File: bm_chunks3.c

package info (click to toggle)
netcdf-parallel 1%3A4.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 113,164 kB
  • sloc: ansic: 267,893; sh: 12,869; cpp: 5,822; yacc: 2,613; makefile: 1,813; lex: 1,216; xml: 173; awk: 2
file content (422 lines) | stat: -rw-r--r-- 12,474 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
/* This is part of the netCDF package. Copyright 2005-2018 University
   Corporation for Atmospheric Research/Unidata See COPYRIGHT file for
   conditions of use.

   Runs benchmarks on different chunking sizes.

   Russ Rew, Ed Hartnett, Dennis Heimbigner
*/

#include <config.h>
#include <stdio.h>
#include <stdlib.h>

#ifdef HAVE_UNISTD_H
#include <unistd.h>		/* for sysconf */
#endif
#include <assert.h>

#include "nc_tests.h"		/* The ERR macro is here... */
#include "netcdf.h"

#include "bm_utils.h"
#include "timer_utils.h"

#undef NOREPEAT
#undef NOCONTIG

/*
 * The following timing macros can be used by including the necessary
 * declarations with
 *
 *     TIMING_DECLS(seconds)
 *
 * and surrounding sections of code to be timed with the "statements"
 *
 *     TIMING_START
 *     [code to be timed goes here]
 *     TIMING_END(seconds)
 *
 * The macros assume the user has stored a description of what is
 * being timed in a 100-char string time_mess, and has included
 * <sys/times.h> and <sys/resource.h>.  The timing message printed by
 * TIMING_END is not terminated by a new-line, to permit appending
 * additional text to that line, so user must at least printf("\n")
 * after that.
 */

#define TIMING_DECLS(seconds)						       \
	long TMreps;		/* counts repetitions of timed code */ \
	long TMrepeats;		/* repetitions needed to exceed 0.1 second */ \
	Nanotime bnano,enano,delta;	/* start/stop times in nanoseconds */ \
        char time_mess[100]; \
        double seconds; \
	NCT_inittimer();

#ifndef NOREPEAT
#define TIMING_START \
	TMrepeats = 1; \
	do { \
	    NCT_marktime(&bnano); \
	    for(TMreps=0; TMreps < TMrepeats; TMreps++) {

#define TIMING_END(time_mess,seconds)				\
            } \
	    NCT_marktime(&enano); \
	    NCT_elapsedtime(&bnano,&enano,&delta); \
	    TMrepeats *= 2; \
	} while (NCT_nanoseconds(delta) < 100000000 ); \
	seconds = ((double)NCT_nanoseconds(delta)) / (1000000000.0 * TMreps); \
	printf("%-45.45s %#08.6F sec", time_mess, seconds);

#else /*NOREPEAT*/

#define TIMING_START \
	do { \
fprintf(stderr,"TIME_START\n"); \
	    NCT_marktime(&bnano); \
	    {

#define TIMING_END(time_mess,seconds) \
	    } \
	    NCT_marktime(&enano); \
	    NCT_elapsedtime(&bnano,&enano,&delta); \
        } while (0); \
fprintf(stderr,"TIME_END\n"); \
	seconds = ((double)NCT_nanoseconds(delta)) / (1000000000.0 * TMreps); \
	printf("%-45.45s %#08.6F sec", time_mess, seconds);

#endif /*NOREPEAT*/


#define NC_COMPRESSED 1

/* This macro prints an error message with line number and name of
 * test program. */
#define ERR1(n) do {						  \
fflush(stdout); /* Make sure our stdout is synced with stderr. */ \
fprintf(stderr, "Sorry! Unexpected result, %s, line: %d - %s\n", \
	__FILE__, __LINE__, nc_strerror(n));			 \
return n; \
} while (0)

void *
emalloc(size_t bytes) {
    size_t *memory;
    memory = malloc(bytes);
    if(memory == 0) {
	printf("malloc failed\n");
	exit(2);
    }
    return memory;
}

typedef enum Tag {tag_contiguous=0, tag_chunked=1, tag_compressed=2} Tag;

static const char* tagnames[] = {"contiguous", "chunked   ", "compressed"};
static const char* rwnames[] = {"write", "read "};

static float test(Tag tag, int read, int ncid, int varid, int rank, int index, size_t* dims, size_t* chunks, unsigned* data);
static void testtrio(int read, int ncid, int index, unsigned* data, const char* slab);

