1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
|
6 Variables {#f90-variables}
===========
[TOC]
6.1 Variables Introduction {#f90-variables-introduction}
===========
Variables for a netCDF dataset are defined when the dataset is created,
while the netCDF dataset is in define mode. Other variables may be added
later by reentering define mode. A netCDF variable has a name, a type,
and a shape, which are specified when it is defined. A variable may also
have values, which are established later in data mode.
Ordinarily, the name, type, and shape are fixed when the variable is
first defined. The name may be changed, but the type and shape of a
variable cannot be changed. However, a variable defined in terms of the
unlimited dimension can grow without bound in that dimension.
A netCDF variable in an open netCDF dataset is referred to by a small
integer called a variable ID.
Variable IDs reflect the order in which variables were defined within a
netCDF dataset. Variable IDs are 1, 2, 3,..., in the order in which the
variables were defined. A function is available for getting the variable
ID from the variable name and vice-versa.
Attributes (see [Attributes](#Attributes)) may be associated with a
variable to specify such properties as units.
Operations supported on variables are:
- Create a variable, given its name, data type, and shape.
- Get a variable ID from its name.
- Get a variable’s name, data type, shape, and number of attributes
from its ID.
- Put a data value into a variable, given variable ID, indices,
and value.
- Put an array of values into a variable, given variable ID, corner
indices, edge lengths, and a block of values.
- Put a subsampled or mapped array-section of values into a variable,
given variable ID, corner indices, edge lengths, stride vector,
index mapping vector, and a block of values.
- Get a data value from a variable, given variable ID and indices.
- Get an array of values from a variable, given variable ID, corner
indices, and edge lengths.
- Get a subsampled or mapped array-section of values from a variable,
given variable ID, corner indices, edge lengths, stride vector, and
index mapping vector.
- Rename a variable.
6.2 Language Types Corresponding to netCDF external data types {#f90-language-types-corresponding-to-netcdf-external-data-types}
===========
The following table gives the netCDF external data types and the
corresponding type constants for defining variables in the FORTRAN
interface:
Type | FORTRAN API Mnemonic | Bits
-------| ----------------------| ------
byte | NF90_BYTE | 8
char | NF90_CHAR | 8
short | NF90_SHORT | 16
int | NF90_INT | 32
float | NF90_FLOAT | 32
double | NF90_DOUBLE | 64
The first column gives the netCDF external data type, which is the same
as the CDL data type. The next column gives the corresponding Fortran 90
parameter for use in netCDF functions (the parameters are defined in the
netCDF Fortran 90 module netcdf.f90). The last column gives the number
of bits used in the external representation of values of the
corresponding type.
Note that there are no netCDF types corresponding to 64-bit integers or
to characters wider than 8 bits in the current version of the netCDF
library.
6.3 Create a Variable: `NF90_DEF_VAR` {#f90-create-a-variable-nf90_def_var}
===========
The function NF90\_DEF\_VAR adds a new variable to an open netCDF
dataset in define mode. It returns (as an argument) a variable ID, given
the netCDF ID, the variable name, the variable type, the number of
dimensions, and a list of the dimension IDs.
Optional arguments allow additional settings for variables in
netCDF-4/HDF5 files. These parameters allow data compression and control
of the layout of the data on disk for performance tuning. These
parameters may also be used to set the chunk sizes to get chunked
storage, or to set the contiguous flag to get contiguous storage.
Variables that make use of one or more unlimited dimensions,
compression, or checksums must use chunking. Such variables are created
with default chunk sizes of 1 for each unlimited dimension and the
dimension length for other dimensions, except that if the resulting
chunks are too large, the default chunk sizes for non-record dimensions
are reduced.
All parameters after the varid are optional, and only supported if
netCDF was built with netCDF-4 features enabled, and if the variable is
in a netCDF-4/HDF5 file.
## Usage
~~~~.fortran
function nf90_def_var(ncid, name, xtype, dimids, varid, contiguous, &
chunksizes, deflate_level, shuffle, fletcher32, endianness, &
cache_size, cache_nelems, cache_preemption)
integer, intent(in) :: ncid
character (len = *), intent(in) :: name
integer, intent( in) :: xtype
integer, scalar or dimension(:), intent(in), optional :: dimids
integer, intent(out) :: varid
logical, optional, intent(in) :: contiguous
integer, optional, dimension(:), intent(in) :: chunksizes
integer, optional, intent(in) :: deflate_level
logical, optional, intent(in) :: shuffle, fletcher32
integer, optional, intent(in) :: endianness
integer, optional, intent(in) :: cache_size, cache_nelems, cache_preemption
integer :: nf90_def_var
~~~~
`ncid`
: NetCDF ID, from a previous call to NF90\_OPEN or NF90\_CREATE.
`name`
: Variable name.
`xtype`
: One of the set of predefined netCDF external data types. The type of
this parameter, is defined in the netCDF header file.
The valid netCDF external data types are NF90\_BYTE, NF90\_CHAR,
NF90\_SHORT, NF90\_INT, NF90\_FLOAT, and NF90\_DOUBLE. If the file
is a NetCDF-4/HDF5 file, the additional types NF90\_UBYTE,
NF90\_USHORT, NF90\_UINT, NF90\_INT64, NF90\_UINT64, and
NF90\_STRING may be used, as well as a user defined type ID.
`dimids`
: Scalar or vector of dimension IDs corresponding to the
variable dimensions. For example, a vector of 2 dimension IDs
specifies a 2-dimensional matrix.
If an integer is passed for this parameter, a 1-D variable
is created.
If this parameter is not passed (or is a 1D array of size zero) it
means the variable is a scalar with no dimensions.
For classic data model files, if the ID of the unlimited dimension
is included, it must be first. In expanded model netCDF4/HDF5 files,
there may be any number of unlimited dimensions, and they may be
used in any element of the dimids array.
This argument is optional, and if absent specifies a scalar with
no dimensions.
`varid`
: Returned variable ID.
`storage`
: If NF90\_CONTIGUOUS, then contiguous storage is used for
this variable. Variables that use deflation, shuffle filter, or
checksums, or that have one or more unlimited dimensions cannot use
contiguous storage.
If NF90\_CHUNKED, then chunked storage is used for this variable.
Chunk sizes may be specified with the chunksizes parameter. Default
sizes will be used if chunking is required and this function is
not called.
If NF90\_COMPACT, then compact storage is used for this variable.
Compact storage may only be used on fix-sized variables with a
total data size 64 MB or less. Compact datasets are stored with
the file metadata, and can be read very quickly on a large number
of parallel processors.
By default contiguous storage is used for fix-sized variables when
conpression, chunking, shuffle, and checksums are not used.
`chunksizes`
: An array of chunk number of elements. This array has the number of
elements along each dimension of the data chunk. The array must have
the one chunksize for each dimension in the variable.
The total size of a chunk must be less than 4 GiB. That is, the
product of all chunksizes and the size of the data (or the size of
nc\_vlen\_t for VLEN types) must be less than 4 GiB. (This is a very
large chunk size in any case.)
If not provided, but chunked data are needed, then default
chunksizes will be chosen. For more information see [{No value for
‘n-man’}](netcdf.html#Chunking) in {No value for ‘n-man’}.
