File: index.html

package info (click to toggle)
netcdf4-python 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,588 kB
  • sloc: python: 6,002; ansic: 854; makefile: 15; sh: 2
file content (3293 lines) | stat: -rw-r--r-- 217,614 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1">
<meta name="generator" content="pdoc3 0.11.1">
<title>netCDF4 API documentation</title>
<meta name="description" content="Version 1.7.2
…">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/sanitize.min.css" integrity="sha512-y1dtMcuvtTMJc1yPgEqF0ZjQbhnc/bFhyvIyVNb9Zk5mIGtqVaAB1Ttl28su8AvFMOY0EwRbAe+HCLqj6W7/KA==" crossorigin>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/typography.min.css" integrity="sha512-Y1DYSb995BAfxobCkKepB1BqJJTPrOp3zPL74AWFugHHmmdcvO+C48WLrUOlhGMc0QG7AE3f7gmvvcrmX2fDoA==" crossorigin>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/styles/default.min.css" crossorigin>
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:1.5em;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:2em 0 .50em 0}h3{font-size:1.4em;margin:1.6em 0 .7em 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .2s ease-in-out}a:visited{color:#503}a:hover{color:#b62}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900;font-weight:bold}pre code{font-size:.8em;line-height:1.4em;padding:1em;display:block}code{background:#f3f3f3;font-family:"DejaVu Sans Mono",monospace;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em 1em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul ul{padding-left:1em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/highlight.min.js" integrity="sha512-D9gUyxqja7hBtkWpPWGt9wfbfaMGVt9gnyCvYa+jojwwPHLCzUm5i8rpk7vD7wNee9bA35eYIjobYPaQuKS1MQ==" crossorigin></script>
<script>window.addEventListener('DOMContentLoaded', () => {
hljs.configure({languages: ['bash', 'css', 'diff', 'graphql', 'ini', 'javascript', 'json', 'plaintext', 'python', 'python-repl', 'rust', 'shell', 'sql', 'typescript', 'xml', 'yaml']});
hljs.highlightAll();
})</script>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Package <code>netCDF4</code></h1>
</header>
<section id="section-intro">
<h2 id="version-172">Version 1.7.2</h2>
<h1 id="introduction">Introduction</h1>
<p>netcdf4-python is a Python interface to the netCDF C library.</p>
<p><a href="http://www.unidata.ucar.edu/software/netcdf/">netCDF</a> version 4 has many features
not found in earlier versions of the library and is implemented on top of
<a href="http://www.hdfgroup.org/HDF5">HDF5</a>. This module can read and write
files in both the new netCDF 4 and the old netCDF 3 format, and can create
files that are readable by HDF5 clients. The API modelled after
<a href="http://dirac.cnrs-orleans.fr/ScientificPython/">Scientific.IO.NetCDF</a>,
and should be familiar to users of that module.</p>
<p>Most new features of netCDF 4 are implemented, such as multiple
unlimited dimensions, groups and data compression.
All the new
numeric data types (such as 64 bit and unsigned integer types) are
implemented. Compound (struct), variable length (vlen) and
enumerated (enum) data types are supported, but not the opaque data type.
Mixtures of compound, vlen and enum data types (such as
compound types containing enums, or vlens containing compound
types) are not supported.</p>
<h2 id="quick-install">Quick Install</h2>
<ul>
<li>the easiest way to get going is to install via <code>pip install <a title="netCDF4" href="#netCDF4">netCDF4</a></code>.
(or if you use the <a href="http://conda.io">conda</a> package manager <code>conda install -c conda-forge netCDF4</code>).</li>
</ul>
<h2 id="developer-install">Developer Install</h2>
<ul>
<li>Clone the <a href="http://github.com/Unidata/netcdf4-python">github repository</a>. Make
sure you either clone recursively, or run <code>git submodule update --init</code> to
ensure all the submodules are also checked out.</li>
<li>Make sure the dependencies are satisfied (Python 3.8 or later,
<a href="http://numpy.scipy.org">numpy</a>,
<a href="http://cython.org">Cython</a>,
<a href="https://github.com/Unidata/cftime">cftime</a>,
<a href="https://pypi.python.org/pypi/setuptools">setuptools</a>,
the <a href="https://www.hdfgroup.org/solutions/hdf5/">HDF5 C library</a>,
and the <a href="https://www.unidata.ucar.edu/software/netcdf/">netCDF C library</a>).
For MPI parallel IO support, an MPI-enabled versions of the netcdf library
is required, as is <a href="http://mpi4py.scipy.org">mpi4py</a>.
Parallel IO further depends on the existence of MPI-enabled HDF5 or the
<a href="https://parallel-netcdf.github.io/">PnetCDF</a> library.</li>
<li>By default, the utility <code>nc-config</code> (installed with netcdf-c)
will be run used to determine where all the dependencies live.</li>
<li>If <code>nc-config</code> is not in your default <code>PATH</code>, you can set the <code>NETCDF4_DIR</code>
environment variable and <code>setup.py</code> will look in <code>$NETCDF4_DIR/bin</code>.
You can also use the file <code>setup.cfg</code> to set the path to <code>nc-config</code>, or
enter the paths to the libraries and include files manually. Just
edit the <code>setup.cfg</code> file
in a text editor and follow the instructions in the comments.
To disable the use of <code>nc-config</code>, set the env var <code>USE_NCCONFIG</code> to 0.
To disable the use of <code>setup.cfg</code>, set <code>USE_SETUPCFG</code> to 0.
As a last resort, the library and include paths can be set via environment variables.
If you go this route, set <code>USE_NCCONFIG</code> and <code>USE_SETUPCFG</code> to 0, and specify
<code>NETCDF4_LIBDIR</code>, <code>NETCDF4_INCDIR</code>, <code>HDF5_LIBDIR</code> and <code>HDF5_INCDIR</code>.
If the dependencies are not found
in any of the paths specified by environment variables, then standard locations
(such as <code>/usr</code> and <code>/usr/local</code>) are searched.</li>
<li>if the env var <code>NETCDF_PLUGIN_DIR</code> is set to point to the location of the netcdf-c compression
plugins built by netcdf &gt;= 4.9.0, they will be installed inside the package.
In this
case <code>HDF5_PLUGIN_PATH</code> will be set to the package installation path on import,
so the extra compression algorithms available in netcdf-c &gt;= 4.9.0 will automatically
be available.
Otherwise, the user will have to set <code>HDF5_PLUGIN_PATH</code> explicitly
to have access to the extra compression plugins.</li>
<li>run <code>pip install -v .</code> (as root if necessary)</li>
<li>run the tests in the 'test' directory by running <code>python run_all.py</code>.</li>
</ul>
<h1 id="tutorial">Tutorial</h1>
<ul>
<li><a href="#creatingopeningclosing-a-netcdf-file">Creating/Opening/Closing a netCDF file</a></li>
<li><a href="#groups-in-a-netcdf-file">Groups in a netCDF file</a></li>
<li><a href="#dimensions-in-a-netcdf-file">Dimensions in a netCDF file</a></li>
<li><a href="#variables-in-a-netcdf-file">Variables in a netCDF file</a></li>
<li><a href="#attributes-in-a-netcdf-file">Attributes in a netCDF file</a></li>
<li><a href="#dealing-with-time-coordinates">Dealing with time coordinates</a></li>
<li><a href="#writing-data-to-and-retrieving-data-from-a-netcdf-variable">Writing data to and retrieving data from a netCDF variable</a></li>
<li><a href="#reading-data-from-a-multi-file-netcdf-dataset">Reading data from a multi-file netCDF dataset</a></li>
<li><a href="#efficient-compression-of-netcdf-variables">Efficient compression of netCDF variables</a></li>
<li><a href="#beyond-homogeneous-arrays-of-a-fixed-type-compound-data-types">Beyond homogeneous arrays of a fixed type - compound data types</a></li>
<li><a href="#variable-length-vlen-data-types">Variable-length (vlen) data types</a></li>
<li><a href="#enum-data-type">Enum data type</a></li>
<li><a href="#parallel-io">Parallel IO</a></li>
<li><a href="#dealing-with-strings">Dealing with strings</a></li>
<li><a href="#in-memory-diskless-datasets">In-memory (diskless) Datasets</a></li>
</ul>
<p>All of the code in this tutorial is available in <code>examples/tutorial.py</code>, except
the parallel IO example, which is in <code>examples/mpi_example.py</code>.
Unit tests are in the <code>test</code> directory.</p>
<h2 id="creatingopeningclosing-a-netcdf-file">Creating/Opening/Closing a netCDF file</h2>
<p>To create a netCDF file from python, you simply call the <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code>
constructor. This is also the method used to open an existing netCDF
file.
If the file is open for write access (<code>mode='w', 'r+'</code> or <code>'a'</code>), you may
write any type of data including new dimensions, groups, variables and
attributes.
netCDF files come in five flavors (<code>NETCDF3_CLASSIC</code>,
<code>NETCDF3_64BIT_OFFSET</code>, <code>NETCDF3_64BIT_DATA</code>, <code>NETCDF4_CLASSIC</code>, and <code>NETCDF4</code>).
<code>NETCDF3_CLASSIC</code> was the original netcdf binary format, and was limited
to file sizes less than 2 Gb. <code>NETCDF3_64BIT_OFFSET</code> was introduced
in version 3.6.0 of the library, and extended the original binary format
to allow for file sizes greater than 2 Gb.
<code>NETCDF3_64BIT_DATA</code> is a new format that requires version 4.4.0 of
the C library - it extends the <code>NETCDF3_64BIT_OFFSET</code> binary format to
allow for unsigned/64 bit integer data types and 64-bit dimension sizes.
<code>NETCDF3_64BIT</code> is an alias for <code>NETCDF3_64BIT_OFFSET</code>.
<code>NETCDF4_CLASSIC</code> files use the version 4 disk format (HDF5), but omits features
not found in the version 3 API. They can be read by netCDF 3 clients
only if they have been relinked against the netCDF 4 library. They can
also be read by HDF5 clients. <code>NETCDF4</code> files use the version 4 disk
format (HDF5) and use the new features of the version 4 API.
The
netCDF4 module can read and write files in any of these formats. When
creating a new file, the format may be specified using the <code>format</code>
keyword in the <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> constructor.
The default format is
<code>NETCDF4</code>. To see how a given file is formatted, you can examine the
<code>data_model</code> attribute.
Closing the netCDF file is
accomplished via the <code><a title="netCDF4.Dataset.close" href="#netCDF4.Dataset.close">Dataset.close()</a></code> method of the <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code>
instance.</p>
<p>Here's an example:</p>
<pre><code class="language-python">&gt;&gt;&gt; from netCDF4 import Dataset
&gt;&gt;&gt; rootgrp = Dataset(&quot;test.nc&quot;, &quot;w&quot;, format=&quot;NETCDF4&quot;)
&gt;&gt;&gt; print(rootgrp.data_model)
NETCDF4
&gt;&gt;&gt; rootgrp.close()
</code></pre>
<p>Remote <a href="http://opendap.org">OPeNDAP</a>-hosted datasets can be accessed for
reading over http if a URL is provided to the <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> constructor instead of a
filename.
However, this requires that the netCDF library be built with
OPenDAP support, via the <code>--enable-dap</code> configure option (added in
version 4.0.1).</p>
<h2 id="groups-in-a-netcdf-file">Groups in a netCDF file</h2>
<p>netCDF version 4 added support for organizing data in hierarchical
groups, which are analogous to directories in a filesystem. Groups serve
as containers for variables, dimensions and attributes, as well as other
groups.
A <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> creates a special group, called
the 'root group', which is similar to the root directory in a unix
filesystem.
To create <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instances, use the
<code><a title="netCDF4.Dataset.createGroup" href="#netCDF4.Dataset.createGroup">Dataset.createGroup()</a></code> method of a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code>
instance. <code><a title="netCDF4.Dataset.createGroup" href="#netCDF4.Dataset.createGroup">Dataset.createGroup()</a></code> takes a single argument, a
python string containing the name of the new group. The new <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code>
instances contained within the root group can be accessed by name using
the <code>groups</code> dictionary attribute of the <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> instance.
Only
<code>NETCDF4</code> formatted files support Groups, if you try to create a Group
in a netCDF 3 file you will get an error message.</p>
<pre><code class="language-python">&gt;&gt;&gt; rootgrp = Dataset(&quot;test.nc&quot;, &quot;a&quot;)
&gt;&gt;&gt; fcstgrp = rootgrp.createGroup(&quot;forecasts&quot;)
&gt;&gt;&gt; analgrp = rootgrp.createGroup(&quot;analyses&quot;)
&gt;&gt;&gt; print(rootgrp.groups)
{'forecasts': &lt;class 'netCDF4._netCDF4.Group'&gt;
group /forecasts:
    dimensions(sizes):
    variables(dimensions):
    groups: , 'analyses': &lt;class 'netCDF4._netCDF4.Group'&gt;
group /analyses:
    dimensions(sizes):
    variables(dimensions):
    groups: }
&gt;&gt;&gt;
</code></pre>
<p>Groups can exist within groups in a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code>, just as directories
exist within directories in a unix filesystem. Each <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance
has a <code>groups</code> attribute dictionary containing all of the group
instances contained within that group. Each <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance also has a
<code>path</code> attribute that contains a simulated unix directory path to
that group.
To simplify the creation of nested groups, you can
use a unix-like path as an argument to <code><a title="netCDF4.Dataset.createGroup" href="#netCDF4.Dataset.createGroup">Dataset.createGroup()</a></code>.</p>
<pre><code class="language-python">&gt;&gt;&gt; fcstgrp1 = rootgrp.createGroup(&quot;/forecasts/model1&quot;)
&gt;&gt;&gt; fcstgrp2 = rootgrp.createGroup(&quot;/forecasts/model2&quot;)
</code></pre>
<p>If any of the intermediate elements of the path do not exist, they are created,
just as with the unix command <code>'mkdir -p'</code>. If you try to create a group
that already exists, no error will be raised, and the existing group will be
returned.</p>
<p>Here's an example that shows how to navigate all the groups in a
<code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code>. The function <code>walktree</code> is a Python generator that is used
to walk the directory tree. Note that printing the <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code>
object yields summary information about it's contents.</p>
<pre><code class="language-python">&gt;&gt;&gt; def walktree(top):
...     yield top.groups.values()
...     for value in top.groups.values():
...         yield from walktree(value)
&gt;&gt;&gt; print(rootgrp)
&lt;class 'netCDF4._netCDF4.Dataset'&gt;
root group (NETCDF4 data model, file format HDF5):
    dimensions(sizes):
    variables(dimensions):
    groups: forecasts, analyses
&gt;&gt;&gt; for children in walktree(rootgrp):
...     for child in children:
...         print(child)
&lt;class 'netCDF4._netCDF4.Group'&gt;
group /forecasts:
    dimensions(sizes):
    variables(dimensions):
    groups: model1, model2
&lt;class 'netCDF4._netCDF4.Group'&gt;
group /analyses:
    dimensions(sizes):
    variables(dimensions):
    groups:
&lt;class 'netCDF4._netCDF4.Group'&gt;
group /forecasts/model1:
    dimensions(sizes):
    variables(dimensions):
    groups:
&lt;class 'netCDF4._netCDF4.Group'&gt;
group /forecasts/model2:
    dimensions(sizes):
    variables(dimensions):
    groups:
</code></pre>
<h2 id="dimensions-in-a-netcdf-file">Dimensions in a netCDF file</h2>
<p>netCDF defines the sizes of all variables in terms of dimensions, so
before any variables can be created the dimensions they use must be
created first. A special case, not often used in practice, is that of a
scalar variable, which has no dimensions. A dimension is created using
the <code><a title="netCDF4.Dataset.createDimension" href="#netCDF4.Dataset.createDimension">Dataset.createDimension()</a></code> method of a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code>
or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance. A Python string is used to set the name of the
dimension, and an integer value is used to set the size. To create an
unlimited dimension (a dimension that can be appended to), the size
value is set to <code>None</code> or 0. In this example, there both the <code>time</code> and
<code>level</code> dimensions are unlimited.