/* Globals */
static int  ncid;  /* netCDF id */
static int dim1id, dim2id, dim3id;
static int varid_g;		  /* varid for contiguous */
static int varid_k;		  /* varid for chunked */
static int varid_x;		  /* varid for compressed */
static unsigned *varxy, *varxz, *varyz;    /* 2D memory slabs used for I/O */
static size_t szyz=0, szxz=0, szxy=0;

static const char*
dataname(void* data)
{
    if(data == varyz) return "yz";
    if(data == varxz) return "xz";
    if(data == varxy) return "xy";
    return "?";
}

/* compare contiguous, chunked, and compressed performance */
int
main(int argc, char *argv[])
{
    int  stat;  /* return status */
    int i, j, k;
    int mm;
    int deflate_level = 0;	/* default compression level, 9 is
				 * better and slower.  If negative,
				 * turn on shuffle filter also. */
    int shuffle = NC_NOSHUFFLE;
    size_t cache_size_def;
    size_t cache_hash_def;
    float cache_pre_def;
    size_t cache_size = 0;	    /* use library default */
    size_t cache_hash = 0;	    /* use library default */
    float cache_pre = -1.0f;	    /* use library default */
    char* path = NULL;
    int fill = -1;

    size_t* dims = NULL; /* alias */
    size_t* chunks = NULL; /* alias */


    /* rank (number of dimensions) for each variable */
#   define RANK 3

    /* variable shapes */
    int var_dims[RANK];

    NCCHECK(bm_getoptions(&argc,&argv,&bmoptions));
    NCCHECK(nc4_buildpath(&bmoptions,&path));

    if(bmoptions.debug) {
        reportoptions(&bmoptions);
        reportmetaoptions(&bmoptions.meta);
    }

    if(bmoptions.meta.dims.count != RANK)
        ERR1(NC_EINVAL);
    if(bmoptions.meta.dims.count != bmoptions.meta.chunks.count)
        ERR1(NC_EINVAL);
    dims = bmoptions.meta.dims.list;
    chunks = bmoptions.meta.chunks.list;

    if(bmoptions.meta.cachesize > 0) {
    /* get cache defaults, then set cache parameters that are not default */
    if((stat = nc_get_chunk_cache(&cache_size_def, &cache_hash_def,
				   &cache_pre_def)))
	ERR1(stat);
    if(cache_size == 0)
	cache_size = cache_size_def;
    if(cache_hash == 0)
	cache_hash = cache_hash_def;
    if(cache_pre == -1.0f)
	cache_pre = cache_pre_def;
    if((stat = nc_set_chunk_cache(cache_size, cache_hash, cache_pre)))
	ERR1(stat);
    printf("cache: %3.2f MBytes  %ld objs  %3.2f preempt, ",
	   cache_size/1.e6, cache_hash, cache_pre);
    }
    
    if(bmoptions.debug) {
        if(deflate_level == 0) {
  	    printf("compression level: uncompressed");
        } else {
  	    printf("compression level: %d          ", deflate_level);
	}
    }
    if(shuffle == 1) {
	printf(", shuffled");
    }
    printf("\n\n");