`shuffle`
: If non-zero, turn on the shuffle filter.
`deflate_level`
: If the deflate parameter is non-zero, set the deflate level to
this value. Must be between 1 and 9.
`fletcher32`
: Set to true to turn on fletcher32 checksums for this variable.
`endianness`
: Set to NF90\_ENDIAN\_LITTLE for little-endian format,
NF90\_ENDIAN\_BIG for big-endian format, and NF90\_ENDIAN\_NATIVE
(the default) for the native endianness of the platform.
`cache_size`
: The size of the per-variable cache in MegaBytes.
`cache_nelems`
: The number slots in the per-variable chunk cache (should be a prime
number larger than the number of chunks in the cache).
`cache_preemption`
: The preemtion value must be between 0 and 100 inclusive and
indicates how much chunks that have been fully read are favored
for preemption. A value of zero means fully read chunks are treated
no differently than other chunks (the preemption is strictly LRU)
while a value of 100 means fully read chunks are always preempted
before other chunks.
## Return Codes
NF90\_DEF\_VAR returns the value NF90\_NOERR if no errors occurred.
Otherwise, the returned status indicates an error.
- NF90\_EBADNAME The specified variable name is the name of another
existing variable.
- NF90\_EBADTYPE The specified type is not a valid netCDF type.
- NF90\_EMAXDIMS The specified number of dimensions is negative or
more than the constant NF90\_MAX\_VAR\_DIMS, the maximum number of
dimensions permitted for a netCDF variable. (Does not apply to
netCDF-4/HDF5 files unless they were created with the
CLASSIC\_MODE flag.)
- NF90\_EBADDIM One or more of the dimension IDs in the list of
dimensions is not a valid dimension ID for the netCDF dataset.
- NF90\_EMAXVARS The number of variables would exceed the constant
NF90\_MAX\_VARS, the maximum number of variables permitted in a
classic netCDF dataset. (Does not apply to netCDF-4/HDF5 files
unless they were created with the CLASSIC\_MODE flag.)
- NF90\_BADID The specified netCDF ID does not refer to an open
netCDF dataset.
- NF90\_ENOTNC4 NetCDF-4 operation attempted on a files that is not a
netCDF-4/HDF5 file. Only variables in NetCDF-4/HDF5 files may use
compression, chunking, and endianness control.
- NF90\_ENOTVAR Can’t find this variable.
- NF90\_EINVAL Invalid input. This may be because contiguous storage
is requested for a variable that has compression, checksums,
chunking, or one or more unlimited dimensions.
- NF90\_ELATEDEF This variable has already been the subject of a
NF90\_ENDDEF call. Once enddef has been called, it is impossible to
set the chunking for a variable. (In netCDF-4/HDF5 files
NF90\_ENDDEF will be called automatically for any data read
or write.)
- NF90\_ENOTINDEFINE Not in define mode. This is returned for netCDF
classic or 64-bit offset files, or for netCDF-4 files, when they
were been created with NF90\_STRICT\_NC3 flag. (see section
[NF90\_CREATE](#NF90_005fCREATE)).
- NF90\_ESTRICTNC3 Trying to create a var some place other than the
root group in a netCDF file with NF90\_STRICT\_NC3 turned on.
### Example
Here is an example using NF90\_DEF\_VAR to create a variable named rh of
type double with three dimensions, time, lat, and lon in a new netCDF
dataset named foo.nc:
~~~~.fortran
use netcdf
implicit none
integer :: status, ncid
integer :: LonDimId, LatDimId, TimeDimId
integer :: RhVarId
...
status = nf90_create("foo.nc", nf90_NoClobber, ncid)
if(status /= nf90_NoErr) call handle_error(status)
...
! Define the dimensions
status = nf90_def_dim(ncid, "lat", 5, LatDimId)
if(status /= nf90_NoErr) call handle_error(status)
status = nf90_def_dim(ncid, "lon", 10, LonDimId)
if(status /= nf90_NoErr) call handle_error(status)
status = nf90_def_dim(ncid, "time", nf90_unlimited, TimeDimId)
if(status /= nf90_NoErr) call handle_error(status)
...
! Define the variable
status = nf90_def_var(ncid, "rh", nf90_double, &
(/ LonDimId, LatDimID, TimeDimID /), RhVarId)
if(status /= nf90_NoErr) call handle_error(status)
~~~~
In the following example, from nf\_test/f90tst\_vars2.f90, chunking,
checksums, and endianness control are all used in a netCDF-4/HDF5 file.
~~~~.fortran
! Create the netCDF file.
call check(nf90_create(FILE_NAME, nf90_netcdf4, ncid, cache_nelems = CACHE_NELEMS, &
cache_size = CACHE_SIZE))
! Define the dimensions.
call check(nf90_def_dim(ncid, "x", NX, x_dimid))
call check(nf90_def_dim(ncid, "y", NY, y_dimid))
dimids = (/ y_dimid, x_dimid /)
! Define some variables.
chunksizes = (/ NY, NX /)
call check(nf90_def_var(ncid, VAR1_NAME, NF90_INT, dimids, varid1, chunksizes = chunksizes, &
shuffle = .TRUE., fletcher32 = .TRUE., endianness = nf90_endian_big, deflate_level = DEFLATE_LEVEL))
call check(nf90_def_var(ncid, VAR2_NAME, NF90_INT, dimids, varid2, contiguous = .TRUE.))
call check(nf90_def_var(ncid, VAR3_NAME, NF90_INT64, varid3))
call check(nf90_def_var(ncid, VAR4_NAME, NF90_INT, x_dimid, varid4, contiguous = .TRUE.))
~~~~
6.4 Define Fill Parameters for a Variable: `nf90_def_var_fill` {#f90-define-fill-parameters-for-a-variable-nf90_def_var_fill}
===========
The function NF90\_DEF\_VAR\_FILL sets the fill parameters for a
variable in a netCDF-4 file.
This function must be called after the variable is defined, but before
NF90\_ENDDEF is called.
## Usage
~~~~.fortran
NF90_DEF_VAR_FILL(INTEGER NCID, INTEGER VARID, INTEGER NO_FILL, FILL_VALUE);
~~~~
`NCID`
: NetCDF ID, from a previous call to NF90\_OPEN or NF90\_CREATE.
`VARID`
: Variable ID.
`NO_FILL`
: Set to non-zero value to set no\_fill mode on a variable. When this
mode is on, fill values will not be written for the variable. This
is helpful in high performance applications. For netCDF-4/HDF5 files
(whether classic model or not), this may only be changed after the
variable is defined, but before it is committed to disk (i.e. before
the first NF90\_ENDDEF after the NF90\_DEF\_VAR.) For classic and
64-bit offset file, the no\_fill mode may be turned on and off at
any time.
`FILL_VALUE`
: A value which will be used as the fill value for the variable. Must
be the same type as the variable. This will be written to a
\_FillValue attribute, created for this purpose. If NULL, this
argument will be ignored.
## Return Codes
`NF90_NOERR`
: No error.
`NF90_BADID`
: Bad ncid.
`NF90_ENOTNC4`
: Not a netCDF-4 file.
