperature and
  ! pressure fields.
  character (len = *), parameter :: PRES_NAME="pressure"
  character (len = *), parameter :: TEMP_NAME="temperature"
  integer :: pres_varid, temp_varid
  integer :: dimids(NDIMS)

  ! We recommend that each variable carry a "units" attribute.
  character (len = *), parameter :: UNITS = "units"
  character (len = *), parameter :: PRES_UNITS = "hPa"
  character (len = *), parameter :: TEMP_UNITS = "celsius"
  character (len = *), parameter :: LAT_UNITS = "degrees_north"
  character (len = *), parameter :: LON_UNITS = "degrees_east"

  ! Program variables to hold the data we will write out. We will only
  ! need enough space to hold one timestep of data; one record.
  real, dimension(:,:,:), allocatable :: pres_out
  real, dimension(:,:,:), allocatable :: temp_out
  real, parameter :: SAMPLE_PRESSURE = 900.0
  real, parameter :: SAMPLE_TEMP = 9.0

  ! Use these to construct some latitude and longitude data for this
  ! example.
  real, parameter :: START_LAT = 25.0, START_LON = -125.0

  ! Loop indices
  integer :: lvl, lat, lon, rec, i

  ! Allocate memory.
  allocate(pres_out(NLONS, NLATS, NLVLS))
  allocate(temp_out(NLONS, NLATS, NLVLS))

  ! Create pretend data. If this were not an example program, we would
  ! have some real data to write, for example, model output.
  do lat = 1, NLATS
     lats(lat) = START_LAT + (lat - 1) * 5.0
  end do
  do lon = 1, NLONS
     lons(lon) = START_LON + (lon - 1) * 5.0
  end do
  i = 0
  do lvl = 1, NLVLS
     do lat = 1, NLATS
        do lon = 1, NLONS
           pres_out(lon, lat, lvl) = SAMPLE_PRESSURE + i
           temp_out(lon, lat, lvl) = SAMPLE_TEMP + i
           i = i + 1
        end do
     end do
  end do

  ! Create the file. 
  call check( nf90_create(FILE_NAME, nf90_clobber, ncid) )
  
  ! Define the dimensions. The record dimension is defined to have
  ! unlimited length - it can grow as needed. In this example it is
  ! the time dimension.
  call check( nf90_def_dim(ncid, LVL_NAME, NLVLS, lvl_dimid) )
  call check( nf90_def_dim(ncid, LAT_NAME, NLATS, lat_dimid) )
  call check( nf90_def_dim(ncid, LON_NAME, NLONS, lon_dimid) )
  call check( nf90_def_dim(ncid, REC_NAME, NF90_UNLIMITED, rec_dimid) )

  ! Define the coordinate variables. We will only define coordinate
  ! variables for lat and lon.  Ordinarily we would need to provide
  ! an array of dimension IDs for each variable's dimensions, but
  ! since coordinate variables only have one dimension, we can
  ! simply provide the address of that dimension ID (lat_dimid) and
  ! similarly for (lon_dimid).
  call check( nf90_def_var(ncid, LAT_NAME, NF90_REAL, lat_dimid, lat_varid) )
  call check( nf90_def_var(ncid, LON_NAME, NF90_REAL, lon_dimid, lon_varid) )

  ! Assign units attributes to coordinate variables.
  call check( nf90_put_att(ncid, lat_varid, UNITS, LAT_UNITS) )
  call check( nf90_put_att(ncid, lon_varid, UNITS, LON_UNITS) )

  ! The dimids array is used to pass the dimids of the dimensions of
  ! the netCDF variables. Both of the netCDF variables we are creating
  ! share the same four dimensions. In Fortran, the unlimited
  ! dimension must come last on the list of dimids.
  dimids = (/ lon_dimid, lat_dimid, lvl_dimid, rec_dimid /)

  ! Define the netCDF variables for the pressure and temperature data.
  call check( nf90_def_var(ncid, PRES_NAME, NF90_REAL, dimids, pres_varid) )
  call check( nf90_def_var(ncid, TEMP_NAME, NF90_REAL, dimids, temp_varid) )

  ! Assign units attributes to the netCDF variables.
  call check( nf90_put_att(ncid, pres_varid, UNITS, PRES_UNITS) )
  call check( nf90_put_att(ncid, temp_varid, UNITS, TEMP_UNITS) )
  
  ! End define mode.
  call check( nf90_enddef(ncid) )
  
  ! Write the coordinate variable data. This will put the latitudes
  ! and longitudes of our data grid into the netCDF file.
  call check( nf90_put_var(ncid, lat_varid, lats) )
  call check( nf90_put_var(ncid, lon_varid, lons) )
  
  ! These settings tell netcdf to write one timestep of data. (The
  ! setting of start(4) inside the loop below tells netCDF which
  ! timestep to write.)
  count = (/ NLONS, NLATS, NLVLS, 1 /)
  start = (/ 1, 1, 1, 1 /)

  ! Write the pretend data. This will write our surface pressure and
  ! surface temperature data. The arrays only hold one timestep worth
  ! of data. We will just rewrite the same data for each timestep. In
  ! a real :: application, the data would change between timesteps.
  do rec = 1, NRECS
     start(4) = rec
     call check( nf90_put_var(ncid, pres_varid, pres_out, start = start, &
                              count = count) )
     call check( nf90_put_var(ncid, temp_varid, temp_out, start = start, &
                              count = count) )
  end do
  
  ! Close the file. This causes netCDF to flush all buffers and make
  ! sure your data are really written to disk.
  call check( nf90_close(ncid) )
  
  print *,"*** SUCCESS writing example file ", FILE_NAME, "!"

contains
  subroutine check(status)
    integer, intent ( in) :: status
    
    if(status /= nf90_noerr) then 
      print *, trim(nf90_strerror(status))
      stop 2
    end if
  end subroutine check  
end program pres_temp_4D_wr