Having more than one unlimited
dimension is a new netCDF 4 feature, in netCDF 3 files there may be only
one, and it must be the first (leftmost) dimension of the variable.</p>
<pre><code class="language-python">&gt;&gt;&gt; level = rootgrp.createDimension(&quot;level&quot;, None)
&gt;&gt;&gt; time = rootgrp.createDimension(&quot;time&quot;, None)
&gt;&gt;&gt; lat = rootgrp.createDimension(&quot;lat&quot;, 73)
&gt;&gt;&gt; lon = rootgrp.createDimension(&quot;lon&quot;, 144)
</code></pre>
<p>All of the <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> instances are stored in a python dictionary.</p>
<pre><code class="language-python">&gt;&gt;&gt; print(rootgrp.dimensions)
{'level': &lt;class 'netCDF4._netCDF4.Dimension'&gt; (unlimited): name = 'level', size = 0, 'time': &lt;class 'netCDF4._netCDF4.Dimension'&gt; (unlimited): name = 'time', size = 0, 'lat': &lt;class 'netCDF4._netCDF4.Dimension'&gt;: name = 'lat', size = 73, 'lon': &lt;class 'netCDF4._netCDF4.Dimension'&gt;: name = 'lon', size = 144}
</code></pre>
<p>Using the python <code>len</code> function with a <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> instance returns
current size of that dimension.
<code><a title="netCDF4.Dimension.isunlimited" href="#netCDF4.Dimension.isunlimited">Dimension.isunlimited()</a></code> method of a <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> instance
be used to determine if the dimensions is unlimited, or appendable.</p>
<pre><code class="language-python">&gt;&gt;&gt; print(len(lon))
144
&gt;&gt;&gt; print(lon.isunlimited())
False
&gt;&gt;&gt; print(time.isunlimited())
True
</code></pre>
<p>Printing the <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> object
provides useful summary info, including the name and length of the dimension,
and whether it is unlimited.</p>
<pre><code class="language-python">&gt;&gt;&gt; for dimobj in rootgrp.dimensions.values():
...     print(dimobj)
&lt;class 'netCDF4._netCDF4.Dimension'&gt; (unlimited): name = 'level', size = 0
&lt;class 'netCDF4._netCDF4.Dimension'&gt; (unlimited): name = 'time', size = 0
&lt;class 'netCDF4._netCDF4.Dimension'&gt;: name = 'lat', size = 73
&lt;class 'netCDF4._netCDF4.Dimension'&gt;: name = 'lon', size = 144
</code></pre>
<p><code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> names can be changed using the
<code><a title="netCDF4.Dataset.renameDimension" href="#netCDF4.Dataset.renameDimension">Dataset.renameDimension()</a></code> method of a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or
<code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance.</p>
<h2 id="variables-in-a-netcdf-file">Variables in a netCDF file</h2>
<p>netCDF variables behave much like python multidimensional array objects
supplied by the <a href="http://numpy.scipy.org">numpy module</a>. However,
unlike numpy arrays, netCDF4 variables can be appended to along one or
more 'unlimited' dimensions. To create a netCDF variable, use the
<code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code> method of a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or
<code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance. The <code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code>j method
has two mandatory arguments, the variable name (a Python string), and
the variable datatype. The variable's dimensions are given by a tuple
containing the dimension names (defined previously with
<code><a title="netCDF4.Dataset.createDimension" href="#netCDF4.Dataset.createDimension">Dataset.createDimension()</a></code>). To create a scalar
variable, simply leave out the dimensions keyword. The variable
primitive datatypes correspond to the dtype attribute of a numpy array.
You can specify the datatype as a numpy dtype object, or anything that
can be converted to a numpy dtype object.
Valid datatype specifiers
include: <code>'f4'</code> (32-bit floating point), <code>'f8'</code> (64-bit floating
point), <code>'i4'</code> (32-bit signed integer), <code>'i2'</code> (16-bit signed
integer), <code>'i8'</code> (64-bit signed integer), <code>'i1'</code> (8-bit signed
integer), <code>'u1'</code> (8-bit unsigned integer), <code>'u2'</code> (16-bit unsigned
integer), <code>'u4'</code> (32-bit unsigned integer), <code>'u8'</code> (64-bit unsigned
integer), or <code>'S1'</code> (single-character string).
The old Numeric
single-character typecodes (<code>'f'</code>,<code>'d'</code>,<code>'h'</code>,
<code>'s'</code>,<code>'b'</code>,<code>'B'</code>,<code>'c'</code>,<code>'i'</code>,<code>'l'</code>), corresponding to
(<code>'f4'</code>,<code>'f8'</code>,<code>'i2'</code>,<code>'i2'</code>,<code>'i1'</code>,<code>'i1'</code>,<code>'S1'</code>,<code>'i4'</code>,<code>'i4'</code>),
will also work. The unsigned integer types and the 64-bit integer type
can only be used if the file format is <code>NETCDF4</code>.</p>
<p>The dimensions themselves are usually also defined as variables, called
coordinate variables. The <code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code>
method returns an instance of the <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> class whose methods can be
used later to access and set variable data and attributes.</p>
<pre><code class="language-python">&gt;&gt;&gt; times = rootgrp.createVariable(&quot;time&quot;,&quot;f8&quot;,(&quot;time&quot;,))
&gt;&gt;&gt; levels = rootgrp.createVariable(&quot;level&quot;,&quot;i4&quot;,(&quot;level&quot;,))
&gt;&gt;&gt; latitudes = rootgrp.createVariable(&quot;lat&quot;,&quot;f4&quot;,(&quot;lat&quot;,))
&gt;&gt;&gt; longitudes = rootgrp.createVariable(&quot;lon&quot;,&quot;f4&quot;,(&quot;lon&quot;,))
&gt;&gt;&gt; # two dimensions unlimited
&gt;&gt;&gt; temp = rootgrp.createVariable(&quot;temp&quot;,&quot;f4&quot;,(&quot;time&quot;,&quot;level&quot;,&quot;lat&quot;,&quot;lon&quot;,))
&gt;&gt;&gt; temp.units = &quot;K&quot;
</code></pre>
<p>To get summary info on a <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> instance in an interactive session,
just print it.</p>
<pre><code class="language-python">&gt;&gt;&gt; print(temp)
&lt;class 'netCDF4._netCDF4.Variable'&gt;
float32 temp(time, level, lat, lon)
    units: K
unlimited dimensions: time, level
current shape = (0, 0, 73, 144)
filling on, default _FillValue of 9.969209968386869e+36 used
</code></pre>
<p>You can use a path to create a Variable inside a hierarchy of groups.</p>
<pre><code class="language-python">&gt;&gt;&gt; ftemp = rootgrp.createVariable(&quot;/forecasts/model1/temp&quot;,&quot;f4&quot;,(&quot;time&quot;,&quot;level&quot;,&quot;lat&quot;,&quot;lon&quot;,))
</code></pre>
<p>If the intermediate groups do not yet exist, they will be created.</p>
<p>You can also query a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance directly to obtain <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> or
<code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> instances using paths.</p>
<pre><code class="language-python">&gt;&gt;&gt; print(rootgrp[&quot;/forecasts/model1&quot;])  # a Group instance
&lt;class 'netCDF4._netCDF4.Group'&gt;
group /forecasts/model1:
    dimensions(sizes):
    variables(dimensions): float32 temp(time,level,lat,lon)
    groups:
&gt;&gt;&gt; print(rootgrp[&quot;/forecasts/model1/temp&quot;])  # a Variable instance
&lt;class 'netCDF4._netCDF4.Variable'&gt;
float32 temp(time, level, lat, lon)
path = /forecasts/model1
unlimited dimensions: time, level
current shape = (0, 0, 73, 144)
filling on, default _FillValue of 9.969209968386869e+36 used
</code></pre>
<p>All of the variables in the <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> are stored in a
Python dictionary, in the same way as the dimensions:</p>
<pre><code class="language-python">&gt;&gt;&gt; print(rootgrp.variables)
{'time': &lt;class 'netCDF4._netCDF4.Variable'&gt;
float64 time(time)
unlimited dimensions: time
current shape = (0,)
filling on, default _FillValue of 9.969209968386869e+36 used, 'level': &lt;class 'netCDF4._netCDF4.Variable'&gt;
int32 level(level)
unlimited dimensions: level
current shape = (0,)
filling on, default _FillValue of -2147483647 used, 'lat': &lt;class 'netCDF4._netCDF4.Variable'&gt;
float32 lat(lat)
unlimited dimensions:
current shape = (73,)
filling on, default _FillValue of 9.969209968386869e+36 used, 'lon': &lt;class 'netCDF4._netCDF4.Variable'&gt;
float32 lon(lon)
unlimited dimensions:
current shape = (144,)
filling on, default _FillValue of 9.969209968386869e+36 used, 'temp': &lt;class 'netCDF4._netCDF4.Variable'&gt;
float32 temp(time, level, lat, lon)
    units: K
unlimited dimensions: time, level
current shape = (0, 0, 73, 144)
filling on, default _FillValue of 9.969209968386869e+36 used}
</code></pre>
<p><code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> names can be changed using the
<code><a title="netCDF4.Dataset.renameVariable" href="#netCDF4.Dataset.renameVariable">Dataset.renameVariable()</a></code> method of a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code>
instance.</p>
<p>Variables can be sliced similar to numpy arrays, but there are some differences.
See
<a href="#writing-data-to-and-retrieving-data-from-a-netcdf-variable">Writing data to and retrieving data from a netCDF variable</a> for more details.</p>
<h2 id="attributes-in-a-netcdf-file">Attributes in a netCDF file</h2>
<p>There are two types of attributes in a netCDF file, global and variable.
Global attributes provide information about a group, or the entire
dataset, as a whole. <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> attributes provide information about
one of the variables in a group. Global attributes are set by assigning
values to <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance variables. <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code>
attributes are set by assigning values to <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> instances
variables. Attributes can be strings, numbers or sequences. Returning to
our example,</p>
<pre><code class="language-python">&gt;&gt;&gt; import time
&gt;&gt;&gt; rootgrp.description = &quot;bogus example script&quot;
&gt;&gt;&gt; rootgrp.history = &quot;Created &quot; + time.ctime(time.time())
&gt;&gt;&gt; rootgrp.source = &quot;netCDF4 python module tutorial&quot;
&gt;&gt;&gt; latitudes.units = &quot;degrees north&quot;
&gt;&gt;&gt; longitudes.units = &quot;degrees east&quot;
&gt;&gt;&gt; levels.units = &quot;hPa&quot;
&gt;&gt;&gt; temp.units = &quot;K&quot;
&gt;&gt;&gt; times.units = &quot;hours since 0001-01-01 00:00:00.0&quot;
&gt;&gt;&gt; times.calendar = &quot;gregorian&quot;
</code></pre>
<p>The <code><a title="netCDF4.Dataset.ncattrs" href="#netCDF4.Dataset.ncattrs">Dataset.ncattrs()</a></code> method of a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code>, <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> or
<code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> instance can be used to retrieve the names of all the netCDF
attributes. This method is provided as a convenience, since using the
built-in <code>dir</code> Python function will return a bunch of private methods
and attributes that cannot (or should not) be modified by the user.</p>
<pre><code class="language-python">&gt;&gt;&gt; for name in rootgrp.ncattrs():
...     print(&quot;Global attr {} = {}&quot;.format(name, getattr(rootgrp, name)))
Global attr description = bogus example script
Global attr history = Created Mon Jul  8 14:19:41 2019
Global attr source = netCDF4 python module tutorial
</code></pre>
<p>The <code>__dict__</code> attribute of a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code>, <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> or <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code>
instance provides all the netCDF attribute name/value pairs in a python
dictionary:</p>
<pre><code class="language-python">&gt;&gt;&gt; print(rootgrp.__dict__)
{'description': 'bogus example script', 'history': 'Created Mon Jul  8 14:19:41 2019', 'source': 'netCDF4 python module tutorial'}
</code></pre>
<p>Attributes can be deleted from a netCDF <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code>, <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> or
<code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> using the python <code>del</code> statement (i.e. <code>del grp.foo</code>
removes the attribute <code>foo</code> the the group <code>grp</code>).</p>
<h2 id="writing-data-to-and-retrieving-data-from-a-netcdf-variable">Writing data to and retrieving data from a netCDF variable</h2>
<p>Now that you have a netCDF <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> instance, how do you put data
into it? You can just treat it like an array and assign data to a slice.</p>
<pre><code class="language-python">&gt;&gt;&gt; import numpy as np
&gt;&gt;&gt; lats =  np.arange(-90,91,2.5)
&gt;&gt;&gt; lons =  np.arange(-180,180,2.5)
&gt;&gt;&gt; latitudes[:] = lats
&gt;&gt;&gt; longitudes[:] = lons
&gt;&gt;&gt; print(&quot;latitudes =\n{}&quot;.format(latitudes[:]))
latitudes =
[-90.  -87.5 -85.  -82.5 -80.  -77.5 -75.  -72.5 -70.  -67.5 -65.  -62.5
 -60.  -57.5 -55.  -52.5 -50.  -47.5 -45.  -42.5 -40.  -37.5 -35.  -32.5
 -30.  -27.5 -25.  -22.5 -20.  -17.5 -15.  -12.5 -10.   -7.5  -5.   -2.5
   0.    2.5   5.    7.5  10.   12.5  15.   17.5  20.   22.5  25.   27.5
  30.   32.5  35.   37.5  40.   42.5  45.   47.5  50.   52.5  55.   57.5
  60.   62.5  65.   67.5  70.   72.5  75.   77.5  80.   82.5  85.   87.5
  90. ]
</code></pre>
<p>Unlike NumPy's array objects, netCDF <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code>
objects with unlimited dimensions will grow along those dimensions if you
assign data outside the currently defined range of indices.</p>
<pre><code class="language-python">&gt;&gt;&gt; # append along two unlimited dimensions by assigning to slice.
&gt;&gt;&gt; nlats = len(rootgrp.dimensions[&quot;lat&quot;])
&gt;&gt;&gt; nlons = len(rootgrp.dimensions[&quot;lon&quot;])
&gt;&gt;&gt; print(&quot;temp shape before adding data = {}&quot;.format(temp.shape))
temp shape before adding data = (0, 0, 73, 144)
&gt;&gt;&gt;
&gt;&gt;&gt; from numpy.random import uniform
&gt;&gt;&gt; temp[0:5, 0:10, :, :] = uniform(size=(5, 10, nlats, nlons))
&gt;&gt;&gt; print(&quot;temp shape after adding data = {}&quot;.format(temp.shape))
temp shape after adding data = (5, 10, 73, 144)
&gt;&gt;&gt;
&gt;&gt;&gt; # levels have grown, but no values yet assigned.
&gt;&gt;&gt; print(&quot;levels shape after adding pressure data = {}&quot;.format(levels.shape))
levels shape after adding pressure data = (10,)
</code></pre>
<p>Note that the size of the levels variable grows when data is appended
along the <code>level</code> dimension of the variable <code>temp</code>, even though no
data has yet been assigned to levels.</p>
<pre><code class="language-python">&gt;&gt;&gt; # now, assign data to levels dimension variable.
&gt;&gt;&gt; levels[:] =  [1000.,850.,700.,500.,300.,250.,200.,150.,100.,50.]