`NF90_ENOTVAR`
: Can’t find this variable.
`NF90_ELATEDEF`
: This variable has already been the subject of a NF90\_ENDDEF call.
In netCDF-4 files NF90\_ENDDEF will be called automatically for any
data read or write. Once enddef has been called, it is impossible to
set the fill for a variable.
`NF90_ENOTINDEFINE`
: Not in define mode. This is returned for netCDF classic or 64-bit
offset files, or for netCDF-4 files, when they were been created
with NF90\_STRICT\_NC3 flag. (see section
[NF90\_CREATE](#NF90_005fCREATE)).
`NF90_EPERM`
: Attempt to create object in read-only file.
## Example
6.5 Learn About Fill Parameters for a Variable: `NF90_INQ_VAR_FILL` {#f90-learn-about-fill-parameters-for-a-variable-nf90_inq_var_fill}
===========
The function NF90\_INQ\_VAR\_FILL returns the fill settings for a
variable in a netCDF-4 file.
## Usage
~~~~.fortran
NF90_INQ_VAR_FILL(INTEGER NCID, INTEGER VARID, INTEGER NO_FILL, FILL_VALUE)
~~~~
`NCID`
: NetCDF ID, from a previous call to NF90\_OPEN or NF90\_CREATE.
`VARID`
: Variable ID.
`NO_FILL`
: An integer which will get a 1 if no\_fill mode is set for this
variable, and a zero if it is not set
`FILL_VALUE`
: This will get the fill value for this variable. This parameter will
be ignored if it is NULL.
## Return Codes
`NF90_NOERR`
: No error.
`NF90_BADID`
: Bad ncid.
`NF90_ENOTNC4`
: Not a netCDF-4 file.
`NF90_ENOTVAR`
: Can’t find this variable.
## Example
6.6 Define Filter Parameters for a Variable: `nf90_def_var_filter` {#f90-define-filter-parameters-for-a-variable-nf90_def_var_filter}
===========
The function nf90\_def\_var\_filter sets the filter parameters for a
variable in a netCDF-4 file.
This function must be called after the variable is defined, but before
nf90\_enddef is called.
## Usage
~~~~.fortran
function nf90_def_var_filter(ncid, varid, filterid, nparams, params);
integer, intent(in) :: ncid, varid, filterid, nparams
integer, dimension(:), intent(in) :: params
~~~~
`ncid`
: NetCDF ID, from a previous call to nf90\_open or nf90\_create.
`varid`
: Variable ID.
`filterid`
: The HDFGroup assigned filter id (e.g. 307 for bzip2).
`nparams`
: The number of parameters for the filter
`params`
: A vector of parameters of size nparams.
## Return Codes
`NF90_NOERR`
: No error.
`NF90_BADID`
: Bad ncid.
`NF90_ENOTNC4`
: Not a netCDF-4 file.
`NF90_ENOTVAR`
: Can’t find this variable.
`NF90_ELATEDEF`
: This variable has already been the subject of a NF90\_ENDDEF call.
In netCDF-4 files NF90\_ENDDEF will be called automatically for any
data read or write. Once enddef has been called, it is impossible to
set the fill for a variable.
`NF90_ENOTINDEFINE`
: Not in define mode. This is returned for netCDF classic or 64-bit
offset files, or for netCDF-4 files, when they were been created
with NF90\_STRICT\_NC3 flag. (see section
[NF90\_CREATE](#NF90_005fCREATE)).
`NF90_EPERM`
: Attempt to create object in read-only file.
`NF90_EFILTER`
: Invalid filter id or parameters
## Example
6.7 Get information about any Filter associated with a variable: `nf90_inq_var_filter` {#f90-get-information-about-a-variable-from-its-id-nf90_inq_var_filter}
===========
The function nf90\_inq\_var\_filter gets the filter id and parameters for a
variable in a netCDF-4 file.
## Usage
~~~~.fortran
function nf90_inq_var_filter(ncid, varid, filterid, nparams, params);
integer, intent(in) :: ncid, varid, filterid, nparams
integer, intent(out) :: filterid, nparams
integer, dimension(:), intent(out) :: params
~~~~
`ncid`
: NetCDF ID, from a previous call to nf90\_open or nf90\_create.
`varid`
: Variable ID.
`filterid`
: Store the the HDFGroup assigned filter id
`nparams`
: Stor the number of parameters for the filter
`params`
: Store the vector of parameters of size nparams.
## Return Codes
`NF90_NOERR`
: No error.
`NF90_BADID`
: Bad ncid.
`NF90_ENOTNC4`
: Not a netCDF-4 file.
`NF90_ENOTVAR`
: Can’t find this variable.
`NF90_ELATEDEF`
: This variable has already been the subject of a NF90\_ENDDEF call.
In netCDF-4 files NF90\_ENDDEF will be called automatically for any
data read or write. Once enddef has been called, it is impossible to
set the fill for a variable.
`NF90_ENOTINDEFINE`
: Not in define mode. This is returned for netCDF classic or 64-bit
offset files, or for netCDF-4 files, when they were been created
with NF90\_STRICT\_NC3 flag. (see section
[NF90\_CREATE](#NF90_005fCREATE)).
`NF90_EPERM`
: Attempt to create object in read-only file.
`NF90_EFILTER`
: Invalid filter id or parameters
## Example
6.8 Get Information about a Variable from Its ID: NF90_INQUIRE_VARIABLE {#f90-get-information-about-a-variable-from-its-id-nf90_inquire_variable}
===========
NF90\_INQUIRE\_VARIABLE returns information about a netCDF variable
given its ID. Information about a variable includes its name, type,
number of dimensions, a list of dimension IDs describing the shape of
the variable, and the number of variable attributes that have been
assigned to the variable.
All parameters after nAtts are optional, and only supported if netCDF
was built with netCDF-4 features enabled, and if the variable is in a
netCDF-4/HDF5 file.
## Usage
~~~~.fortran
function nf90_inquire_variable(ncid, varid, name, xtype, ndims, dimids, nAtts, &
contiguous, chunksizes, deflate_level, shuffle, fletcher32, endianness)
integer, intent(in) :: ncid, varid
character (len = *), optional, intent(out) :: name
integer, optional, intent(out) :: xtype, ndims
integer, dimension(:), optional, intent(out) :: dimids
integer, optional, intent(out) :: nAtts
logical, optional, intent(out) :: contiguous
integer, optional, dimension(:), intent(out) :: chunksizes
integer, optional, intent(out) :: deflate_level
logical, optional, intent(out) :: shuffle, fletcher32
integer, optional, intent(out) :: endianness
integer :: nf90_inquire_variable
~~~~
`ncid`
: NetCDF ID, from a previous call to NF90\_OPEN or NF90\_CREATE.
`varid`
: Variable ID.
`name`
: Returned variable name. The caller must allocate space for the
returned name. The maximum possible length, in characters, of a
variable name is given by the predefined constant NF90\_MAX\_NAME.
`xtype`
: Returned variable type, one of the set of predefined netCDF external
data types. The valid netCDF external data types are NF90\_BYTE,
NF90\_CHAR, NF90\_SHORT, NF90\_INT, NF90\_FLOAT, AND NF90\_DOUBLE.