    /* initialize 2D slabs for writing along each axis with phony data */
    szyz =       1 * dims[1] * dims[2];
    szxz = dims[0] *       1 * dims[2];
    szxy = dims[0] * dims[1] *       1;
    if(bmoptions.debug)
	fprintf(stderr,"|yz|=%d |xz|=%d |xy|=%d\n",(int)szyz,(int)szxz,(int)szxy);
    varyz = (unsigned *) emalloc(sizeof(unsigned) * szyz);
    varxz = (unsigned *) emalloc(sizeof(unsigned) * szxz);
    varxy = (unsigned *) emalloc(sizeof(unsigned) * szxy);
    
    mm = 0;
    for(j = 0; j < dims[1]; j++) {
	for(k = 0; k < dims[2]; k++) {
	    varyz[mm++] = k + dims[2]*j;
	}
    }
    mm = 0;
    for(i = 0; i < dims[0]; i++) {
	for(k = 0; k < dims[2]; k++) {
	    varxz[mm++] = k + dims[2]*i;
	}
    }
    mm = 0;
    for(i = 0; i < dims[0]; i++) {
	for(j = 0; j < dims[1]; j++) {
	    varxy[mm++] = j + dims[1]*i;
	}
    }

    if((stat = nc_create(path, NC_NETCDF4, &ncid)))
	ERR1(stat);
    /* define dimensions */
    if((stat = nc_def_dim(ncid, "dim1", dims[0], &dim1id)))
	ERR1(stat);
    if((stat = nc_def_dim(ncid, "dim2", dims[1], &dim2id)))
	ERR1(stat);
    if((stat = nc_def_dim(ncid, "dim3", dims[2], &dim3id)))
	ERR1(stat);

    /* define variables */
    var_dims[0] = dim1id;
    var_dims[1] = dim2id;
    var_dims[2] = dim3id;
    if((stat = nc_def_var(ncid, "var_contiguous", NC_INT, RANK,
			   var_dims, &varid_g)))
	ERR1(stat);
    if((stat = nc_def_var(ncid, "var_chunked", NC_INT, RANK,
			   var_dims, &varid_k)))
	ERR1(stat);
    if((stat = nc_def_var(ncid, "var_compressed", NC_INT, RANK,
			   var_dims, &varid_x)))
	ERR1(stat);

    if((stat = nc_def_var_fill(ncid, varid_g, NC_FILL, &fill)))
	ERR1(stat);

    if((stat = nc_def_var_fill(ncid, varid_k, NC_FILL, &fill)))
	ERR1(stat);

    if((stat = nc_def_var_fill(ncid, varid_x, NC_FILL, &fill)))
	ERR1(stat);

#ifndef NOCONTIG
    if((stat = nc_def_var_chunking(ncid, varid_g, NC_CONTIGUOUS, 0)))
	ERR1(stat);
#else
    if((stat = nc_def_var_chunking(ncid, varid_g, NC_CHUNKED, dims)))
	ERR1(stat);
#endif

    if((stat = nc_def_var_chunking(ncid, varid_k, NC_CHUNKED, chunks)))
	ERR1(stat);

    if((stat = nc_def_var_chunking(ncid, varid_x, NC_CHUNKED, chunks)))
	ERR1(stat);

    if (bmoptions.meta.deflatelevel != 0) {
	if((stat = nc_def_var_deflate(ncid, varid_x, shuffle, NC_COMPRESSED, bmoptions.meta.deflatelevel)))
	    ERR1(stat);
    }

    /* leave define mode */
    if((stat = nc_enddef (ncid)))
	ERR1(stat);

    printf("Parameters: path=%s format=%s\n",path,formatname(&bmoptions));
    printf("   mode   |  R/W  |   dims    |    chunked  |     time     |    speedup   |\n");
    printf("--------------------------------------------------------------------------\n");

    /* write each variable one yz slab at a time */
    testtrio(0,ncid,0,varyz,"yz");

    /* write each variable one xz slab at a time */
    testtrio(0,ncid,1,varxz,"xz");

    /* write each variable one xy slab at a time */
    testtrio(0,ncid,2,varxy,"xy");

    /* read each variable one yz slab at a time */
    testtrio(1,ncid,0,varyz,"yz");

    /* read each variable one xz slab at a time */
    testtrio(1,ncid,1,varxz,"xz");