</code></pre>
<p>However, that there are some differences between NumPy and netCDF
variable slicing rules. Slices behave as usual, being specified as a
<code>start:stop:step</code> triplet. Using a scalar integer index <code>i</code> takes the ith
element and reduces the rank of the output array by one. Boolean array and
integer sequence indexing behaves differently for netCDF variables
than for numpy arrays.
Only 1-d boolean arrays and integer sequences are
allowed, and these indices work independently along each dimension (similar
to the way vector subscripts work in fortran).
This means that</p>
<pre><code class="language-python">&gt;&gt;&gt; temp[0, 0, [0,1,2,3], [0,1,2,3]].shape
(4, 4)
</code></pre>
<p>returns an array of shape (4,4) when slicing a netCDF variable, but for a
numpy array it returns an array of shape (4,).
Similarly, a netCDF variable of shape <code>(2,3,4,5)</code> indexed
with <code>[0, array([True, False, True]), array([False, True, True, True]), :]</code>
would return a <code>(2, 3, 5)</code> array. In NumPy, this would raise an error since
it would be equivalent to <code>[0, [0,1], [1,2,3], :]</code>. When slicing with integer
sequences, the indices <strong><em>need not be sorted</em></strong> and <strong><em>may contain
duplicates</em></strong> (both of these are new features in version 1.2.1).
While this behaviour may cause some confusion for those used to NumPy's 'fancy indexing' rules,
it provides a very powerful way to extract data from multidimensional netCDF
variables by using logical operations on the dimension arrays to create slices.</p>
<p>For example,</p>
<pre><code class="language-python">&gt;&gt;&gt; tempdat = temp[::2, [1,3,6], lats&gt;0, lons&gt;0]
</code></pre>
<p>will extract time indices 0,2 and 4, pressure levels
850, 500 and 200 hPa, all Northern Hemisphere latitudes and Eastern
Hemisphere longitudes, resulting in a numpy array of shape
(3, 3, 36, 71).</p>
<pre><code class="language-python">&gt;&gt;&gt; print(&quot;shape of fancy temp slice = {}&quot;.format(tempdat.shape))
shape of fancy temp slice = (3, 3, 36, 71)
</code></pre>
<p><strong><em>Special note for scalar variables</em></strong>: To extract data from a scalar variable
<code>v</code> with no associated dimensions, use <code>numpy.asarray(v)</code> or <code>v[&hellip;]</code>.
The result will be a numpy scalar array.</p>
<p>By default, netcdf4-python returns numpy masked arrays with values equal to the
<code>missing_value</code> or <code>_FillValue</code> variable attributes masked for primitive and
enum data types.
The <code><a title="netCDF4.Dataset.set_auto_mask" href="#netCDF4.Dataset.set_auto_mask">Dataset.set_auto_mask()</a></code> <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> and <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> methods
can be used to disable this feature so that
numpy arrays are always returned, with the missing values included. Prior to
version 1.4.0 the default behavior was to only return masked arrays when the
requested slice contained missing values.
This behavior can be recovered
using the <code><a title="netCDF4.Dataset.set_always_mask" href="#netCDF4.Dataset.set_always_mask">Dataset.set_always_mask()</a></code> method. If a masked array is
written to a netCDF variable, the masked elements are filled with the
value specified by the <code>missing_value</code> attribute.
If the variable has
no <code>missing_value</code>, the <code>_FillValue</code> is used instead.</p>
<h2 id="dealing-with-time-coordinates">Dealing with time coordinates</h2>
<p>Time coordinate values pose a special challenge to netCDF users.
Most
metadata standards (such as CF) specify that time should be
measure relative to a fixed date using a certain calendar, with units
specified like <code>hours since YY-MM-DD hh:mm:ss</code>.
These units can be
awkward to deal with, without a utility to convert the values to and
from calendar dates.
The functions <a href="https://unidata.github.io/cftime/api.html">num2date</a>
and <a href="https://unidata.github.io/cftime/api.html">date2num</a> are
provided by <a href="https://unidata.github.io/cftime">cftime</a> to do just that.
Here's an example of how they can be used:</p>
<pre><code class="language-python">&gt;&gt;&gt; # fill in times.
&gt;&gt;&gt; from datetime import datetime, timedelta
&gt;&gt;&gt; from cftime import num2date, date2num
&gt;&gt;&gt; dates = [datetime(2001,3,1)+n*timedelta(hours=12) for n in range(temp.shape[0])]
&gt;&gt;&gt; times[:] = date2num(dates,units=times.units,calendar=times.calendar)
&gt;&gt;&gt; print(&quot;time values (in units {}):\n{}&quot;.format(times.units, times[:]))
time values (in units hours since 0001-01-01 00:00:00.0):
[17533104. 17533116. 17533128. 17533140. 17533152.]
&gt;&gt;&gt; dates = num2date(times[:],units=times.units,calendar=times.calendar)
&gt;&gt;&gt; print(&quot;dates corresponding to time values:\n{}&quot;.format(dates))
 [cftime.DatetimeGregorian(2001, 3, 1, 0, 0, 0, 0, has_year_zero=False)
  cftime.DatetimeGregorian(2001, 3, 1, 12, 0, 0, 0, has_year_zero=False)
  cftime.DatetimeGregorian(2001, 3, 2, 0, 0, 0, 0, has_year_zero=False)
  cftime.DatetimeGregorian(2001, 3, 2, 12, 0, 0, 0, has_year_zero=False)
  cftime.DatetimeGregorian(2001, 3, 3, 0, 0, 0, 0, has_year_zero=False)]
</code></pre>
<p><code><a title="netCDF4.num2date" href="#netCDF4.num2date">num2date()</a></code> converts numeric values of time in the specified <code>units</code>
and <code>calendar</code> to datetime objects, and <code><a title="netCDF4.date2num" href="#netCDF4.date2num">date2num()</a></code> does the reverse.
All the calendars currently defined in the
<a href="http://cfconventions.org">CF metadata convention</a> are supported.
A function called <code><a title="netCDF4.date2index" href="#netCDF4.date2index">date2index()</a></code> is also provided which returns the indices
of a netCDF time variable corresponding to a sequence of datetime instances.</p>
<h2 id="reading-data-from-a-multi-file-netcdf-dataset">Reading data from a multi-file netCDF dataset</h2>
<p>If you want to read data from a variable that spans multiple netCDF files,
you can use the <code><a title="netCDF4.MFDataset" href="#netCDF4.MFDataset">MFDataset</a></code> class to read the data as if it were
contained in a single file. Instead of using a single filename to create
a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> instance, create a <code><a title="netCDF4.MFDataset" href="#netCDF4.MFDataset">MFDataset</a></code> instance with either a list
of filenames, or a string with a wildcard (which is then converted to
a sorted list of files using the python glob module).
Variables in the list of files that share the same unlimited
dimension are aggregated together, and can be sliced across multiple
files.
To illustrate this, let's first create a bunch of netCDF files with
the same variable (with the same unlimited dimension).
The files
must in be in <code>NETCDF3_64BIT_OFFSET</code>, <code>NETCDF3_64BIT_DATA</code>, <code>NETCDF3_CLASSIC</code> or
<code>NETCDF4_CLASSIC</code> format (<code>NETCDF4</code> formatted multi-file
datasets are not supported).</p>
<pre><code class="language-python">&gt;&gt;&gt; for nf in range(10):
...     with Dataset(&quot;mftest%s.nc&quot; % nf, &quot;w&quot;, format=&quot;NETCDF4_CLASSIC&quot;) as f:
...         _ = f.createDimension(&quot;x&quot;,None)
...         x = f.createVariable(&quot;x&quot;,&quot;i&quot;,(&quot;x&quot;,))
...         x[0:10] = np.arange(nf*10,10*(nf+1))
</code></pre>
<p>Now read all the files back in at once with <code><a title="netCDF4.MFDataset" href="#netCDF4.MFDataset">MFDataset</a></code></p>
<pre><code class="language-python">&gt;&gt;&gt; from netCDF4 import MFDataset
&gt;&gt;&gt; f = MFDataset(&quot;mftest*nc&quot;)
&gt;&gt;&gt; print(f.variables[&quot;x&quot;][:])
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
 96 97 98 99]
</code></pre>
<p>Note that <code><a title="netCDF4.MFDataset" href="#netCDF4.MFDataset">MFDataset</a></code> can only be used to read, not write, multi-file
datasets.</p>
<h2 id="efficient-compression-of-netcdf-variables">Efficient compression of netCDF variables</h2>
<p>Data stored in netCDF <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> objects can be compressed and
decompressed on the fly. The compression algorithm used is determined
by the <code>compression</code> keyword argument to the <code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code> method.
<code>zlib</code> compression is always available, <code>szip</code> is available if the linked HDF5
library supports it, and <code>zstd</code>, <code>bzip2</code>, <code>blosc_lz</code>,<code>blosc_lz4</code>,<code>blosc_lz4hc</code>,
<code>blosc_zlib</code> and <code>blosc_zstd</code> are available via optional external plugins.
The <code>complevel</code> keyword regulates the
speed and efficiency of the compression for <code>zlib</code>, <code>bzip</code> and <code>zstd</code> (1 being fastest, but lowest
compression ratio, 9 being slowest but best compression ratio). The
default value of <code>complevel</code> is 4. Setting <code>shuffle=False</code> will turn
off the HDF5 shuffle filter, which de-interlaces a block of data before
<code>zlib</code> compression by reordering the bytes.
The shuffle filter can
significantly improve compression ratios, and is on by default if <code>compression=zlib</code>.
Setting
<code>fletcher32</code> keyword argument to
<code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code> to <code>True</code> (it's <code>False</code> by
default) enables the Fletcher32 checksum algorithm for error detection.
It's also possible to set the HDF5 chunking parameters and endian-ness
of the binary data stored in the HDF5 file with the <code>chunksizes</code>
and <code>endian</code> keyword arguments to
<code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code>.
These keyword arguments only
are relevant for <code>NETCDF4</code> and <code>NETCDF4_CLASSIC</code> files (where the
underlying file format is HDF5) and are silently ignored if the file
format is <code>NETCDF3_CLASSIC</code>, <code>NETCDF3_64BIT_OFFSET</code> or <code>NETCDF3_64BIT_DATA</code>.
If the HDF5 library is built with szip support, compression=<code>szip</code> can also
be used (in conjunction with the <code>szip_coding</code> and <code>szip_pixels_per_block</code> keyword
arguments).</p>
<p>If your data only has a certain number of digits of precision (say for
example, it is temperature data that was measured with a precision of
0.1 degrees), you can dramatically improve compression by
quantizing (or truncating) the data. There are two methods supplied for
doing this.
You can use the <code>least_significant_digit</code>
keyword argument to <code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code> to specify
the power of ten of the smallest decimal place in
the data that is a reliable value. For example if the data has a
precision of 0.1, then setting <code>least_significant_digit=1</code> will cause
data the data to be quantized using <code>numpy.around(scale*data)/scale</code>, where
scale = 2**bits, and bits is determined so that a precision of 0.1 is
retained (in this case bits=4).
This is done at the python level and is
not a part of the underlying C library.
Starting with netcdf-c version 4.9.0,
a quantization capability is provided in the library.
This can be
used via the <code>significant_digits</code> <code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code> kwarg (new in
version 1.6.0).
The interpretation of <code>significant_digits</code> is different than <code>least_signficant_digit</code>
in that it specifies the absolute number of significant digits independent
of the magnitude of the variable (the floating point exponent).
Either of these approaches makes the compression
'lossy' instead of 'lossless', that is some precision in the data is
sacrificed for the sake of disk space.</p>
<p>In our example, try replacing the line</p>
<pre><code class="language-python">&gt;&gt;&gt; temp = rootgrp.createVariable(&quot;temp&quot;,&quot;f4&quot;,(&quot;time&quot;,&quot;level&quot;,&quot;lat&quot;,&quot;lon&quot;,))
</code></pre>
<p>with</p>
<pre><code class="language-python">&gt;&gt;&gt; temp = rootgrp.createVariable(&quot;temp&quot;,&quot;f4&quot;,(&quot;time&quot;,&quot;level&quot;,&quot;lat&quot;,&quot;lon&quot;,),compression='zlib')
</code></pre>
<p>and then</p>
<pre><code class="language-python">&gt;&gt;&gt; temp = rootgrp.createVariable(&quot;temp&quot;,&quot;f4&quot;,(&quot;time&quot;,&quot;level&quot;,&quot;lat&quot;,&quot;lon&quot;,),compression='zlib',least_significant_digit=3)
</code></pre>
<p>or with netcdf-c &gt;= 4.9.0</p>
<pre><code class="language-python">&gt;&gt;&gt; temp = rootgrp.createVariable(&quot;temp&quot;,&quot;f4&quot;,(&quot;time&quot;,&quot;level&quot;,&quot;lat&quot;,&quot;lon&quot;,),compression='zlib',significant_digits=4)
</code></pre>
<p>and see how much smaller the resulting files are.</p>
<h2 id="beyond-homogeneous-arrays-of-a-fixed-type-compound-data-types">Beyond homogeneous arrays of a fixed type - compound data types</h2>
<p>Compound data types map directly to numpy structured (a.k.a 'record')
arrays.
Structured arrays are akin to C structs, or derived types
in Fortran. They allow for the construction of table-like structures
composed of combinations of other data types, including other
compound types. Compound types might be useful for representing multiple
parameter values at each point on a grid, or at each time and space
location for scattered (point) data. You can then access all the
information for a point by reading one variable, instead of reading
different parameters from different variables.
Compound data types
are created from the corresponding numpy data type using the
<code><a title="netCDF4.Dataset.createCompoundType" href="#netCDF4.Dataset.createCompoundType">Dataset.createCompoundType()</a></code> method of a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance.
Since there is no native complex data type in netcdf (but see
<a href="#support-for-complex-numbers">Support for complex numbers</a>), compound
types are handy for storing numpy complex arrays. Here's an example:</p>
<pre><code class="language-python">&gt;&gt;&gt; f = Dataset(&quot;complex.nc&quot;,&quot;w&quot;)
&gt;&gt;&gt; size = 3 # length of 1-d complex array
&gt;&gt;&gt; # create sample complex data.
&gt;&gt;&gt; datac = np.exp(1j*(1.+np.linspace(0, np.pi, size)))
&gt;&gt;&gt; # create complex128 compound data type.
&gt;&gt;&gt; complex128 = np.dtype([(&quot;real&quot;,np.float64),(&quot;imag&quot;,np.float64)])
&gt;&gt;&gt; complex128_t = f.createCompoundType(complex128,&quot;complex128&quot;)
&gt;&gt;&gt; # create a variable with this data type, write some data to it.
&gt;&gt;&gt; x_dim = f.createDimension(&quot;x_dim&quot;,None)
&gt;&gt;&gt; v = f.createVariable(&quot;cmplx_var&quot;,complex128_t,&quot;x_dim&quot;)
&gt;&gt;&gt; data = np.empty(size,complex128) # numpy structured array
&gt;&gt;&gt; data[&quot;real&quot;] = datac.real; data[&quot;imag&quot;] = datac.imag
&gt;&gt;&gt; v[:] = data # write numpy structured array to netcdf compound var
&gt;&gt;&gt; # close and reopen the file, check the contents.
&gt;&gt;&gt; f.close(); f = Dataset(&quot;complex.nc&quot;)
&gt;&gt;&gt; v = f.variables[&quot;cmplx_var&quot;]
&gt;&gt;&gt; datain = v[:] # read in all the data into a numpy structured array
&gt;&gt;&gt; # create an empty numpy complex array
&gt;&gt;&gt; datac2 = np.empty(datain.shape,np.complex128)
&gt;&gt;&gt; # .. fill it with contents of structured array.