`ndims`
: Returned number of dimensions the variable was defined as using. For
example, 2 indicates a matrix, 1 indicates a vector, and 0 means the
variable is a scalar with no dimensions.
`dimids`
: Returned vector of \*ndimsp dimension IDs corresponding to the
variable dimensions. The caller must allocate enough space for a
vector of at least \*ndimsp integers to be returned. The maximum
possible number of dimensions for a variable is given by the
predefined constant NF90\_MAX\_VAR\_DIMS.
`natts`
: Returned number of variable attributes assigned to this variable.
`contiguous`
: On return, set to NF90\_CONTIGUOUS if this variable uses contiguous
storage, NF90\_CHUNKED if it uses chunked storage.
`chunksizes`
: An array of chunk sizes. The array must have the one element for
each dimension in the variable.
`shuffle`
: True if the shuffle filter is turned on for this variable.
`deflate_level`
: The deflate\_level from 0 to 9. A value of zero indicates no
deflation is in use.
`fletcher32`
: Set to true if the fletcher32 checksum filter is turned on for
this variable.
`endianness`
: Will be set to NF90\_ENDIAN\_LITTLE if this variable is stored in
little-endian format, NF90\_ENDIAN\_BIG if it is stored in
big-endian format, and NF90\_ENDIAN\_NATIVE if the endianness is not
set, and the variable is not created yet.
These functions return the value NF90\_NOERR if no errors occurred.
Otherwise, the returned status indicates an error. Possible causes of
errors include:
- The variable ID is invalid for the specified netCDF dataset.
- The specified netCDF ID does not refer to an open netCDF dataset.
## Example
Here is an example using NF90\_INQ\_VAR to find out about a variable
named rh in an existing netCDF dataset named foo.nc:
~~~~.fortran
use netcdf
implicit none
integer :: status, ncid, &
RhVarId &
numDims, numAtts
integer, dimension(nf90_max_var_dims) :: rhDimIds
...
status = nf90_open("foo.nc", nf90_NoWrite, ncid)
if(status /= nf90_NoErr) call handle_error(status)
...
status = nf90_inq_varid(ncid, "rh", RhVarId)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_inquire_variable(ncid, RhVarId, ndims = numDims, natts = numAtts)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_inquire_variable(ncid, RhVarId, dimids = rhDimIds(:numDims))
if(status /= nf90_NoErr) call handle_err(status)
~~~~
6.9 Get the ID of a variable from the name: NF90_INQ_VARID {#f90-get-the-id-of-a-variable-from-the-name-nf90_inq_varid}
===========
Given the name of a variable, nf90\_inq\_varid finds the variable ID.
## Usage
~~~~.fortran
function nf90_inq_varid(ncid, name, varid)
integer, intent(in) :: ncid
character (len = *), intent( in) :: name
integer, intent(out) :: varid
integer :: nf90_inq_varid
~~~~
`ncid`
: NetCDF ID, from a previous call to NF90\_OPEN or NF90\_CREATE.
`name`
: The variable name. The maximum possible length, in characters, of a
variable name is given by the predefined constant NF90\_MAX\_NAME.
`varid`
: Variable ID.
These functions return the value NF90\_NOERR if no errors occurred.
Otherwise, the returned status indicates an error. Possible causes of
errors include:
- Variable not found.
- The specified netCDF ID does not refer to an open netCDF dataset.
## Example
Here is an example using NF90\_INQ\_VARID to find out about a variable
named rh in an existing netCDF dataset named foo.nc:
~~~~.fortran
use netcdf
implicit none
integer :: status, ncid, &
RhVarId &
numDims, numAtts
integer, dimension(nf90_max_var_dims) :: rhDimIds
...
status = nf90_open("foo.nc", nf90_NoWrite, ncid)
if(status /= nf90_NoErr) call handle_error(status)
...
status = nf90_inq_varid(ncid, "rh", RhVarId)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_inquire_variable(ncid, RhVarId, ndims = numDims, natts = numAtts)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_inquire_variable(ncid, RhVarId, dimids = rhDimIds(:numDims))
if(status /= nf90_NoErr) call handle_err(status)
~~~~
6.10 Writing Data Values: NF90_PUT_VAR {#f90-writing-data-values-nf90_put_var}
===========
The function NF90\_PUT\_VAR puts one or more data values into the
variable of an open netCDF dataset that is in data mode. Required inputs
are the netCDF ID, the variable ID, and one or more data values.
Optional inputs may indicate the starting position of the data values in
the netCDF variable (argument start), the sampling frequency with which
data values are written into the netCDF variable (argument stride), and
a mapping between the dimensions of the data array and the netCDF
variable (argument map). The values to be written are associated with
the netCDF variable by assuming that the first dimension of the netCDF
variable varies fastest in the Fortran 90 interface. Data values are
converted to the external type of the variable, if necessary.
Take care when using the simplest forms of this interface with record
variables (variables that use the NF90\_UNLIMITED dimension) when you
don’t specify how many records are to be written. If you try to write
all the values of a record variable into a netCDF file that has no
record data yet (hence has 0 records), nothing will be written.
Similarly, if you try to write all the values of a record variable from
an array but there are more records in the file than you assume, more
in-memory data will be accessed than you expect, which may cause a
segmentation violation. To avoid such problems, it is better to specify
start and count arguments for variables that use the NF90\_UNLIMITED
dimension.
### Usage
~~~~.fortran
function nf90_put_var(ncid, varid, values, start, count, stride, map)
integer, intent( in) :: ncid, varid
any valid type, scalar or array of any rank, &
intent( in) :: values
integer, dimension(:), optional, intent( in) :: start, count, stride, map
integer :: nf90_put_var
~~~~
`ncid`
: NetCDF ID, from a previous call to NF90\_OPEN or NF90\_CREATE.
`varid`
: Variable ID.
`values`
: The data value(s) to be written. The data may be of any type, and
may be a scalar or an array of any rank. You cannot put CHARACTER
data into a numeric variable or numeric data into a text variable.
For numeric data, if the type of data differs from the netCDF
variable type, type conversion will occur. See [Type
Conversion](netcdf.html#Type-Conversion) in NetCDF Users Guide.
`start`
: A vector of integers specifying the index in the variable where the
first (or only) of the data values will be written. The indices are
relative to 1, so for example, the first data value of a variable
would have index (1, 1, ..., 1). The elements of start correspond,
in order, to the variable’s dimensions. Hence, if the variable is a
record variable, the last index would correspond to the starting
record number for writing the data values.
By default, start(:) = 1.
`count`
: A vector of integers specifying the number of indices selected along
each dimension. To write a single value, for example, specify count
as (1, 1, ..., 1). The elements of count correspond, in order, to
the variable’s dimensions. Hence, if the variable is a record
variable, the last element of count corresponds to a count of the
number of records to write.
By default, count(:numDims) = shape(values) and count(numDims + 1:)
= 1, where numDims = size(shape(values)).