    /* read each variable one xy slab at a time */
    testtrio(1,ncid,2,varxy,"xy");

    if((stat = nc_close(ncid)))
	ERR1(stat);

    nullfree(path);
    clearoptions(&bmoptions);

    return 0;
}

static float
test(Tag tag, int reading, int ncid, int varid, int rank, int index, size_t* dims, size_t* chunks, unsigned* data)
{
    int stat = NC_NOERR;
    int i;
    size_t start[NC_MAX_VAR_DIMS];
    size_t count[NC_MAX_VAR_DIMS];
    float time;
    TIMING_DECLS(TMsec) ;

    /* do each variable one slab at a time */
    start[0] = 0;
    start[1] = 0;
    start[2] = 0;
    count[0] = dims[0];
    count[1] = dims[1];
    count[2] = dims[2];

    count[index] = 1;    

    if(chunks != NULL)
        sprintf(time_mess,"%s %s %3ld %3ld %3ld  %3ld %3ld %3ld", tagnames[tag], rwnames[reading],
	        count[0], count[1], count[2], chunks[0], chunks[1], chunks[2]);
    else
        sprintf(time_mess,"%s %s %3ld %3ld %3ld", tagnames[tag], rwnames[reading],
		count[0], count[1], count[2]);

    TIMING_START ;
    for(i = 0; i < dims[index]; i++) {
	start[index] = i;
#if 0
if(reading){
    int k,x;
    size_t prod = 1;
    size_t st = 0;
    for(k=0;k<RANK;k++) {prod *= count[k]; st *= dims[k]; st += start[k];}
    fprintf(stderr,"AAA: begin: i=%d data=%s soffset=%d prod=%d\n",i,dataname(data),(int)st,(int)prod);
    fprintf(stderr,"\tdims=%s\n",bm_printvector(RANK,dims));
    fprintf(stderr,"\tvara=%s\n",bm_varasprint(RANK,start,count,NULL));
    for(k=0;k<prod;k++)
#if 0
        fprintf(stderr,"AAA: data[%d]=%d\n",st+k,((int*)data)[k]);
#else
        x = ((int*)data)[k];
#endif
    fprintf(stderr,"AAA: done\n");
}
#endif /*0*/

	if(reading) {
	    if(bmoptions.debug)
		fprintf(stderr,"bm: read: dataname=%s vara=%s\n",dataname(data),bm_varasprint(RANK,start,count,NULL));
	    stat = nc_get_vara(ncid, varid, start, count, (void*)data);
	} else {
//	    if(bmoptions.debug)
//		fprintf(stderr,"bm: write: dataname=%s vara=%s\n",dataname(data),bm_varasprint(RANK,start,count,NULL));
	    stat = nc_put_vara(ncid, varid, start, count, (void*)data);
	}
	if(stat) ERR1(stat);

    }
    if(bmoptions.debug)
	fprintf(stderr,"bm: write: done\n");
    TIMING_END(time_mess,TMsec) ;
    time = TMsec;
    return time;
}

static void
testtrio(int reading, int ncid, int index, unsigned* data, const char* slab)
{
    float ratio, contig_time, chunked_time, compressed_time;
    size_t* dims = bmoptions.meta.dims.list;
    size_t* chunks = bmoptions.meta.chunks.list;

    contig_time = test(tag_contiguous,reading,ncid, varid_g, RANK, index, dims, NULL, data);
    printf("\n");

    if(bmoptions.debug)
	fprintf(stderr,"testtrio: case=%s slab=%s index=%d\n","chunked",slab,index);
    chunked_time = test(tag_chunked,reading,ncid,varid_k, RANK, index, dims, chunks, data);
    ratio = contig_time/chunked_time;
    if(ratio >= 1.0) printf(" %5.2g x faster\n", ratio); else printf(" %5.2g x slower\n", 1.0/ratio);
    if(bmoptions.debug)
	fprintf(stderr,"testtrio: case=%s done\n","chunked");

    if (bmoptions.meta.deflatelevel != 0) {
        compressed_time = test(tag_compressed, reading, ncid, varid_x, RANK, index, dims, chunks, data);
        ratio = contig_time/compressed_time;
        if(ratio >= 1.0) printf(" %5.2g x faster\n", ratio); else printf(" %5.2g x slower\n", 1.0/ratio);
    }
}