&gt;&gt;&gt; datac2.real = datain[&quot;real&quot;]; datac2.imag = datain[&quot;imag&quot;]
&gt;&gt;&gt; print('{}: {}'.format(datac.dtype, datac)) # original data
complex128: [ 0.54030231+0.84147098j -0.84147098+0.54030231j -0.54030231-0.84147098j]
&gt;&gt;&gt;
&gt;&gt;&gt; print('{}: {}'.format(datac2.dtype, datac2)) # data from file
complex128: [ 0.54030231+0.84147098j -0.84147098+0.54030231j -0.54030231-0.84147098j]
</code></pre>
<p>Compound types can be nested, but you must create the 'inner'
ones first. All possible numpy structured arrays cannot be
represented as Compound variables - an error message will be
raise if you try to create one that is not supported.
All of the compound types defined for a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> are stored
in a Python dictionary, just like variables and dimensions. As always, printing
objects gives useful summary information in an interactive session:</p>
<pre><code class="language-python">&gt;&gt;&gt; print(f)
&lt;class 'netCDF4._netCDF4.Dataset'&gt;
root group (NETCDF4 data model, file format HDF5):
    dimensions(sizes): x_dim(3)
    variables(dimensions): {'names':['real','imag'], 'formats':['&lt;f8','&lt;f8'], 'offsets':[0,8], 'itemsize':16, 'aligned':True} cmplx_var(x_dim)
    groups:
&gt;&gt;&gt; print(f.variables[&quot;cmplx_var&quot;])
&lt;class 'netCDF4._netCDF4.Variable'&gt;
compound cmplx_var(x_dim)
compound data type: {'names':['real','imag'], 'formats':['&lt;f8','&lt;f8'], 'offsets':[0,8], 'itemsize':16, 'aligned':True}
unlimited dimensions: x_dim
current shape = (3,)
&gt;&gt;&gt; print(f.cmptypes)
{'complex128': &lt;class 'netCDF4._netCDF4.CompoundType'&gt;: name = 'complex128', numpy dtype = {'names':['real','imag'], 'formats':['&lt;f8','&lt;f8'], 'offsets':[0,8], 'itemsize':16, 'aligned':True}}
&gt;&gt;&gt; print(f.cmptypes[&quot;complex128&quot;])
&lt;class 'netCDF4._netCDF4.CompoundType'&gt;: name = 'complex128', numpy dtype = {'names':['real','imag'], 'formats':['&lt;f8','&lt;f8'], 'offsets':[0,8], 'itemsize':16, 'aligned':True}
</code></pre>
<h2 id="variable-length-vlen-data-types">Variable-length (vlen) data types</h2>
<p>NetCDF 4 has support for variable-length or "ragged" arrays.
These are arrays
of variable length sequences having the same type. To create a variable-length
data type, use the <code><a title="netCDF4.Dataset.createVLType" href="#netCDF4.Dataset.createVLType">Dataset.createVLType()</a></code> method
method of a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance.</p>
<pre><code class="language-python">&gt;&gt;&gt; f = Dataset(&quot;tst_vlen.nc&quot;,&quot;w&quot;)
&gt;&gt;&gt; vlen_t = f.createVLType(np.int32, &quot;phony_vlen&quot;)
</code></pre>
<p>The numpy datatype of the variable-length sequences and the name of the
new datatype must be specified. Any of the primitive datatypes can be
used (signed and unsigned integers, 32 and 64 bit floats, and characters),
but compound data types cannot.
A new variable can then be created using this datatype.</p>
<pre><code class="language-python">&gt;&gt;&gt; x = f.createDimension(&quot;x&quot;,3)
&gt;&gt;&gt; y = f.createDimension(&quot;y&quot;,4)
&gt;&gt;&gt; vlvar = f.createVariable(&quot;phony_vlen_var&quot;, vlen_t, (&quot;y&quot;,&quot;x&quot;))
</code></pre>
<p>Since there is no native vlen datatype in numpy, vlen arrays are represented
in python as object arrays (arrays of dtype <code>object</code>). These are arrays whose
elements are Python object pointers, and can contain any type of python object.
For this application, they must contain 1-D numpy arrays all of the same type
but of varying length.
In this case, they contain 1-D numpy <code>int32</code> arrays of random length between
1 and 10.</p>
<pre><code class="language-python">&gt;&gt;&gt; import random
&gt;&gt;&gt; random.seed(54321)
&gt;&gt;&gt; data = np.empty(len(y)*len(x),object)
&gt;&gt;&gt; for n in range(len(y)*len(x)):
...     data[n] = np.arange(random.randint(1,10),dtype=&quot;int32&quot;)+1
&gt;&gt;&gt; data = np.reshape(data,(len(y),len(x)))
&gt;&gt;&gt; vlvar[:] = data
&gt;&gt;&gt; print(&quot;vlen variable =\n{}&quot;.format(vlvar[:]))
vlen variable =
[[array([1, 2, 3, 4, 5, 6, 7, 8], dtype=int32) array([1, 2], dtype=int32)
  array([1, 2, 3, 4], dtype=int32)]
 [array([1, 2, 3], dtype=int32)
  array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int32)
  array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int32)]
 [array([1, 2, 3, 4, 5, 6, 7], dtype=int32) array([1, 2, 3], dtype=int32)
  array([1, 2, 3, 4, 5, 6], dtype=int32)]
 [array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int32)
  array([1, 2, 3, 4, 5], dtype=int32) array([1, 2], dtype=int32)]]
&gt;&gt;&gt; print(f)
&lt;class 'netCDF4._netCDF4.Dataset'&gt;
root group (NETCDF4 data model, file format HDF5):
    dimensions(sizes): x(3), y(4)
    variables(dimensions): int32 phony_vlen_var(y,x)
    groups:
&gt;&gt;&gt; print(f.variables[&quot;phony_vlen_var&quot;])
&lt;class 'netCDF4._netCDF4.Variable'&gt;
vlen phony_vlen_var(y, x)
vlen data type: int32
unlimited dimensions:
current shape = (4, 3)
&gt;&gt;&gt; print(f.vltypes[&quot;phony_vlen&quot;])
&lt;class 'netCDF4._netCDF4.VLType'&gt;: name = 'phony_vlen', numpy dtype = int32
</code></pre>
<p>Numpy object arrays containing python strings can also be written as vlen
variables,
For vlen strings, you don't need to create a vlen data type.
Instead, simply use the python <code>str</code> builtin (or a numpy string datatype
with fixed length greater than 1) when calling the
<code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code> method.</p>
<pre><code class="language-python">&gt;&gt;&gt; z = f.createDimension(&quot;z&quot;,10)
&gt;&gt;&gt; strvar = f.createVariable(&quot;strvar&quot;, str, &quot;z&quot;)
</code></pre>
<p>In this example, an object array is filled with random python strings with
random lengths between 2 and 12 characters, and the data in the object
array is assigned to the vlen string variable.</p>
<pre><code class="language-python">&gt;&gt;&gt; chars = &quot;1234567890aabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ&quot;
&gt;&gt;&gt; data = np.empty(10,&quot;O&quot;)
&gt;&gt;&gt; for n in range(10):
...     stringlen = random.randint(2,12)
...     data[n] = &quot;&quot;.join([random.choice(chars) for i in range(stringlen)])
&gt;&gt;&gt; strvar[:] = data
&gt;&gt;&gt; print(&quot;variable-length string variable:\n{}&quot;.format(strvar[:]))
variable-length string variable:
['Lh' '25F8wBbMI' '53rmM' 'vvjnb3t63ao' 'qjRBQk6w' 'aJh' 'QF'
 'jtIJbJACaQk4' '3Z5' 'bftIIq']
&gt;&gt;&gt; print(f)
&lt;class 'netCDF4._netCDF4.Dataset'&gt;
root group (NETCDF4 data model, file format HDF5):
    dimensions(sizes): x(3), y(4), z(10)
    variables(dimensions): int32 phony_vlen_var(y,x), &lt;class 'str'&gt; strvar(z)
    groups:
&gt;&gt;&gt; print(f.variables[&quot;strvar&quot;])
&lt;class 'netCDF4._netCDF4.Variable'&gt;
vlen strvar(z)
vlen data type: &lt;class 'str'&gt;
unlimited dimensions:
current shape = (10,)
</code></pre>
<p>It is also possible to set contents of vlen string variables with numpy arrays
of any string or unicode data type. Note, however, that accessing the contents
of such variables will always return numpy arrays with dtype <code>object</code>.</p>
<h2 id="enum-data-type">Enum data type</h2>
<p>netCDF4 has an enumerated data type, which is an integer datatype that is
restricted to certain named values. Since Enums don't map directly to
a numpy data type, they are read and written as integer arrays.</p>
<p>Here's an example of using an Enum type to hold cloud type data.
The base integer data type and a python dictionary describing the allowed
values and their names are used to define an Enum data type using
<code><a title="netCDF4.Dataset.createEnumType" href="#netCDF4.Dataset.createEnumType">Dataset.createEnumType()</a></code>.</p>
<pre><code class="language-python">&gt;&gt;&gt; nc = Dataset('clouds.nc','w')
&gt;&gt;&gt; # python dict with allowed values and their names.
&gt;&gt;&gt; enum_dict = {'Altocumulus': 7, 'Missing': 255,
... 'Stratus': 2, 'Clear': 0,
... 'Nimbostratus': 6, 'Cumulus': 4, 'Altostratus': 5,
... 'Cumulonimbus': 1, 'Stratocumulus': 3}
&gt;&gt;&gt; # create the Enum type called 'cloud_t'.
&gt;&gt;&gt; cloud_type = nc.createEnumType(np.uint8,'cloud_t',enum_dict)
&gt;&gt;&gt; print(cloud_type)
&lt;class 'netCDF4._netCDF4.EnumType'&gt;: name = 'cloud_t', numpy dtype = uint8, fields/values ={'Altocumulus': 7, 'Missing': 255, 'Stratus': 2, 'Clear': 0, 'Nimbostratus': 6, 'Cumulus': 4, 'Altostratus': 5, 'Cumulonimbus': 1, 'Stratocumulus': 3}
</code></pre>
<p>A new variable can be created in the usual way using this data type.
Integer data is written to the variable that represents the named
cloud types in enum_dict. A <code>ValueError</code> will be raised if an attempt
is made to write an integer value not associated with one of the
specified names.</p>
<pre><code class="language-python">&gt;&gt;&gt; time = nc.createDimension('time',None)
&gt;&gt;&gt; # create a 1d variable of type 'cloud_type'.
&gt;&gt;&gt; # The fill_value is set to the 'Missing' named value.
&gt;&gt;&gt; cloud_var = nc.createVariable('primary_cloud',cloud_type,'time',
...                               fill_value=enum_dict['Missing'])
&gt;&gt;&gt; # write some data to the variable.
&gt;&gt;&gt; cloud_var[:] = [enum_dict[k] for k in ['Clear', 'Stratus', 'Cumulus',
...                                        'Missing', 'Cumulonimbus']]
&gt;&gt;&gt; nc.close()
&gt;&gt;&gt; # reopen the file, read the data.
&gt;&gt;&gt; nc = Dataset('clouds.nc')
&gt;&gt;&gt; cloud_var = nc.variables['primary_cloud']
&gt;&gt;&gt; print(cloud_var)
&lt;class 'netCDF4._netCDF4.Variable'&gt;
enum primary_cloud(time)
    _FillValue: 255
enum data type: uint8
unlimited dimensions: time
current shape = (5,)
&gt;&gt;&gt; print(cloud_var.datatype.enum_dict)
{'Altocumulus': 7, 'Missing': 255, 'Stratus': 2, 'Clear': 0, 'Nimbostratus': 6, 'Cumulus': 4, 'Altostratus': 5, 'Cumulonimbus': 1, 'Stratocumulus': 3}
&gt;&gt;&gt; print(cloud_var[:])
[0 2 4 -- 1]
&gt;&gt;&gt; nc.close()
</code></pre>
<h2 id="parallel-io">Parallel IO</h2>
<p>If MPI parallel enabled versions of netcdf and hdf5 or pnetcdf are detected,
and <a href="https://mpi4py.scipy.org">mpi4py</a> is installed, netcdf4-python will
be built with parallel IO capabilities enabled. Parallel IO of NETCDF4 or
NETCDF4_CLASSIC formatted files is only available if the MPI parallel HDF5
library is available. Parallel IO of classic netcdf-3 file formats is only
available if the <a href="https://parallel-netcdf.github.io/">PnetCDF</a> library is
available. To use parallel IO, your program must be running in an MPI
environment using <a href="https://mpi4py.scipy.org">mpi4py</a>.</p>
<pre><code class="language-python">&gt;&gt;&gt; from mpi4py import MPI
&gt;&gt;&gt; import numpy as np
&gt;&gt;&gt; from netCDF4 import Dataset
&gt;&gt;&gt; rank = MPI.COMM_WORLD.rank  # The process ID (integer 0-3 for 4-process run)
</code></pre>
<p>To run an MPI-based parallel program like this, you must use <code>mpiexec</code> to launch several
parallel instances of Python (for example, using <code>mpiexec -np 4 python mpi_example.py</code>).
The parallel features of netcdf4-python are mostly transparent -
when a new dataset is created or an existing dataset is opened,
use the <code>parallel</code> keyword to enable parallel access.</p>
<pre><code class="language-python">&gt;&gt;&gt; nc = Dataset('parallel_test.nc','w',parallel=True)
</code></pre>
<p>The optional <code>comm</code> keyword may be used to specify a particular
MPI communicator (<code>MPI_COMM_WORLD</code> is used by default).
Each process (or rank)
can now write to the file independently.
In this example the process rank is
written to a different variable index on each task</p>
<pre><code class="language-python">&gt;&gt;&gt; d = nc.createDimension('dim',4)
&gt;&gt;&gt; v = nc.createVariable('var', np.int64, 'dim')
&gt;&gt;&gt; v[rank] = rank
&gt;&gt;&gt; nc.close()

% ncdump parallel_test.nc
netcdf parallel_test {
dimensions:
    dim = 4 ;
variables:
    int64 var(dim) ;
data:

    var = 0, 1, 2, 3 ;
}
</code></pre>
<p>There are two types of parallel IO, independent (the default) and collective.
Independent IO means that each process can do IO independently. It should not
depend on or be affected by other processes. Collective IO is a way of doing
IO defined in the MPI-IO standard; unlike independent IO, all processes must
participate in doing IO. To toggle back and forth between
the two types of IO, use the <code><a title="netCDF4.Variable.set_collective" href="#netCDF4.Variable.set_collective">Variable.set_collective()</a></code>
<code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> method. All metadata
operations (such as creation of groups, types, variables, dimensions, or attributes)
are collective.
There are a couple of important limitations of parallel IO:</p>
<ul>
<li>parallel IO for NETCDF4 or NETCDF4_CLASSIC formatted files is only available
if the netcdf library was compiled with MPI enabled HDF5.</li>
<li>parallel IO for all classic netcdf-3 file formats is only available if the
netcdf library was compiled with <a href="https://parallel-netcdf.github.io">PnetCDF</a>.</li>
<li>If a variable has an unlimited dimension, appending data must be done in collective mode.
If the write is done in independent mode, the operation will fail with a
a generic "HDF Error".</li>
<li>You can write compressed data in parallel only with netcdf-c &gt;= 4.7.4
and hdf5 &gt;= 1.10.3 (although you can read in parallel with earlier versions). To write
compressed data in parallel, the variable must be in 'collective IO mode'.