`stride`
: A vector of integers that specifies the sampling interval along each
dimension of the netCDF variable. The elements of the stride vector
correspond, in order, to the netCDF variable’s dimensions (stride(1)
gives the sampling interval along the most rapidly varying dimension
of the netCDF variable). Sampling intervals are specified in
type-independent units of elements (a value of 1 selects consecutive
elements of the netCDF variable along the corresponding dimension, a
value of 2 selects every other element, etc.).
By default, stride(:) = 1.
`imap`
: A vector of integers that specifies the mapping between the
dimensions of a netCDF variable and the in-memory structure of the
internal data array. The elements of the index mapping vector
correspond, in order, to the netCDF variable’s dimensions (map(1)
gives the distance between elements of the internal array
corresponding to the most rapidly varying dimension of the
netCDF variable). Distances between elements are specified in units
of elements.
By default, edgeLengths = shape(values), and map = (/ 1,
(product(edgeLengths(:i)), i = 1, size(edgeLengths) - 1) /), that
is, there is no mapping.
Use of Fortran 90 intrinsic functions (including reshape, transpose,
and spread) may let you avoid using this argument.
## Errors
NF90\_PUT\_VAR1\_ type returns the value NF90\_NOERR if no errors
occurred. Otherwise, the returned status indicates an error. Possible
causes of errors include:
- The variable ID is invalid for the specified netCDF dataset.
- The specified indices were out of range for the rank of the
specified variable. For example, a negative index or an index that
is larger than the corresponding dimension length will cause
an error.
- The specified value is out of the range of values representable by
the external data type of the variable.
- The specified netCDF is in define mode rather than data mode.
- The specified netCDF ID does not refer to an open netCDF dataset.
## Example
Here is an example using NF90\_PUT\_VAR to set the (4,3,2) element of
the variable named rh to 0.5 in an existing netCDF dataset named foo.nc.
For simplicity in this example, we assume that we know that rh is
dimensioned with lon, lat, and time, so we want to set the value of rh
that corresponds to the fourth lon value, the third lat value, and the
second time value:
~~~~.fortran
use netcdf
implicit none
integer :: ncId, rhVarId, status
...
status = nf90_open("foo.nc", nf90_Write, ncid)
if(status /= nf90_NoErr) call handle_err(status)
...
status = nf90_inq_varid(ncid, "rh", rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_put_var(ncid, rhVarId, 0.5, start = (/ 4, 3, 2 /) )
if(status /= nf90_NoErr) call handle_err(status)
~~~~
In this example we use NF90\_PUT\_VAR to add or change all the values of
the variable named rh to 0.5 in an existing netCDF dataset named foo.nc.
We assume that we know that rh is dimensioned with lon, lat, and time.
In this example we query the netCDF file to discover the lengths of the
dimensions, then use the Fortran 90 intrinsic function reshape to create
a temporary array of data values which is the same shape as the netCDF
variable.
~~~~.fortran
use netcdf
implicit none
integer :: ncId, rhVarId,status, &
lonDimID, latDimId, timeDimId, &
numLons, numLats, numTimes, &
i
integer, dimension(nf90_max_var_dims) :: dimIDs
...
status = nf90_open("foo.nc", nf90_Write, ncid)
if(status /= nf90_NoErr) call handle_err(status)
...
status = nf90_inq_varid(ncid, "rh", rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
! How big is the netCDF variable, that is, what are the lengths of
! its constituent dimensions?
status = nf90_inquire_variable(ncid, rhVarId, dimids = dimIDs)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_inquire_dimension(ncid, dimIDs(1), len = numLons)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_inquire_dimension(ncid, dimIDs(2), len = numLats)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_inquire_dimension(ncid, dimIDs(3), len = numTimes)
if(status /= nf90_NoErr) call handle_err(status)
...
! Make a temporary array the same shape as the netCDF variable.
status = nf90_put_var(ncid, rhVarId, &
reshape( &
(/ (0.5, i = 1, numLons * numLats * numTimes) /) , &
shape = (/ numLons, numLats, numTimes /) )
if(status /= nf90_NoErr) call handle_err(status)
~~~~
Here is an example using NF90\_PUT\_VAR to add or change a section of
the variable named rh to 0.5 in an existing netCDF dataset named foo.nc.
For simplicity in this example, we assume that we know that rh is
dimensioned with lon, lat, and time, that there are ten lon values, five
lat values, and three time values, and that we want to replace all the
values at the last time.
~~~~.fortran
use netcdf
implicit none
integer :: ncId, rhVarId, status
integer, parameter :: numLons = 10, numLats = 5, numTimes = 3
real, dimension(numLons, numLats) &
:: rhValues
...
status = nf90_open("foo.nc", nf90_Write, ncid)
if(status /= nf90_NoErr) call handle_err(status)
...
status = nf90_inq_varid(ncid, "rh", rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
! Fill in all values at the last time
rhValues(:, :) = 0.5
status = nf90_put_var(ncid, rhVarId,rhvalues, &
start = (/ 1, 1, numTimes /), &
count = (/ numLats, numLons, 1 /))
if(status /= nf90_NoErr) call handle_err(status)
~~~~
Here is an example of using NF90\_PUT\_VAR to write every other point of
a netCDF variable named rh having dimensions (6, 4).
~~~~.fortran
use netcdf
implicit none
integer :: ncId, rhVarId, status
integer, parameter :: numLons = 6, numLats = 4
real, dimension(numLons, numLats) &
:: rhValues = 0.5
...
status = nf90_open("foo.nc", nf90_Write, ncid)
if(status /= nf90_NoErr) call handle_err(status)
...
status = nf90_inq_varid(ncid, "rh", rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
...
! Fill in every other value using an array section
status = nf90_put_var(ncid, rhVarId, rhValues(::2, ::2), &
stride = (/ 2, 2 /))
if(status /= nf90_NoErr) call handle_err(status)
~~~~
The following map vector shows the default mapping between a 2x3x4
netCDF variable and an internal array of the same shape:
~~~~.fortran
real, dimension(2, 3, 4):: a ! same shape as netCDF variable
integer, dimension(3) :: map = (/ 1, 2, 6 /)
! netCDF dimension inter-element distance
! ---------------- ----------------------
! most rapidly varying 1
! intermediate 2 (= map(1)*2)
! most slowly varying 6 (= map(2)*3)
~~~~
Using the map vector above obtains the same result as simply not passing
a map vector at all.
Here is an example of using nf90\_put\_var to write a netCDF variable
named rh whose dimensions are the transpose of the Fortran 90 array:
~~~~.fortran
use netcdf
implicit none
integer :: ncId, rhVarId, status
integer, parameter :: numLons = 6, numLats = 4
real, dimension(numLons, numLats) :: rhValues
! netCDF variable has dimensions (numLats, numLons)
...
status = nf90_open("foo.nc", nf90_Write, ncid)
if(status /= nf90_NoErr) call handle_err(status)
...
status = nf90_inq_varid(ncid, "rh", rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
...