This is done
automatically on variable creation if compression is turned on, but if you are appending
to a variable in an existing file, you must use <code><a title="netCDF4.Variable.set_collective" href="#netCDF4.Variable.set_collective">Variable.set_collective()</a>(True)</code> before attempting
to write to it.</li>
<li>You cannot use variable-length (VLEN) data types.</li>
</ul>
<h2 id="dealing-with-strings">Dealing with strings</h2>
<p>The most flexible way to store arrays of strings is with the
<a href="#variable-length-vlen-data-type">Variable-length (vlen) string data type</a>. However, this requires
the use of the NETCDF4 data model, and the vlen type does not map very well
numpy arrays (you have to use numpy arrays of dtype=<code>object</code>, which are arrays of
arbitrary python objects). numpy does have a fixed-width string array
data type, but unfortunately the netCDF data model does not.
Instead fixed-width byte strings are typically stored as <a href="https://www.unidata.ucar.edu/software/netcdf/docs/BestPractices.html#bp_Strings-and-Variables-of-type-char">arrays of 8-bit
characters</a>.
To perform the conversion to and from character arrays to fixed-width numpy string arrays, the
following convention is followed by the python interface.
If the <code>_Encoding</code> special attribute is set for a character array
(dtype <code>S1</code>) variable, the <code><a title="netCDF4.chartostring" href="#netCDF4.chartostring">chartostring()</a></code> utility function is used to convert the array of
characters to an array of strings with one less dimension (the last dimension is
interpreted as the length of each string) when reading the data. The character
set (usually ascii) is specified by the <code>_Encoding</code> attribute. If <code>_Encoding</code>
is 'none' or 'bytes', then the character array is converted to a numpy
fixed-width byte string array (dtype <code>S#</code>), otherwise a numpy unicode (dtype
<code>U#</code>) array is created.
When writing the data,
<code><a title="netCDF4.stringtochar" href="#netCDF4.stringtochar">stringtochar()</a></code> is used to convert the numpy string array to an array of
characters with one more dimension. For example,</p>
<pre><code class="language-python">&gt;&gt;&gt; from netCDF4 import stringtochar
&gt;&gt;&gt; nc = Dataset('stringtest.nc','w',format='NETCDF4_CLASSIC')
&gt;&gt;&gt; _ = nc.createDimension('nchars',3)
&gt;&gt;&gt; _ = nc.createDimension('nstrings',None)
&gt;&gt;&gt; v = nc.createVariable('strings','S1',('nstrings','nchars'))
&gt;&gt;&gt; datain = np.array(['foo','bar'],dtype='S3')
&gt;&gt;&gt; v[:] = stringtochar(datain) # manual conversion to char array
&gt;&gt;&gt; print(v[:]) # data returned as char array
[[b'f' b'o' b'o']
 [b'b' b'a' b'r']]
&gt;&gt;&gt; v._Encoding = 'ascii' # this enables automatic conversion
&gt;&gt;&gt; v[:] = datain # conversion to char array done internally
&gt;&gt;&gt; print(v[:])  # data returned in numpy string array
['foo' 'bar']
&gt;&gt;&gt; nc.close()
</code></pre>
<p>Even if the <code>_Encoding</code> attribute is set, the automatic conversion of char
arrays to/from string arrays can be disabled with
<code><a title="netCDF4.Variable.set_auto_chartostring" href="#netCDF4.Variable.set_auto_chartostring">Variable.set_auto_chartostring()</a></code>.</p>
<p>A similar situation is often encountered with numpy structured arrays with subdtypes
containing fixed-wdith byte strings (dtype=<code>S#</code>). Since there is no native fixed-length string
netCDF datatype, these numpy structure arrays are mapped onto netCDF compound
types with character array elements.
In this case the string &lt;-&gt; char array
conversion is handled automatically (without the need to set the <code>_Encoding</code>
attribute) using <a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.view.html">numpy
views</a>.
The structured array dtype (including the string elements) can even be used to
define the compound data type - the string dtype will be converted to
character array dtype under the hood when creating the netcdf compound type.
Here's an example:</p>
<pre><code class="language-python">&gt;&gt;&gt; nc = Dataset('compoundstring_example.nc','w')
&gt;&gt;&gt; dtype = np.dtype([('observation', 'f4'),
...                      ('station_name','S10')])
&gt;&gt;&gt; station_data_t = nc.createCompoundType(dtype,'station_data')
&gt;&gt;&gt; _ = nc.createDimension('station',None)
&gt;&gt;&gt; statdat = nc.createVariable('station_obs', station_data_t, ('station',))
&gt;&gt;&gt; data = np.empty(2,dtype)
&gt;&gt;&gt; data['observation'][:] = (123.,3.14)
&gt;&gt;&gt; data['station_name'][:] = ('Boulder','New York')
&gt;&gt;&gt; print(statdat.dtype) # strings actually stored as character arrays
{'names':['observation','station_name'], 'formats':['&lt;f4',('S1', (10,))], 'offsets':[0,4], 'itemsize':16, 'aligned':True}
&gt;&gt;&gt; statdat[:] = data # strings converted to character arrays internally
&gt;&gt;&gt; print(statdat[:])  # character arrays converted back to strings
[(123.  , b'Boulder') (  3.14, b'New York')]
&gt;&gt;&gt; print(statdat[:].dtype)
{'names':['observation','station_name'], 'formats':['&lt;f4','S10'], 'offsets':[0,4], 'itemsize':16, 'aligned':True}
&gt;&gt;&gt; statdat.set_auto_chartostring(False) # turn off auto-conversion
&gt;&gt;&gt; statdat[:] = data.view(dtype=[('observation', 'f4'),('station_name','S1',10)])
&gt;&gt;&gt; print(statdat[:])  # now structured array with char array subtype is returned
[(123.  , [b'B', b'o', b'u', b'l', b'd', b'e', b'r', b'', b'', b''])
 (  3.14, [b'N', b'e', b'w', b' ', b'Y', b'o', b'r', b'k', b'', b''])]
&gt;&gt;&gt; nc.close()
</code></pre>
<p>Note that there is currently no support for mapping numpy structured arrays with
unicode elements (dtype <code>U#</code>) onto netCDF compound types, nor is there support
for netCDF compound types with vlen string components.</p>
<h2 id="in-memory-diskless-datasets">In-memory (diskless) Datasets</h2>
<p>You can create netCDF Datasets whose content is held in memory
instead of in a disk file.
There are two ways to do this.
If you
don't need access to the memory buffer containing the Dataset from
within python, the best way is to use the <code>diskless=True</code> keyword
argument when creating the Dataset.
If you want to save the Dataset
to disk when you close it, also set <code>persist=True</code>.
If you want to
create a new read-only Dataset from an existing python memory buffer, use the
<code>memory</code> keyword argument to pass the memory buffer when creating the Dataset.
If you want to create a new in-memory Dataset, and then access the memory buffer
directly from Python, use the <code>memory</code> keyword argument to specify the
estimated size of the Dataset in bytes when creating the Dataset with
<code>mode='w'</code>.
Then, the <code><a title="netCDF4.Dataset.close" href="#netCDF4.Dataset.close">Dataset.close()</a></code> method will return a python memoryview
object representing the Dataset. Below are examples illustrating both
approaches.</p>
<pre><code class="language-python">&gt;&gt;&gt; # create a diskless (in-memory) Dataset,
&gt;&gt;&gt; # and persist the file to disk when it is closed.
&gt;&gt;&gt; nc = Dataset('diskless_example.nc','w',diskless=True,persist=True)
&gt;&gt;&gt; d = nc.createDimension('x',None)
&gt;&gt;&gt; v = nc.createVariable('v',np.int32,'x')
&gt;&gt;&gt; v[0:5] = np.arange(5)
&gt;&gt;&gt; print(nc)
&lt;class 'netCDF4._netCDF4.Dataset'&gt;
root group (NETCDF4 data model, file format HDF5):
    dimensions(sizes): x(5)
    variables(dimensions): int32 v(x)
    groups:
&gt;&gt;&gt; print(nc['v'][:])
[0 1 2 3 4]
&gt;&gt;&gt; nc.close() # file saved to disk
&gt;&gt;&gt; # create an in-memory dataset from an existing python
&gt;&gt;&gt; # python memory buffer.
&gt;&gt;&gt; # read the newly created netcdf file into a python
&gt;&gt;&gt; # bytes object.
&gt;&gt;&gt; with open('diskless_example.nc', 'rb') as f:
...     nc_bytes = f.read()
&gt;&gt;&gt; # create a netCDF in-memory dataset from the bytes object.
&gt;&gt;&gt; nc = Dataset('inmemory.nc', memory=nc_bytes)
&gt;&gt;&gt; print(nc)
&lt;class 'netCDF4._netCDF4.Dataset'&gt;
root group (NETCDF4 data model, file format HDF5):
    dimensions(sizes): x(5)
    variables(dimensions): int32 v(x)
    groups:
&gt;&gt;&gt; print(nc['v'][:])
[0 1 2 3 4]
&gt;&gt;&gt; nc.close()
&gt;&gt;&gt; # create an in-memory Dataset and retrieve memory buffer
&gt;&gt;&gt; # estimated size is 1028 bytes - this is actually only
&gt;&gt;&gt; # used if format is NETCDF3
&gt;&gt;&gt; # (ignored for NETCDF4/HDF5 files).
&gt;&gt;&gt; nc = Dataset('inmemory.nc', mode='w',memory=1028)
&gt;&gt;&gt; d = nc.createDimension('x',None)
&gt;&gt;&gt; v = nc.createVariable('v',np.int32,'x')
&gt;&gt;&gt; v[0:5] = np.arange(5)
&gt;&gt;&gt; nc_buf = nc.close() # close returns memoryview
&gt;&gt;&gt; print(type(nc_buf))
&lt;class 'memoryview'&gt;
&gt;&gt;&gt; # save nc_buf to disk, read it back in and check.
&gt;&gt;&gt; with open('inmemory.nc', 'wb') as f:
...     f.write(nc_buf)
&gt;&gt;&gt; nc = Dataset('inmemory.nc')
&gt;&gt;&gt; print(nc)
&lt;class 'netCDF4._netCDF4.Dataset'&gt;
root group (NETCDF4 data model, file format HDF5):
    dimensions(sizes): x(5)
    variables(dimensions): int32 v(x)
    groups:
&gt;&gt;&gt; print(nc['v'][:])
[0 1 2 3 4]
&gt;&gt;&gt; nc.close()
</code></pre>
<h2 id="support-for-complex-numbers">Support for complex numbers</h2>
<p>Although there is no native support for complex numbers in netCDF, there are
some common conventions for storing them. Two of the most common are to either
use a compound datatype for the real and imaginary components, or a separate
dimension. <code><a title="netCDF4" href="#netCDF4">netCDF4</a></code> supports reading several of these conventions, as well as
writing using one of two conventions (depending on file format). This support
for complex numbers is enabled by setting <code>auto_complex=True</code> when opening a
<code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code>:</p>
<pre><code class="language-python">&gt;&gt;&gt; complex_array = np.array([0 + 0j, 1 + 0j, 0 + 1j, 1 + 1j, 0.25 + 0.75j])
&gt;&gt;&gt; with netCDF4.Dataset(&quot;complex.nc&quot;, &quot;w&quot;, auto_complex=True) as nc:
...     nc.createDimension(&quot;x&quot;, size=len(complex_array))
...     var = nc.createVariable(&quot;data&quot;, &quot;c16&quot;, (&quot;x&quot;,))
...     var[:] = complex_array
...     print(var)
&lt;class 'netCDF4._netCDF4.Variable'&gt;
compound data(x)
compound data type: complex128
unlimited dimensions:
current shape = (5,)
</code></pre>
<p>When reading files using <code>auto_complex=True</code>, <code><a title="netCDF4" href="#netCDF4">netCDF4</a></code> will interpret variables
stored using the following conventions as complex numbers:</p>
<ul>
<li>compound datatypes with two <code>float</code> or <code>double</code> members who names begin with
<code>r</code> and <code>i</code> (case insensitive)</li>
<li>a dimension of length 2 named <code>complex</code> or <code>ri</code></li>
</ul>
<p>When writing files using <code>auto_complex=True</code>, <code><a title="netCDF4" href="#netCDF4">netCDF4</a></code> will use:</p>
<ul>
<li>a compound datatype named <code>_PFNC_DOUBLE_COMPLEX_TYPE</code> (or <code>*FLOAT*</code> as
appropriate) with members <code>r</code> and <code>i</code> for netCDF4 formats;</li>
<li>or a dimension of length 2 named <code>_pfnc_complex</code> for netCDF3 or classic
formats.</li>
</ul>
<p>Support for complex numbers is handled via the
<a href="https://github.com/PlasmaFAIR/nc-complex"><code>nc-complex</code></a> library. See there for
further details.</p>
<p><strong>contact</strong>: Jeffrey Whitaker <a href="&#109;&#97;&#105;&#108;&#116;&#111;&#58;&#106;&#101;&#102;&#102;&#114;&#101;&#121;&#46;&#115;&#46;&#119;&#104;&#105;&#116;&#97;&#107;&#101;&#114;&#64;&#110;&#111;&#97;&#97;&#46;&#103;&#111;&#118;">&#106;&#101;&#102;&#102;&#114;&#101;&#121;&#46;&#115;&#46;&#119;&#104;&#105;&#116;&#97;&#107;&#101;&#114;&#64;&#110;&#111;&#97;&#97;&#46;&#103;&#111;&#118;</a></p>
<p><strong>copyright</strong>: 2008 by Jeffrey Whitaker.</p>
<p><strong>license</strong>: Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:</p>
<p>The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.</p>
<p>THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.</p>
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-functions">Functions</h2>
<dl>
<dt id="netCDF4.chartostring"><code class="name flex">
<span>def <span class="ident">chartostring</span></span>(<span>b, encoding='utf-8')</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>chartostring(b,encoding='utf-8')</code></strong></p>
<p>convert a character array to a string array with one less dimension.</p>
<p><strong><code>b</code></strong>:
Input character array (numpy datatype <code>'S1'</code> or <code>'U1'</code>).
Will be converted to a array of strings, where each string has a fixed
length of <code>b.shape[-1]</code> characters.</p>
<p>optional kwarg <code>encoding</code> can be used to specify character encoding (default
<code>utf-8</code>). If <code>encoding</code> is 'none' or 'bytes', a <code>numpy.string_</code> byte array is
returned.</p>
<p>returns a numpy string array with datatype <code>'UN'</code> (or <code>'SN'</code>) and shape
<code>b.shape[:-1]</code> where where <code>N=b.shape[-1]</code>.</p></div>
</dd>
<dt id="netCDF4.date2index"><code class="name flex">
<span>def <span class="ident">date2index</span></span>(<span>dates, nctime, calendar=None, select='exact', has_year_zero=None)</span>
</code></dt>
<dd>
<div class="desc"><p>date2index(dates, nctime, calendar=None, select=u'exact', has_year_zero=None)</p>
<p>Return indices of a netCDF time variable corresponding to the given dates.</p>
<p><strong>dates</strong>: A datetime object or a sequence of datetime objects.
The datetime objects should not include a time-zone offset.</p>
<p><strong>nctime</strong>: A netCDF time variable object. The nctime object must have a
<strong>units</strong> attribute.</p>
<p><strong>calendar</strong>: describes the calendar to be used in the time calculations.
All the values currently defined in the
<code>CF metadata convention &lt;http://cfconventions.org/cf-conventions/cf-conventions#calendar&gt;</code>__ are supported.
Valid calendars <strong>'standard', 'gregorian', 'proleptic_gregorian'
'noleap', '365_day', '360_day', 'julian', 'all_leap', '366_day'</strong>.