!Write transposed values: map vector would be (/ 1, numLats /) for
! no transposition
status = nf90_put_var(ncid, rhVarId,rhValues, map = (/ numLons, 1 /))
if(status /= nf90_NoErr) call handle_err(status)
~~~~
The same effect can be obtained more simply using Fortran 90 intrinsic
functions:
~~~~.fortran
use netcdf
implicit none
integer :: ncId, rhVarId, status
integer, parameter :: numLons = 6, numLats = 4
real, dimension(numLons, numLats) :: rhValues
! netCDF variable has dimensions (numLats, numLons)
...
status = nf90_open("foo.nc", nf90_Write, ncid)
if(status /= nf90_NoErr) call handle_err(status)
...
status = nf90_inq_varid(ncid, "rh", rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
...
status = nf90_put_var(ncid, rhVarId, transpose(rhValues))
if(status /= nf90_NoErr) call handle_err(status)
~~~~
6.11 Reading Data Values: NF90_GET_VAR {#f90-reading-data-values-nf90_get_var}
===========
The function NF90\_GET\_VAR gets one or more data values from a netCDF
variable of an open netCDF dataset that is in data mode. Required inputs
are the netCDF ID, the variable ID, and a specification for the data
values into which the data will be read. Optional inputs may indicate
the starting position of the data values in the netCDF variable
(argument start), the sampling frequency with which data values are read
from the netCDF variable (argument stride), and a mapping between the
dimensions of the data array and the netCDF variable (argument map). The
values to be read are associated with the netCDF variable by assuming
that the first dimension of the netCDF variable varies fastest in the
Fortran 90 interface. Data values are converted from the external type
of the variable, if necessary.
Take care when using the simplest forms of this interface with record
variables (variables that use the NF90\_UNLIMITED dimension) when you
don’t specify how many records are to be read. If you try to read all
the values of a record variable into an array but there are more records
in the file than you assume, more data will be read than you expect,
which may cause a segmentation violation. To avoid such problems, it is
better to specify the optional start and count arguments for variables
that use the NF90\_UNLIMITED dimension.
In netCDF classic model the maximum integer size is NF90\_INT, the
4-byte signed integer. Reading variables into an eight-byte integer
array from a classic model file will read from an NF90\_INT. Reading
variables into an eight-byte integer in a netCDF-4/HDF5 (without classic
model flag) will read from an NF90\_INT64
## Usage
~~~~.fortran
function nf90_get_var(ncid, varid, values, start, count, stride, map)
integer, intent( in) :: ncid, varid
any valid type, scalar or array of any rank, &
intent(out) :: values
integer, dimension(:), optional, intent( in) :: start, count, stride, map
integer :: nf90_get_var
~~~~
`ncid`
: NetCDF ID, from a previous call to NF90\_OPEN or NF90\_CREATE.
`varid`
: Variable ID.
`values`
: The data value(s) to be read. The data may be of any type, and may
be a scalar or an array of any rank. You cannot read CHARACTER data
from a numeric variable or numeric data from a text variable. For
numeric data, if the type of data differs from the netCDF variable
type, type conversion will occur. See [Type
Conversion](netcdf.html#Type-Conversion) in NetCDF Users Guide.
`start`
: A vector of integers specifying the index in the variable from which
the first (or only) of the data values will be read. The indices are
relative to 1, so for example, the first data value of a variable
would have index (1, 1, ..., 1). The elements of start correspond,
in order, to the variable’s dimensions. Hence, if the variable is a
record variable, the last index would correspond to the starting
record number for writing the data values.
By default, start(:) = 1.
`count`
: A vector of integers specifying the number of indices selected along
each dimension. To read a single value, for example, specify count
as (1, 1, ..., 1). The elements of count correspond, in order, to
the variable’s dimensions. Hence, if the variable is a record
variable, the last element of count corresponds to a count of the
number of records to read.
By default, count(:numDims) = shape(values) and count(numDims + 1:)
= 1, where numDims = size(shape(values)).
`stride`
: A vector of integers that specifies the sampling interval along each
dimension of the netCDF variable. The elements of the stride vector
correspond, in order, to the netCDF variable’s dimensions (stride(1)
gives the sampling interval along the most rapidly varying dimension
of the netCDF variable). Sampling intervals are specified in
type-independent units of elements (a value of 1 selects consecutive
elements of the netCDF variable along the corresponding dimension, a
value of 2 selects every other element, etc.).
By default, stride(:) = 1.
`map`
: A vector of integers that specifies the mapping between the
dimensions of a netCDF variable and the in-memory structure of the
internal data array. The elements of the index mapping vector
correspond, in order, to the netCDF variable’s dimensions (map(1)
gives the distance between elements of the internal array
corresponding to the most rapidly varying dimension of the
netCDF variable). Distances between elements are specified in units
of elements.
By default, edgeLengths = shape(values), and map = (/ 1,
(product(edgeLengths(:i)), i = 1, size(edgeLengths) - 1) /), that
is, there is no mapping.
Use of Fortran 90 intrinsic functions (including reshape, transpose,
and spread) may let you avoid using this argument.
## Errors
NF90\_GET\_VAR returns the value NF90\_NOERR if no errors occurred.
Otherwise, the returned status indicates an error. Possible causes of
errors include:
- The variable ID is invalid for the specified netCDF dataset.
- The assumed or specified start, count, and stride generate an index
which is out of range. Note that no error checking is possible on
the map vector.
- One or more of the specified values are out of the range of values
representable by the desired type.
- The specified netCDF is in define mode rather than data mode.
- The specified netCDF ID does not refer to an open netCDF dataset.
(As noted above, another possible source of error is using this
interface to read all the values of a record variable without specifying
the number of records. If there are more records in the file than you
assume, more data will be read than you expect!)
## Example
Here is an example using NF90\_GET\_VAR to read the (4,3,2) element of
the variable named rh from an existing netCDF dataset named foo.nc. For
simplicity in this example, we assume that we know that rh is
dimensioned with lon, lat, and time, so we want to read the value of rh
that corresponds to the fourth lon value, the third lat value, and the
second time value:
~~~~.fortran
use netcdf
implicit none
integer :: ncId, rhVarId, status
real :: rhValue
...
status = nf90_open("foo.nc", nf90_NoWrite, ncid)
if(status /= nf90_NoErr) call handle_err(status)
-
status = nf90_inq_varid(ncid, "rh", rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_get_var(ncid, rhVarId, rhValue, start = (/ 4, 3, 2 /) )
if(status /= nf90_NoErr) call handle_err(status)
~~~~
In this example we use NF90\_GET\_VAR to read all the values of the
variable named rh from an existing netCDF dataset named foo.nc. We
assume that we know that rh is dimensioned with lon, lat, and time. In
this example we query the netCDF file to discover the lengths of the
dimensions, then allocate a Fortran 90 array the same shape as the
netCDF variable.
use netcdf
implicit none
integer :: ncId, rhVarId, &
lonDimID, latDimId, timeDimId, &
numLons, numLats, numTimes, &
status
integer, dimension(nf90_max_var_dims) :: dimIDs
real, dimension(:, :, :), allocatable :: rhValues
...
status = nf90_open("foo.nc", nf90_NoWrite, ncid)
if(status /= nf90_NoErr) call handle_err(status)
...
status = nf90_inq_varid(ncid, "rh", rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
! How big is the netCDF variable, that is, what are the lengths of
! its constituent dimensions?
status = nf90_inquire_variable(ncid, rhVarId, dimids = dimIDs)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_inquire_dimension(ncid, dimIDs(1), len = numLons)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_inquire_dimension(ncid, dimIDs(2), len = numLats)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_inquire_dimension(ncid, dimIDs(3), len = numTimes)
if(status /= nf90_NoErr) call handle_err(status)
allocate(rhValues(numLons, numLats, numTimes))
...
status = nf90_get_var(ncid, rhVarId, rhValues)
if(status /= nf90_NoErr) call handle_err(status)
Here is an example using NF90\_GET\_VAR to read a section of the
variable named rh from an existing netCDF dataset named foo.nc. For
simplicity in this example, we assume that we know that rh is
dimensioned with lon, lat, and time, that there are ten lon values, five
lat values, and three time values, and that we want to replace all the
values at the last time.