Default is <code>None</code> which means the calendar associated with the first
input datetime instance will be used.</p>
<p><strong>select</strong>: <strong>'exact', 'before', 'after', 'nearest'</strong>
The index selection method. <strong>exact</strong> will return the indices perfectly
matching the dates given. <strong>before</strong> and <strong>after</strong> will return the indices
corresponding to the dates just before or just after the given dates if
an exact match cannot be found. <strong>nearest</strong> will return the indices that
correspond to the closest dates.</p>
<p><strong>has_year_zero</strong>: if set to True, astronomical year numbering
is used and the year zero exists.
If set to False for real-world
calendars, then historical year numbering is used and the year 1 is
preceded by year -1 and no year zero exists.
The defaults are set to conform with
CF version 1.9 conventions (False for 'julian', 'gregorian'/'standard', True
for 'proleptic_gregorian' (ISO 8601) and True for the idealized
calendars 'noleap'/'365_day', '360_day', 366_day'/'all_leap')
The defaults can only be over-ridden for the real-world calendars,
for the the idealized calendars the year zero
always exists and the has_year_zero kwarg is ignored.
This kwarg is not needed to define calendar systems allowed by CF
(the calendar-specific defaults do this).</p>
<p>returns an index (indices) of the netCDF time variable corresponding
to the given datetime object(s).</p></div>
</dd>
<dt id="netCDF4.date2num"><code class="name flex">
<span>def <span class="ident">date2num</span></span>(<span>dates, units, calendar=None, has_year_zero=None, longdouble=False)</span>
</code></dt>
<dd>
<div class="desc"><p>date2num(dates, units, calendar=None, has_year_zero=None, longdouble=False)</p>
<p>Return numeric time values given datetime objects. The units
of the numeric time values are described by the <strong>units</strong> argument
and the <strong>calendar</strong> keyword. The datetime objects must
be in UTC with no time-zone offset.
If there is a
time-zone offset in <strong>units</strong>, it will be applied to the
returned numeric values.</p>
<p><strong>dates</strong>: A datetime object or a sequence of datetime objects.
The datetime objects should not include a time-zone offset. They
can be either native python datetime instances (which use
the proleptic gregorian calendar) or cftime.datetime instances.</p>
<p><strong>units</strong>: a string of the form <strong><time units> since <reference time></strong>
describing the time units. <strong><time units></strong> can be days, hours, minutes,
seconds, milliseconds or microseconds. <strong><reference time></strong> is the time
origin. <strong>months since</strong> is allowed <em>only</em> for the <strong>360_day</strong> calendar
and <strong>common_years since</strong> is allowed <em>only</em> for the <strong>365_day</strong> calendar.</p>
<p><strong>calendar</strong>: describes the calendar to be used in the time calculations.
All the values currently defined in the
<code>CF metadata convention &lt;http://cfconventions.org/cf-conventions/cf-conventions#calendar&gt;</code>__ are supported.
Valid calendars <strong>'standard', 'gregorian', 'proleptic_gregorian'
'noleap', '365_day', '360_day', 'julian', 'all_leap', '366_day'</strong>.
Default is <code>None</code> which means the calendar associated with the first
input datetime instance will be used.</p>
<p><strong>has_year_zero</strong>: If set to True, astronomical year numbering
is used and the year zero exists.
If set to False for real-world
calendars, then historical year numbering is used and the year 1 is
preceded by year -1 and no year zero exists.
The defaults are set to conform with
CF version 1.9 conventions (False for 'julian', 'gregorian'/'standard', True
for 'proleptic_gregorian' (ISO 8601) and True for the idealized
calendars 'noleap'/'365_day', '360_day', 366_day'/'all_leap')
Note that CF v1.9 does not specifically mention whether year zero
is allowed in the proleptic_gregorian calendar, but ISO-8601 has
a year zero so we have adopted this as the default.
The defaults can only be over-ridden for the real-world calendars,
for the the idealized calendars the year zero
always exists and the has_year_zero kwarg is ignored.
This kwarg is not needed to define calendar systems allowed by CF
(the calendar-specific defaults do this).</p>
<p><strong>longdouble</strong>: If set True, output is in the long double float type
(numpy.float128) instead of float (numpy.float64), allowing microsecond
accuracy when converting a time value to a date and back again. Otherwise
this is only possible if the discretization of the time variable is an
integer multiple of the units.</p>
<p>returns a numeric time value, or an array of numeric time values
with approximately 1 microsecond accuracy.</p></div>
</dd>
<dt id="netCDF4.get_alignment"><code class="name flex">
<span>def <span class="ident">get_alignment</span></span>(<span>)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>get_alignment()</code></strong></p>
<p>return current netCDF alignment within HDF5 files in a tuple
(threshold,alignment). See netcdf C library documentation for
<code>nc_get_alignment</code> for details. Values can be reset with
<code><a title="netCDF4.set_alignment" href="#netCDF4.set_alignment">set_alignment()</a></code>.</p>
<p>This function was added in netcdf 4.9.0.</p></div>
</dd>
<dt id="netCDF4.get_chunk_cache"><code class="name flex">
<span>def <span class="ident">get_chunk_cache</span></span>(<span>)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>get_chunk_cache()</code></strong></p>
<p>return current netCDF chunk cache information in a tuple (size,nelems,preemption).
See netcdf C library documentation for <code>nc_get_chunk_cache</code> for
details. Values can be reset with <code><a title="netCDF4.set_chunk_cache" href="#netCDF4.set_chunk_cache">set_chunk_cache()</a></code>.</p></div>
</dd>
<dt id="netCDF4.getlibversion"><code class="name flex">
<span>def <span class="ident">getlibversion</span></span>(<span>)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>getlibversion()</code></strong></p>
<p>returns a string describing the version of the netcdf library
used to build the module, and when it was built.</p></div>
</dd>
<dt id="netCDF4.num2date"><code class="name flex">
<span>def <span class="ident">num2date</span></span>(<span>times, units, calendar='standard', only_use_cftime_datetimes=True, only_use_python_datetimes=False, has_year_zero=None)</span>
</code></dt>
<dd>
<div class="desc"><p>num2date(times, units, calendar=u'standard', only_use_cftime_datetimes=True, only_use_python_datetimes=False, has_year_zero=None)</p>
<p>Return datetime objects given numeric time values. The units
of the numeric time values are described by the <strong>units</strong> argument
and the <strong>calendar</strong> keyword. The returned datetime objects represent
UTC with no time-zone offset, even if the specified
<strong>units</strong> contain a time-zone offset.</p>
<p><strong>times</strong>: numeric time values.</p>
<p><strong>units</strong>: a string of the form <strong><time units> since <reference time></strong>
describing the time units. <strong><time units></strong> can be days, hours, minutes,
seconds, milliseconds or microseconds. <strong><reference time></strong> is the time
origin. <strong>months since</strong> is allowed <em>only</em> for the <strong>360_day</strong> calendar
and <strong>common_years since</strong> is allowed <em>only</em> for the <strong>365_day</strong> calendar.</p>
<p><strong>calendar</strong>: describes the calendar used in the time calculations.
All the values currently defined in the
<code>CF metadata convention &lt;http://cfconventions.org/cf-conventions/cf-conventions#calendar&gt;</code>__ are supported.
Valid calendars <strong>'standard', 'gregorian', 'proleptic_gregorian'
'noleap', '365_day', '360_day', 'julian', 'all_leap', '366_day'</strong>.
Default is <strong>'standard'</strong>, which is a mixed Julian/Gregorian calendar.</p>
<p><strong>only_use_cftime_datetimes</strong>: if False, python datetime.datetime
objects are returned from num2date where possible; if True dates which
subclass cftime.datetime are returned for all calendars. Default <strong>True</strong>.</p>
<p><strong>only_use_python_datetimes</strong>: always return python datetime.datetime
objects and raise an error if this is not possible. Ignored unless
<strong>only_use_cftime_datetimes=False</strong>. Default <strong>False</strong>.</p>
<p><strong>has_year_zero</strong>: if set to True, astronomical year numbering
is used and the year zero exists.
If set to False for real-world
calendars, then historical year numbering is used and the year 1 is
preceded by year -1 and no year zero exists.
The defaults are set to conform with
CF version 1.9 conventions (False for 'julian', 'gregorian'/'standard', True
for 'proleptic_gregorian' (ISO 8601) and True for the idealized
calendars 'noleap'/'365_day', '360_day', 366_day'/'all_leap')
The defaults can only be over-ridden for the real-world calendars,
for the the idealized calendars the year zero
always exists and the has_year_zero kwarg is ignored.
This kwarg is not needed to define calendar systems allowed by CF
(the calendar-specific defaults do this).</p>
<p>returns a datetime instance, or an array of datetime instances with
microsecond accuracy, if possible.</p>
<p><strong><em>Note</em></strong>: If only_use_cftime_datetimes=False and
use_only_python_datetimes=False, the datetime instances
returned are 'real' python datetime
objects if <strong>calendar='proleptic_gregorian'</strong>, or
<strong>calendar='standard'</strong> or <strong>'gregorian'</strong>
and the date is after the breakpoint between the Julian and
Gregorian calendars (1582-10-15). Otherwise, they are ctime.datetime
objects which support some but not all the methods of native python
datetime objects. The datetime instances
do not contain a time-zone offset, even if the specified <strong>units</strong>
contains one.</p></div>
</dd>
<dt id="netCDF4.rc_get"><code class="name flex">
<span>def <span class="ident">rc_get</span></span>(<span>key)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>rc_get(key)</code></strong></p>
<p>Returns the internal netcdf-c rc table value corresponding to key.
See <a href="https://docs.unidata.ucar.edu/netcdf-c/current/md_auth.html">https://docs.unidata.ucar.edu/netcdf-c/current/md_auth.html</a>
for more information on rc files and values.</p></div>
</dd>
<dt id="netCDF4.rc_set"><code class="name flex">
<span>def <span class="ident">rc_set</span></span>(<span>key, value)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>rc_set(key, value)</code></strong></p>
<p>Sets the internal netcdf-c rc table value corresponding to key.
See <a href="https://docs.unidata.ucar.edu/netcdf-c/current/md_auth.html">https://docs.unidata.ucar.edu/netcdf-c/current/md_auth.html</a>
for more information on rc files and values.</p></div>
</dd>
<dt id="netCDF4.set_alignment"><code class="name flex">
<span>def <span class="ident">set_alignment</span></span>(<span>threshold, alignment)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_alignment(threshold,alignment)</code></strong></p>
<p>Change the HDF5 file alignment.
See netcdf C library documentation for <code>nc_set_alignment</code> for
details.</p>
<p>This function was added in netcdf 4.9.0.</p></div>
</dd>
<dt id="netCDF4.set_chunk_cache"><code class="name flex">
<span>def <span class="ident">set_chunk_cache</span></span>(<span>size=None, nelems=None, preemption=None)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_chunk_cache(size=None,nelems=None,preemption=None)</code></strong></p>
<p>change netCDF4 chunk cache settings.
See netcdf C library documentation for <code>nc_set_chunk_cache</code> for
details.</p></div>
</dd>
<dt id="netCDF4.stringtoarr"><code class="name flex">
<span>def <span class="ident">stringtoarr</span></span>(<span>string, NUMCHARS, dtype='S')</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>stringtoarr(a, NUMCHARS,dtype='S')</code></strong></p>
<p>convert a string to a character array of length <code>NUMCHARS</code></p>
<p><strong><code>a</code></strong>:
Input python string.</p>
<p><strong><code>NUMCHARS</code></strong>:
number of characters used to represent string
(if len(a) &lt; <code>NUMCHARS</code>, it will be padded on the right with blanks).</p>
<p><strong><code>dtype</code></strong>:
type of numpy array to return.
Default is <code>'S'</code>, which
means an array of dtype <code>'S1'</code> will be returned.
If dtype=<code>'U'</code>, a
unicode array (dtype = <code>'U1'</code>) will be returned.</p>
<p>returns a rank 1 numpy character array of length NUMCHARS with datatype <code>'S1'</code>
(default) or <code>'U1'</code> (if dtype=<code>'U'</code>)</p></div>
</dd>
<dt id="netCDF4.stringtochar"><code class="name flex">
<span>def <span class="ident">stringtochar</span></span>(<span>a, encoding='utf-8')</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>stringtochar(a,encoding='utf-8')</code></strong></p>
<p>convert a string array to a character array with one extra dimension</p>
<p><strong><code>a</code></strong>:
Input numpy string array with numpy datatype <code>'SN'</code> or <code>'UN'</code>, where N
is the number of characters in each string.
Will be converted to
an array of characters (datatype <code>'S1'</code> or <code>'U1'</code>) of shape <code>a.shape + (N,)</code>.</p>
<p>optional kwarg <code>encoding</code> can be used to specify character encoding (default
<code>utf-8</code>). If <code>encoding</code> is 'none' or 'bytes', a <code>numpy.string_</code> the input array
is treated a raw byte strings (<code>numpy.string_</code>).</p>
<p>returns a numpy character array with datatype <code>'S1'</code> or <code>'U1'</code>
and shape <code>a.shape + (N,)</code>, where N is the length of each string in a.</p></div>
</dd>
</dl>
</section>
<section>
<h2 class="section-title" id="header-classes">Classes</h2>
<dl>
<dt id="netCDF4.CompoundType"><code class="flex name class">
<span>class <span class="ident">CompoundType</span></span>
<span>(</span><span>...)</span>
</code></dt>
<dd>
<div class="desc"><p>A <code><a title="netCDF4.CompoundType" href="#netCDF4.CompoundType">CompoundType</a></code> instance is used to describe a compound data
type, and can be passed to the the <code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code> method of
a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance.
Compound data types map to numpy structured arrays.
See <code><a title="netCDF4.CompoundType" href="#netCDF4.CompoundType">CompoundType</a></code> for more details.</p>
<p>The instance variables <code>dtype</code> and <code>name</code> should not be modified by
the user.</p>
<p><strong><em><code>__init__(group, datatype, datatype_name)</code></em></strong></p>
<p>CompoundType constructor.</p>
<p><strong><code>grp</code></strong>: <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance to associate with the compound datatype.</p>
<p><strong><code>dt</code></strong>: A numpy dtype object describing a structured (a.k.a record)
array.
Can be composed of homogeneous numeric or character data types, or
other structured array data types.</p>
<p><strong><code>dtype_name</code></strong>: a Python string containing a description of the
compound data type.</p>
<p><strong><em>Note 1</em></strong>: When creating nested compound data types,
the inner compound data types must already be associated with CompoundType
instances (so create CompoundType instances for the innermost structures
first).</p>
<p><strong><em>Note 2</em></strong>: <code><a title="netCDF4.CompoundType" href="#netCDF4.CompoundType">CompoundType</a></code> instances should be created using the
<code><a title="netCDF4.Dataset.createCompoundType" href="#netCDF4.Dataset.createCompoundType">Dataset.createCompoundType()</a></code> method of a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or
<code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance, not using this class directly.</p></div>
<h3>Instance variables</h3>
<dl>
<dt id="netCDF4.CompoundType.dtype"><code class="name">var <span class="ident">dtype</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.CompoundType.dtype_view"><code class="name">var <span class="ident">dtype_view</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.CompoundType.name"><code class="name">var <span class="ident">name</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
</dl>
</dd>
<dt id="netCDF4.Dataset"><code class="flex name class">
<span>class <span class="ident">Dataset</span></span>
<span>(</span><span>...)</span>
</code></dt>
<dd>
<div class="desc"><p>A netCDF <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> is a collection of dimensions, groups, variables and
attributes. Together they describe the meaning of data and relations among
data fields stored in a netCDF file. See <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> for more
details.</p>
<p>A list of attribute names corresponding to global netCDF attributes
defined for the <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> can be obtained with the
<code><a title="netCDF4.Dataset.ncattrs" href="#netCDF4.Dataset.ncattrs">Dataset.ncattrs()</a></code> method.
These attributes can be created by assigning to an attribute of the
<code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> instance. A dictionary containing all the netCDF attribute
name/value pairs is provided by the <code>__dict__</code> attribute of a
<code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> instance.</p>
<p>The following class variables are read-only and should not be
modified by the user.</p>
<p><strong><code>dimensions</code></strong>: The <code>dimensions</code> dictionary maps the names of
dimensions defined for the <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> or <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> to instances of the
<code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> class.</p>
<p><strong><code>variables</code></strong>: The <code>variables</code> dictionary maps the names of variables
defined for this <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> to instances of the
<code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> class.</p>
<p><strong><code>groups</code></strong>: The groups dictionary maps the names of groups created for
this <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> to instances of the <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> class (the
<code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> class is simply a special case of the <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> class which
describes the root group in the netCDF4 file).</p>
<p><strong><code>cmptypes</code></strong>: The <code>cmptypes</code> dictionary maps the names of
compound types defined for the <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> or <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> to instances of the
<code><a title="netCDF4.CompoundType" href="#netCDF4.CompoundType">CompoundType</a></code> class.</p>
<p><strong><code>vltypes</code></strong>: The <code>vltypes</code> dictionary maps the names of
variable-length types defined for the <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> or <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> to instances
of the <code><a title="netCDF4.VLType" href="#netCDF4.VLType">VLType</a></code> class.</p>
<p><strong><code>enumtypes</code></strong>: The <code>enumtypes</code> dictionary maps the names of
Enum types defined for the <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> or <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> to instances
of the <code><a title="netCDF4.EnumType" href="#netCDF4.EnumType">EnumType</a></code> class.</p>
<p><strong><code>data_model</code></strong>: <code>data_model</code> describes the netCDF
data model version, one of <code>NETCDF3_CLASSIC</code>, <code>NETCDF4</code>,
<code>NETCDF4_CLASSIC</code>, <code>NETCDF3_64BIT_OFFSET</code> or <code>NETCDF3_64BIT_DATA</code>.</p>
<p><strong><code>file_format</code></strong>: same as <code>data_model</code>, retained for backwards compatibility.</p>
<p><strong><code>disk_format</code></strong>: <code>disk_format</code> describes the underlying
file format, one of <code>NETCDF3</code>, <code>HDF5</code>, <code>HDF4</code>,
<code>PNETCDF</code>, <code>DAP2</code>, <code>DAP4</code> or <code>UNDEFINED</code>. Only available if using
netcdf C library version &gt;= 4.3.1, otherwise will always return
<code>UNDEFINED</code>.</p>
<p><strong><code>parent</code></strong>: <code>parent</code> is a reference to the parent
<code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance. <code>None</code> for the root group or <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code>
instance.</p>
<p><strong><code>path</code></strong>: <code>path</code> shows the location of the <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> in
the <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> in a unix directory format (the names of groups in the
hierarchy separated by backslashes). A <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> instance is the root
group, so the path is simply <code>'/'</code>.</p>
<p><strong><code>keepweakref</code></strong>: If <code>True</code>, child Dimension and Variables objects only keep weak
references to the parent Dataset or Group.</p>
<p><strong><code>_ncstring_attrs__</code></strong>: If <code>True</code>, all text attributes will be written as variable-length
strings.</p>
<p><strong><code>__init__(self, filename, mode="r", clobber=True, diskless=False,
persist=False, keepweakref=False, memory=None, encoding=None,
parallel=False, comm=None, info=None, format='NETCDF4')</code></strong></p>
<p><code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> constructor.</p>
<p><strong><code>filename</code></strong>: Name of netCDF file to hold dataset. Can also
be a python 3 pathlib instance or the URL of an OpenDAP dataset.
When memory is
set this is just used to set the <code>filepath()</code>.</p>
<p><strong><code>mode</code></strong>: access mode. <code>r</code> means read-only; no data can be
modified. <code>w</code> means write; a new file is created, an existing file with
the same name is deleted. <code>x</code> means write, but fail if an existing
file with the same name already exists. <code>a</code> and <code>r+</code> mean append;
an existing file is opened for reading and writing, if
file does not exist already, one is created.
Appending <code>s</code> to modes <code>r</code>, <code>w</code>, <code>r+</code> or <code>a</code> will enable unbuffered shared
access to <code>NETCDF3_CLASSIC</code>, <code>NETCDF3_64BIT_OFFSET</code> or
<code>NETCDF3_64BIT_DATA</code> formatted files.
Unbuffered access may be useful even if you don't need shared
access, since it may be faster for programs that don't access data
sequentially. This option is ignored for <code>NETCDF4</code> and <code>NETCDF4_CLASSIC</code>
formatted files.</p>
<p><strong><code>clobber</code></strong>: if <code>True</code> (default), opening a file with <code>mode='w'</code>
will clobber an existing file with the same name.
if <code>False</code>, an
exception will be raised if a file with the same name already exists.
mode=<code>x</code> is identical to mode=<code>w</code> with clobber=False.</p>
<p><strong><code>format</code></strong>: underlying file format (one of <code>'NETCDF4',
'NETCDF4_CLASSIC', 'NETCDF3_CLASSIC'&lt;code&gt;, &lt;/code&gt;'NETCDF3_64BIT_OFFSET'</code> or
<code>'NETCDF3_64BIT_DATA'</code>.
Only relevant if <code>mode = 'w'</code> (if <code>mode = 'r','a'</code> or <code>'r+'</code> the file format
is automatically detected). Default <code>'NETCDF4'</code>, which means the data is
stored in an HDF5 file, using netCDF 4 API features.
Setting
<code>format='NETCDF4_CLASSIC'</code> will create an HDF5 file, using only netCDF 3
compatible API features. netCDF 3 clients must be recompiled and linked
against the netCDF 4 library to read files in <code>NETCDF4_CLASSIC</code> format.
<code>'NETCDF3_CLASSIC'</code> is the classic netCDF 3 file format that does not
handle 2+ Gb files. <code>'NETCDF3_64BIT_OFFSET'</code> is the 64-bit offset
version of the netCDF 3 file format, which fully supports 2+ GB files, but
is only compatible with clients linked against netCDF version 3.6.0 or
later. <code>'NETCDF3_64BIT_DATA'</code> is the 64-bit data version of the netCDF 3
file format, which supports 64-bit dimension sizes plus unsigned and
64 bit integer data types, but is only compatible with clients linked against
netCDF version 4.4.0 or later.</p>
<p><strong><code>diskless</code></strong>: If <code>True</code>, create diskless (in-core) file.
This is a feature added to the C library after the
netcdf-4.2 release. If you need to access the memory buffer directly,
use the in-memory feature instead (see <code>memory</code> kwarg).</p>
<p><strong><code>persist</code></strong>: if <code>diskless=True</code>, persist file to disk when closed
(default <code>False</code>).</p>
<p><strong><code>keepweakref</code></strong>: if <code>True</code>, child Dimension and Variable instances will keep weak
references to the parent Dataset or Group object.
Default is <code>False</code>, which
means strong references will be kept.
Having Dimension and Variable instances
keep a strong reference to the parent Dataset instance, which in turn keeps a
reference to child Dimension and Variable instances, creates circular references.
Circular references complicate garbage collection, which may mean increased
memory usage for programs that create may Dataset instances with lots of
Variables. It also will result in the Dataset object never being deleted, which
means it may keep open files alive as well. Setting <code>keepweakref=True</code> allows
Dataset instances to be garbage collected as soon as they go out of scope, potentially
reducing memory usage and open file handles.
However, in many cases this is not
desirable, since the associated Variable instances may still be needed, but are
rendered unusable when the parent Dataset instance is garbage collected.</p>
<p><strong><code>memory</code></strong>: if not <code>None</code>, create or open an in-memory Dataset.
If mode = <code>r</code>, the memory kwarg must contain a memory buffer object
(an object that supports the python buffer interface).
The Dataset will then be created with contents taken from this block of memory.
If mode = <code>w</code>, the memory kwarg should contain the anticipated size
of the Dataset in bytes (used only for NETCDF3 files).
A memory
buffer containing a copy of the Dataset is returned by the
<code><a title="netCDF4.Dataset.close" href="#netCDF4.Dataset.close">Dataset.close()</a></code> method. Requires netcdf-c version 4.4.1 for mode=<code>r</code>
netcdf-c 4.6.2 for mode=<code>w</code>. To persist the file to disk, the raw
bytes from the returned buffer can be written into a binary file.
The Dataset can also be re-opened using this memory buffer.</p>
<p><strong><code>encoding</code></strong>: encoding used to encode filename string into bytes.
Default is None (<code>sys.getdefaultfileencoding()</code> is used).</p>
<p><strong><code>parallel</code></strong>: open for parallel access using MPI (requires mpi4py and
parallel-enabled netcdf-c and hdf5 libraries).
Default is <code>False</code>. If
<code>True</code>, <code>comm</code> and <code>info</code> kwargs may also be specified.</p>
<p><strong><code>comm</code></strong>: MPI_Comm object for parallel access. Default <code>None</code>, which
means MPI_COMM_WORLD will be used.
Ignored if <code>parallel=False</code>.</p>
<p><strong><code>info</code></strong>: MPI_Info object for parallel access. Default <code>None</code>, which
means MPI_INFO_NULL will be used.
Ignored if <code>parallel=False</code>.</p>
<p><strong><code>auto_complex</code></strong>: if <code>True</code>, then automatically convert complex number types</p></div>
<h3>Subclasses</h3>
<ul class="hlist">
<li>netCDF4._netCDF4.Group</li>
<li>netCDF4._netCDF4.MFDataset</li>
</ul>
<h3>Static methods</h3>
<dl>
<dt id="netCDF4.Dataset.fromcdl"><code class="name flex">
<span>def <span class="ident">fromcdl</span></span>(<span>cdlfilename, ncfilename=None, mode='a', format='NETCDF4')</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>fromcdl(cdlfilename, ncfilename=None, mode='a',format='NETCDF4')</code></strong></p>
<p>call <a href="https://www.unidata.ucar.edu/software/netcdf/docs/netcdf_utilities_guide.html#ncgen_guide">ncgen</a> via subprocess to create Dataset from <a href="https://www.unidata.ucar.edu/software/netcdf/docs/netcdf_utilities_guide.html#cdl_guide">CDL</a>
text representation. Requires <a href="https://www.unidata.ucar.edu/software/netcdf/docs/netcdf_utilities_guide.html#ncgen_guide">ncgen</a> to be installed and in <code>$PATH</code>.</p>
<p><strong><code>cdlfilename</code></strong>:
CDL file.</p>
<p><strong><code>ncfilename</code></strong>: netCDF file to create. If not given, CDL filename with
suffix replaced by <code>.nc</code> is used..</p>
<p><strong><code>mode</code></strong>:
Access mode to open Dataset (Default <code>'a'</code>).</p>
<p><strong><code>format</code></strong>: underlying file format to use (one of <code>'NETCDF4',
'NETCDF4_CLASSIC', 'NETCDF3_CLASSIC'&lt;code&gt;, &lt;/code&gt;'NETCDF3_64BIT_OFFSET'</code> or
<code>'NETCDF3_64BIT_DATA'</code>. Default <code>'NETCDF4'</code>.</p>
<p>Dataset instance for <code>ncfilename</code> is returned.</p></div>
</dd>
</dl>
<h3>Instance variables</h3>
<dl>
<dt id="netCDF4.Dataset.auto_complex"><code class="name">var <span class="ident">auto_complex</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Dataset.cmptypes"><code class="name">var <span class="ident">cmptypes</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Dataset.data_model"><code class="name">var <span class="ident">data_model</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Dataset.dimensions"><code class="name">var <span class="ident">dimensions</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Dataset.disk_format"><code class="name">var <span class="ident">disk_format</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Dataset.enumtypes"><code class="name">var <span class="ident">enumtypes</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Dataset.file_format"><code class="name">var <span class="ident">file_format</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Dataset.groups"><code class="name">var <span class="ident">groups</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Dataset.keepweakref"><code class="name">var <span class="ident">keepweakref</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Dataset.name"><code class="name">var <span class="ident">name</span></code></dt>
<dd>
<div class="desc"><p>string name of Group instance</p></div>
</dd>
<dt id="netCDF4.Dataset.parent"><code class="name">var <span class="ident">parent</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Dataset.path"><code class="name">var <span class="ident">path</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Dataset.variables"><code class="name">var <span class="ident">variables</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Dataset.vltypes"><code class="name">var <span class="ident">vltypes</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
</dl>
<h3>Methods</h3>
<dl>
<dt id="netCDF4.Dataset.close"><code class="name flex">
<span>def <span class="ident">close</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>close(self)</code></strong></p>
<p>Close the Dataset.</p></div>
</dd>
<dt id="netCDF4.Dataset.createCompoundType"><code class="name flex">
<span>def <span class="ident">createCompoundType</span></span>(<span>self, datatype, datatype_name)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>createCompoundType(self, datatype, datatype_name)</code></strong></p>
<p>Creates a new compound data type named <code>datatype_name</code> from the numpy
dtype object <code>datatype</code>.</p>
<p><strong><em>Note</em></strong>: If the new compound data type contains other compound data types
(i.e. it is a 'nested' compound type, where not all of the elements
are homogeneous numeric data types), then the 'inner' compound types <strong>must</strong> be
created first.</p>
<p>The return value is the <code><a title="netCDF4.CompoundType" href="#netCDF4.CompoundType">CompoundType</a></code> class instance describing the new
datatype.</p></div>
</dd>
<dt id="netCDF4.Dataset.createDimension"><code class="name flex">
<span>def <span class="ident">createDimension</span></span>(<span>self, dimname, size=None)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>createDimension(self, dimname, size=None)</code></strong></p>
<p>Creates a new dimension with the given <code>dimname</code> and <code>size</code>.</p>
<p><code>size</code> must be a positive integer or <code>None</code>, which stands for
"unlimited" (default is <code>None</code>). Specifying a size of 0 also
results in an unlimited dimension. The return value is the <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code>
class instance describing the new dimension.
To determine the current
maximum size of the dimension, use the <code>len</code> function on the <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code>
instance. To determine if a dimension is 'unlimited', use the
<code><a title="netCDF4.Dimension.isunlimited" href="#netCDF4.Dimension.isunlimited">Dimension.isunlimited()</a></code> method of the <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> instance.</p></div>
</dd>
<dt id="netCDF4.Dataset.createEnumType"><code class="name flex">
<span>def <span class="ident">createEnumType</span></span>(<span>self, datatype, datatype_name, enum_dict)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>createEnumType(self, datatype, datatype_name, enum_dict)</code></strong></p>
<p>Creates a new Enum data type named <code>datatype_name</code> from a numpy
integer dtype object <code>datatype</code>, and a python dictionary
defining the enum fields and values.</p>
<p>The return value is the <code><a title="netCDF4.EnumType" href="#netCDF4.EnumType">EnumType</a></code> class instance describing the new
datatype.</p></div>
</dd>
<dt id="netCDF4.Dataset.createGroup"><code class="name flex">
<span>def <span class="ident">createGroup</span></span>(<span>self, groupname)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>createGroup(self, groupname)</code></strong></p>
<p>Creates a new <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> with the given <code>groupname</code>.</p>
<p>If <code>groupname</code> is specified as a path, using forward slashes as in unix to
separate components, then intermediate groups will be created as necessary
(analogous to <code>mkdir -p</code> in unix).
For example,
<code>createGroup('/GroupA/GroupB/GroupC')</code> will create <code>GroupA</code>,
<code>GroupA/GroupB</code>, and <code>GroupA/GroupB/GroupC</code>, if they don't already exist.