~~~~.fortran
use netcdf
implicit none
integer :: ncId, rhVarId, status
integer, parameter :: numLons = 10, numLats = 5, numTimes = 3
real, dimension(numLons, numLats, numTimes) &
:: rhValues
...
status = nf90_open("foo.nc", nf90_NoWrite, ncid)
if(status /= nf90_NoErr) call handle_err(status)
...
status = nf90_inq_varid(ncid, "rh", rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
!Read the values at the last time by passing an array section
status = nf90_get_var(ncid, rhVarId, rhValues(:, :, 3), &
start = (/ 1, 1, numTimes /), &
count = (/ numLons, numLats, 1 /))
if(status /= nf90_NoErr) call handle_err(status)
~~~~
Here is an example of using NF90\_GET\_VAR to read every other point of
a netCDF variable named rh having dimensions (6, 4).
~~~~.fortran
use netcdf
implicit none
integer :: ncId, rhVarId, status
integer, parameter :: numLons = 6, numLats = 4
real, dimension(numLons, numLats) &
:: rhValues
...
status = nf90_open("foo.nc", nf90_NoWrite, ncid)
if(status /= nf90_NoErr) call handle_err(status)
...
status = nf90_inq_varid(ncid, "rh", rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
...
! Read every other value into an array section
status = nf90_get_var(ncid, rhVarId, rhValues(::2, ::2) &
stride = (/ 2, 2 /))
if(status /= nf90_NoErr) call handle_err(status)
~~~~
The following map vector shows the default mapping between a 2x3x4
netCDF variable and an internal array of the same shape:
~~~~.fortran
real, dimension(2, 3, 4):: a ! same shape as netCDF variable
integer, dimension(3) :: map = (/ 1, 2, 6 /)
! netCDF dimension inter-element distance
! ---------------- ----------------------
! most rapidly varying 1
! intermediate 2 (= map(1)*2)
! most slowly varying 6 (= map(2)*3)
~~~~
Using the map vector above obtains the same result as simply not passing
a map vector at all.
Here is an example of using nf90\_get\_var to read a netCDF variable
named rh whose dimensions are the transpose of the Fortran 90 array:
~~~~.fortran
use netcdf
implicit none
integer :: ncId, rhVarId, status
integer, parameter :: numLons = 6, numLats = 4
real, dimension(numLons, numLats) :: rhValues
! netCDF variable has dimensions (numLats, numLons)
...
status = nf90_open("foo.nc", nf90_NoWrite, ncid)
if(status /= nf90_NoErr) call handle_err(status)
...
status = nf90_inq_varid(ncid, "rh", rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
...
! Read transposed values: map vector would be (/ 1, numLats /) for
! no transposition
status = nf90_get_var(ncid, rhVarId,rhValues, map = (/ numLons, 1 /))
if(status /= nf90_NoErr) call handle_err(status)
~~~~
The same effect can be obtained more simply, though using more memory,
using Fortran 90 intrinsic functions:
~~~~.fortran
use netcdf
implicit none
integer :: ncId, rhVarId, status
integer, parameter :: numLons = 6, numLats = 4
real, dimension(numLons, numLats) :: rhValues
! netCDF variable has dimensions (numLats, numLons)
real, dimension(numLons, numLats) :: tempValues
...
status = nf90_open("foo.nc", nf90_NoWrite, ncid)
if(status /= nf90_NoErr) call handle_err(status)
...
status = nf90_inq_varid(ncid, "rh", rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
...
status = nf90_get_var(ncid, rhVarId, tempValues))
if(status /= nf90_NoErr) call handle_err(status)
rhValues(:, :) = transpose(tempValues)
~~~~
6.12 Reading and Writing Character String Values {#f90-reading-and-writing-character-string-values}
===========
Character strings are not a primitive netCDF external data type under
the classic netCDF data model, in part because FORTRAN does not support
the abstraction of variable-length character strings (the FORTRAN LEN
function returns the static length of a character string, not its
dynamic length). As a result, a character string cannot be written or
read as a single object in the netCDF interface. Instead, a character
string must be treated as an array of characters, and array access must
be used to read and write character strings as variable data in netCDF
datasets. Furthermore, variable-length strings are not supported by the
netCDF classic interface except by convention; for example, you may
treat a zero byte as terminating a character string, but you must
explicitly specify the length of strings to be read from and written to
netCDF variables.
Character strings as attribute values are easier to use, since the
strings are treated as a single unit for access. However, the value of a
character-string attribute in the classic netCDF interface is still an
array of characters with an explicit length that must be specified when
the attribute is defined.
When you define a variable that will have character-string values, use a
character-position dimension as the most quickly varying dimension for
the variable (the first dimension for the variable in Fortran 90). The
length of the character-position dimension will be the maximum string
length of any value to be stored in the character-string variable. Space
for maximum-length strings will be allocated in the disk representation
of character-string variables whether you use the space or not. If two
or more variables have the same maximum length, the same
character-position dimension may be used in defining the variable
shapes.
To write a character-string value into a character-string variable, use
either entire variable access or array access. The latter requires that
you specify both a corner and a vector of edge lengths. The
character-position dimension at the corner should be one for Fortran 90.
If the length of the string to be written is n, then the vector of edge
lengths will specify n in the character-position dimension, and one for
all the other dimensions: (n, 1, 1, ..., 1).
In Fortran 90, fixed-length strings may be written to a netCDF dataset
without a terminating character, to save space. Variable-length strings
should follow the C convention of writing strings with a terminating
zero byte so that the intended length of the string can be determined
when it is later read by either C or Fortran 90 programs. It is the
users responsibility to provide such null termination.
If you are writing data in the default prefill mode (see next section),
you can ensure that simple strings represented as 1-dimensional
character arrays are null terminated in the netCDF file by writing fewer
characters than the length declared when the variable was defined. That
way, the extra unwritten characters will be filled with the default
character fill value, which is a null byte. The Fortran intrinsic TRIM
function can be used to trim trailing blanks from the character string
argument to NF90\_PUT\_VAR to make the argument shorter than the
declared length. If prefill is not on, the data writer must explicitly
provide a null terminating byte.
Here is an example illustrating this way of writing strings to character
array variables:
~~~~.fortran
use netcdf
implicit none
integer status
integer :: ncid, oceanStrLenID, oceanId
integer, parameter :: MaxOceanNameLen = 20
character, (len = MaxOceanNameLen):: ocean
...
status = nf90_create("foo.nc", nf90_NoClobber, ncid)
if(status /= nf90_NoErr) call handle_err(status)
...
status = nf90_def_dim(ncid, "oceanStrLen", MaxOceanNameLen, oceanStrLenId)
if(status /= nf90_NoErr) call handle_err(status)
...
status = nf90_def_var(ncid, "ocean", nf90_char, (/ oceanStrLenId /), oceanId)
if(status /= nf90_NoErr) call handle_err(status)
...
! Leave define mode, which prefills netCDF variables with fill values
status = nf90_enddef(ncid)
if (status /= nf90_noerr) call handle_err(status)
...
! Note that this assignment adds blank fill
ocean = "Pacific"
! Using trim removes trailing blanks, prefill provides null
! termination, so C programs can later get intended string.
status = nf90_put_var(ncid, oceanId, trim(ocean))
if(status /= nf90_NoErr) call handle_err(status)
~~~~
6.13 Fill Values {#f90-fill-values}
===========
What happens when you try to read a value that was never written in an
open netCDF dataset? You might expect that this should always be an
error, and that you should get an error message or an error status
returned. You do get an error if you try to read data from a netCDF
dataset that is not open for reading, if the variable ID is invalid for
the specified netCDF dataset, or if the specified indices are not
properly within the range defined by the dimension lengths of the
specified variable. Otherwise, reading a value that was not written
returns a special fill value used to fill in any undefined values when a
netCDF variable is first written.
You may ignore fill values and use the entire range of a netCDF external
data type, but in this case you should make sure you write all data
values before reading them. If you know you will be writing all the data
before reading it, you can specify that no prefilling of variables with
fill values will occur by calling writing. This may provide a
significant performance gain for netCDF writes.
The variable attribute \_FillValue may be used to specify the fill value
for a variable. There are default fill values for each type, defined in
module netcdf: NF90\_FILL\_CHAR, NF90\_FILL\_INT1 (same as
NF90\_FILL\_BYTE), NF90\_FILL\_INT2 (same as NF90\_FILL\_SHORT),
NF90\_FILL\_INT, NF90\_FILL\_REAL (same as NF90\_FILL\_FLOAT), and
NF90\_FILL\_DOUBLE
The netCDF byte and character types have different default fill values.
The default fill value for characters is the zero byte, a useful value
for detecting the end of variable-length C character strings. If you
need a fill value for a byte variable, it is recommended that you
explicitly define an appropriate \_FillValue attribute, as generic
utilities such as ncdump will not assume a default fill value for byte
variables.
Type conversion for fill values is identical to type conversion for
other values: attempting to convert a value from one type to another
type that can’t represent the value results in a range error. Such
errors may occur on writing or reading values from a larger type (such
as double) to a smaller type (such as float), if the fill value for the
larger type cannot be represented in the smaller type.
6.14 NF90_RENAME_VAR {#f90-nf90_rename_var}
===========
The function NF90\_RENAME\_VAR changes the name of a netCDF variable in
an open netCDF dataset. If the new name is longer than the old name, the
netCDF dataset must be in define mode. You cannot rename a variable to
have the name of any existing variable.
## Usage
~~~~.fortran
function nf90_rename_var(ncid, varid, newname)
integer, intent( in) :: ncid, varid
character (len = *), intent( in) :: newname
integer :: nf90_rename_var
~~~~
`ncid`
: NetCDF ID, from a previous call to NF90\_OPEN or NF90\_CREATE.
`varid`
: Variable ID.
`newname`
: New name for the specified variable.
## Errors
NF90\_RENAME\_VAR returns the value NF90\_NOERR if no errors occurred.
Otherwise, the returned status indicates an error. Possible causes of
errors include:
- The new name is in use as the name of another variable.
- The variable ID is invalid for the specified netCDF dataset.
- The specified netCDF ID does not refer to an open netCDF dataset.
## Example
Here is an example using NF90\_RENAME\_VAR to rename the variable rh to
rel\_hum in an existing netCDF dataset named foo.nc:
~~~~.fortran
use netcdf
implicit none
integer :: ncId, rhVarId, status
...
status = nf90_open("foo.nc", nf90_Write, ncid)
if(status /= nf90_NoErr) call handle_err(status)
...
status = nf90_inq_varid(ncid, "rh", rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_redef(ncid) ! Enter define mode to change variable name
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_rename_var(ncid, rhVarId, "rel_hum")
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_enddef(ncid) ! Leave define mode
if(status /= nf90_NoErr) call handle_err(status)
~~~~
6.15 Change between Collective and Independent Parallel Access: NF90_VAR_PAR_ACCESS {#f90-change-between-collective-and-independent-parallel-access-nf90_var_par_access}
===========
The function NF90\_VAR\_PAR\_ACCESS changes whether read/write
operations on a parallel file system are performed collectively or
independently (the default) on the variable. This function can only be
called if the file was created (see [NF90\_CREATE](#NF90_005fCREATE)) or
opened (see [NF90\_OPEN](#NF90_005fOPEN)) for parallel I/O.
This function is only available if the netCDF library was built with
parallel I/O enabled.
Calling this function affects only the open file - information about
whether a variable is to be accessed collectively or independently is
not written to the data file. Every time you open a file on a parallel
file system, all variables default to independent operations. The change
of a variable to collective access lasts only as long as that file is
open.
The variable can be changed from collective to independent, and back, as
often as desired.
Classic and 64-bit offset files, when opened for parallel access, use
the parallel-netcdf (a.k.a. pnetcdf) library, which does not allow
per-variable changes of access mode - the entire file must be access
independently or collectively. For classic and 64-bit offset files, the
nf90\_var\_par\_access function changes the access for all variables in
the file.
## Usage
~~~~.fortran
function nf90_var_par_access(ncid, varid, access)
integer, intent(in) :: ncid
integer, intent(in) :: varid
integer, intent(in) :: access
integer :: nf90_var_par_access
end function nf90_var_par_access
~~~~
`ncid`
: NetCDF ID, from a previous call to NF90\_OPEN (see
[NF90\_OPEN](#NF90_005fOPEN)) or NF90\_CREATE (see
[NF90\_CREATE](#NF90_005fCREATE)).
`varid`
: Variable ID.
`access`
: NF90\_INDEPENDENT to set this variable to independent operations.
NF90\_COLLECTIVE to set it to collective operations.
## Return Values
`NF90_NOERR`
: No error.
`NF90_ENOTVAR`
: No variable found.
`NF90_NOPAR`
: File not opened for parallel access.
## Example
This example comes from test program nf\_test/f90tst\_parallel.f90. For
this test to be run, netCDF must have been built with a parallel-enabled
HDF5, and –enable-parallel-tests must have been used when configuring
netcdf.
~~~~.fortran
! Reopen the file.
call handle_err(nf90_open(FILE_NAME, nf90_nowrite, ncid, comm = MPI_COMM_WORLD, &
info = MPI_INFO_NULL))
! Set collective access on this variable. This will cause all
! reads/writes to happen together on every processor.
call handle_err(nf90_var_par_access(ncid, varid, nf90_collective))
! Read this processor's data.
call handle_err(nf90_get_var(ncid, varid, data_in, start = start, count = count))
~~~~
|