If the specified path describes a group that already exists, no error is
raised.</p>
<p>The return value is a <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> class instance.</p></div>
</dd>
<dt id="netCDF4.Dataset.createVLType"><code class="name flex">
<span>def <span class="ident">createVLType</span></span>(<span>self, datatype, datatype_name)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>createVLType(self, datatype, datatype_name)</code></strong></p>
<p>Creates a new VLEN data type named <code>datatype_name</code> from a numpy
dtype object <code>datatype</code>.</p>
<p>The return value is the <code><a title="netCDF4.VLType" href="#netCDF4.VLType">VLType</a></code> class instance describing the new
datatype.</p></div>
</dd>
<dt id="netCDF4.Dataset.createVariable"><code class="name flex">
<span>def <span class="ident">createVariable</span></span>(<span>self, varname, datatype, dimensions=(), compression=None, zlib=False, complevel=4, shuffle=True, szip_coding='nn', szip_pixels_per_block=8, blosc_shuffle=1, fletcher32=False, contiguous=False, chunksizes=None, endian='native', least_significant_digit=None, significant_digits=None, quantize_mode='BitGroom', fill_value=None, chunk_cache=None)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>createVariable(self, varname, datatype, dimensions=(), compression=None, zlib=False,
complevel=4, shuffle=True, fletcher32=False, contiguous=False, chunksizes=None,
szip_coding='nn', szip_pixels_per_block=8, blosc_shuffle=1,
endian='native', least_significant_digit=None, significant_digits=None, quantize_mode='BitGroom',
fill_value=None, chunk_cache=None)</code></strong></p>
<p>Creates a new variable with the given <code>varname</code>, <code>datatype</code>, and
<code>dimensions</code>. If dimensions are not given, the variable is assumed to be
a scalar.</p>
<p>If <code>varname</code> is specified as a path, using forward slashes as in unix to
separate components, then intermediate groups will be created as necessary
For example, <code>createVariable('/GroupA/GroupB/VarC', float, ('x','y'))</code> will create groups <code>GroupA</code>
and <code>GroupA/GroupB</code>, plus the variable <code>GroupA/GroupB/VarC</code>, if the preceding
groups don't already exist.</p>
<p>The <code>datatype</code> can be a numpy datatype object, or a string that describes
a numpy dtype object (like the <code>dtype.str</code> attribute of a numpy array).
Supported specifiers include: <code>'S1' or 'c' (NC_CHAR), 'i1' or 'b' or 'B'
(NC_BYTE), 'u1' (NC_UBYTE), 'i2' or 'h' or 's' (NC_SHORT), 'u2'
(NC_USHORT), 'i4' or 'i' or 'l' (NC_INT), 'u4' (NC_UINT), 'i8' (NC_INT64),
'u8' (NC_UINT64), 'f4' or 'f' (NC_FLOAT), 'f8' or 'd' (NC_DOUBLE)</code>.
<code>datatype</code> can also be a <code><a title="netCDF4.CompoundType" href="#netCDF4.CompoundType">CompoundType</a></code> instance
(for a structured, or compound array), a <code><a title="netCDF4.VLType" href="#netCDF4.VLType">VLType</a></code> instance
(for a variable-length array), or the python <code>str</code> builtin
(for a variable-length string array). Numpy string and unicode datatypes with
length greater than one are aliases for <code>str</code>.</p>
<p>Data from netCDF variables is presented to python as numpy arrays with
the corresponding data type.</p>
<p><code>dimensions</code> must be a tuple containing <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> instances and/or
dimension names (strings) that have been defined
previously using <code><a title="netCDF4.Dataset.createDimension" href="#netCDF4.Dataset.createDimension">Dataset.createDimension()</a></code>. The default value
is an empty tuple, which means the variable is a scalar.</p>
<p>If the optional keyword argument <code>compression</code> is set, the data will be
compressed in the netCDF file using the specified compression algorithm.
Currently <code>zlib</code>,<code>szip</code>,<code>zstd</code>,<code>bzip2</code>,<code>blosc_lz</code>,<code>blosc_lz4</code>,<code>blosc_lz4hc</code>,
<code>blosc_zlib</code> and <code>blosc_zstd</code> are supported.
Default is <code>None</code> (no compression).
All of the compressors except
<code>zlib</code> and <code>szip</code> use the HDF5 plugin architecture.</p>
<p>If the optional keyword <code>zlib</code> is <code>True</code>, the data will be compressed in
the netCDF file using zlib compression (default <code>False</code>).
The use of this option is
deprecated in favor of <code>compression='zlib'</code>.</p>
<p>The optional keyword <code>complevel</code> is an integer between 0 and 9 describing
the level of compression desired (default 4). Ignored if <code>compression=None</code>.
A value of zero disables compression.</p>
<p>If the optional keyword <code>shuffle</code> is <code>True</code>, the HDF5 shuffle filter
will be applied before compressing the data with zlib (default <code>True</code>).
This
significantly improves compression. Default is <code>True</code>. Ignored if
<code>zlib=False</code>.</p>
<p>The optional kwarg <code>blosc_shuffle</code>is
ignored
unless the blosc compressor is used. <code>blosc_shuffle</code> can be 0 (no shuffle),
1 (byte-wise shuffle) or 2 (bit-wise shuffle). Default is 1.</p>
<p>The optional kwargs <code>szip_coding</code> and <code>szip_pixels_per_block</code> are ignored
unless the szip compressor is used. <code>szip_coding</code> can be <code>ec</code> (entropy coding)
or <code>nn</code> (nearest neighbor coding). Default is <code>nn</code>. <code>szip_pixels_per_block</code>
can be 4, 8, 16 or 32 (default 8).</p>
<p>If the optional keyword <code>fletcher32</code> is <code>True</code>, the Fletcher32 HDF5
checksum algorithm is activated to detect errors. Default <code>False</code>.</p>
<p>If the optional keyword <code>contiguous</code> is <code>True</code>, the variable data is
stored contiguously on disk.
Default <code>False</code>. Setting to <code>True</code> for
a variable with an unlimited dimension will trigger an error.
Fixed size variables (with no unlimited dimension) with no compression filters
are contiguous by default.</p>
<p>The optional keyword <code>chunksizes</code> can be used to manually specify the
HDF5 chunksizes for each dimension of the variable.
A detailed discussion of HDF chunking and I/O performance is available
<a href="https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking">here</a>.
The default chunking scheme in the netcdf-c library is discussed
<a href="https://www.unidata.ucar.edu/software/netcdf/documentation/NUG/netcdf_perf_chunking.html">here</a>.
Basically, you want the chunk size for each dimension to match as
closely as possible the size of the data block that users will read
from the file. <code>chunksizes</code> cannot be set if <code>contiguous=True</code>.</p>
<p>The optional keyword <code>endian</code> can be used to control whether the
data is stored in little or big endian format on disk. Possible
values are <code>little, big</code> or <code>native</code> (default). The library
will automatically handle endian conversions when the data is read,
but if the data is always going to be read on a computer with the
opposite format as the one used to create the file, there may be
some performance advantage to be gained by setting the endian-ness.</p>
<p>The optional keyword <code>fill_value</code> can be used to override the default
netCDF <code>_FillValue</code> (the value that the variable gets filled with before
any data is written to it, defaults given in the dict <code>netCDF4.default_fillvals</code>).
If fill_value is set to <code>False</code>, then the variable is not pre-filled.</p>
<p>If the optional keyword parameters <code>least_significant_digit</code> or <code>significant_digits</code> are
specified, variable data will be truncated (quantized). In conjunction
with <code>compression='zlib'</code> this produces 'lossy', but significantly more
efficient compression. For example, if <code>least_significant_digit=1</code>,
data will be quantized using <code>numpy.around(scale*data)/scale</code>, where
scale = 2**bits, and bits is determined so that a precision of 0.1 is
retained (in this case bits=4). From the
<a href="http://www.esrl.noaa.gov/psl/data/gridded/conventions/cdc_netcdf_standard.shtml">PSL metadata conventions</a>:
"least_significant_digit &ndash; power of ten of the smallest decimal place
in unpacked data that is a reliable value." Default is <code>None</code>, or no
quantization, or 'lossless' compression.
If <code>significant_digits=3</code>
then the data will be quantized so that three significant digits are retained, independent
of the floating point exponent. The keyword argument <code>quantize_mode</code> controls
the quantization algorithm (default 'BitGroom', 'BitRound' and
'GranularBitRound' also available).
The 'GranularBitRound'
algorithm may result in better compression for typical geophysical datasets.
This <code>significant_digits</code> kwarg is only available
with netcdf-c &gt;= 4.9.0, and
only works with <code>NETCDF4</code> or <code>NETCDF4_CLASSIC</code> formatted files.</p>
<p>When creating variables in a <code>NETCDF4</code> or <code>NETCDF4_CLASSIC</code> formatted file,
HDF5 creates something called a 'chunk cache' for each variable.
The
default size of the chunk cache may be large enough to completely fill
available memory when creating thousands of variables.
The optional
keyword <code>chunk_cache</code> allows you to reduce (or increase) the size of
the default chunk cache when creating a variable.
The setting only
persists as long as the Dataset is open - you can use the set_var_chunk_cache
method to change it the next time the Dataset is opened.
Warning - messing with this parameter can seriously degrade performance.</p>
<p>The return value is the <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> class instance describing the new
variable.</p>
<p>A list of names corresponding to netCDF variable attributes can be
obtained with the <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> method <code><a title="netCDF4.Variable.ncattrs" href="#netCDF4.Variable.ncattrs">Variable.ncattrs()</a></code>. A dictionary
containing all the netCDF attribute name/value pairs is provided by
the <code>__dict__</code> attribute of a <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> instance.</p>
<p><code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> instances behave much like array objects. Data can be
assigned to or retrieved from a variable with indexing and slicing
operations on the <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> instance. A <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> instance has six
Dataset standard attributes: <code>dimensions, dtype, shape, ndim, name</code> and
<code>least_significant_digit</code>. Application programs should never modify
these attributes. The <code>dimensions</code> attribute is a tuple containing the
names of the dimensions associated with this variable. The <code>dtype</code>
attribute is a string describing the variable's data type (<code>i4, f8,
S1,&lt;code&gt; etc). The &lt;/code&gt;shape</code> attribute is a tuple describing the current
sizes of all the variable's dimensions. The <code>name</code> attribute is a
string containing the name of the Variable instance.
The <code>least_significant_digit</code>
attributes describes the power of ten of the smallest decimal place in
the data the contains a reliable value.
assigned to the <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code>
instance. The <code>ndim</code> attribute
is the number of variable dimensions.</p></div>
</dd>
<dt id="netCDF4.Dataset.delncattr"><code class="name flex">
<span>def <span class="ident">delncattr</span></span>(<span>self, name)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>delncattr(self,name,value)</code></strong></p>
<p>delete a netCDF dataset or group attribute.
Use if you need to delete a
netCDF attribute with the same name as one of the reserved python
attributes.</p></div>
</dd>
<dt id="netCDF4.Dataset.filepath"><code class="name flex">
<span>def <span class="ident">filepath</span></span>(<span>self, encoding=None)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>filepath(self,encoding=None)</code></strong></p>
<p>Get the file system path (or the opendap URL) which was used to
open/create the Dataset. Requires netcdf &gt;= 4.1.2.
The path
is decoded into a string using <code>sys.getfilesystemencoding()</code> by default, this can be
changed using the <code>encoding</code> kwarg.</p></div>
</dd>
<dt id="netCDF4.Dataset.get_variables_by_attributes"><code class="name flex">
<span>def <span class="ident">get_variables_by_attributes</span></span>(<span>self, **kwargs)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>get_variables_by_attributes(self, **kwargs)</code></strong></p>
<p>Returns a list of variables that match specific conditions.</p>
<p>Can pass in key=value parameters and variables are returned that
contain all of the matches. For example,</p>
<pre><code class="language-python">&gt;&gt;&gt; # Get variables with x-axis attribute.
&gt;&gt;&gt; vs = nc.get_variables_by_attributes(axis='X')
&gt;&gt;&gt; # Get variables with matching &quot;standard_name&quot; attribute
&gt;&gt;&gt; vs = nc.get_variables_by_attributes(standard_name='northward_sea_water_velocity')
</code></pre>
<p>Can pass in key=callable parameter and variables are returned if the
callable returns True.
The callable should accept a single parameter,
the attribute value.
None is given as the attribute value when the
attribute does not exist on the variable. For example,</p>
<pre><code class="language-python">&gt;&gt;&gt; # Get Axis variables
&gt;&gt;&gt; vs = nc.get_variables_by_attributes(axis=lambda v: v in ['X', 'Y', 'Z', 'T'])
&gt;&gt;&gt; # Get variables that don't have an &quot;axis&quot; attribute
&gt;&gt;&gt; vs = nc.get_variables_by_attributes(axis=lambda v: v is None)
&gt;&gt;&gt; # Get variables that have a &quot;grid_mapping&quot; attribute
&gt;&gt;&gt; vs = nc.get_variables_by_attributes(grid_mapping=lambda v: v is not None)
</code></pre></div>
</dd>
<dt id="netCDF4.Dataset.getncattr"><code class="name flex">
<span>def <span class="ident">getncattr</span></span>(<span>self, name, encoding='utf-8')</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>getncattr(self,name)</code></strong></p>
<p>retrieve a netCDF dataset or group attribute.
Use if you need to get a netCDF attribute with the same
name as one of the reserved python attributes.</p>
<p>option kwarg <code>encoding</code> can be used to specify the
character encoding of a string attribute (default is <code>utf-8</code>).</p></div>
</dd>
<dt id="netCDF4.Dataset.has_blosc_filter"><code class="name flex">
<span>def <span class="ident">has_blosc_filter</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>has_blosc_filter(self)</code></strong>
returns True if blosc compression filter is available</p></div>
</dd>
<dt id="netCDF4.Dataset.has_bzip2_filter"><code class="name flex">
<span>def <span class="ident">has_bzip2_filter</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>has_bzip2_filter(self)</code></strong>
returns True if bzip2 compression filter is available</p></div>
</dd>
<dt id="netCDF4.Dataset.has_szip_filter"><code class="name flex">
<span>def <span class="ident">has_szip_filter</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>has_szip_filter(self)</code></strong>
returns True if szip compression filter is available</p></div>
</dd>
<dt id="netCDF4.Dataset.has_zstd_filter"><code class="name flex">
<span>def <span class="ident">has_zstd_filter</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>has_zstd_filter(self)</code></strong>
returns True if zstd compression filter is available</p></div>
</dd>
<dt id="netCDF4.Dataset.isopen"><code class="name flex">
<span>def <span class="ident">isopen</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>isopen(self)</code></strong></p>
<p>Is the Dataset open or closed?</p></div>
</dd>
<dt id="netCDF4.Dataset.ncattrs"><code class="name flex">
<span>def <span class="ident">ncattrs</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>ncattrs(self)</code></strong></p>
<p>return netCDF global attribute names for this <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> in a list.</p></div>
</dd>
<dt id="netCDF4.Dataset.renameAttribute"><code class="name flex">
<span>def <span class="ident">renameAttribute</span></span>(<span>self, oldname, newname)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>renameAttribute(self, oldname, newname)</code></strong></p>
<p>rename a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> attribute named <code>oldname</code> to <code>newname</code>.</p></div>
</dd>
<dt id="netCDF4.Dataset.renameDimension"><code class="name flex">
<span>def <span class="ident">renameDimension</span></span>(<span>self, oldname, newname)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>renameDimension(self, oldname, newname)</code></strong></p>
<p>rename a <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> named <code>oldname</code> to <code>newname</code>.</p></div>
</dd>
<dt id="netCDF4.Dataset.renameGroup"><code class="name flex">
<span>def <span class="ident">renameGroup</span></span>(<span>self, oldname, newname)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>renameGroup(self, oldname, newname)</code></strong></p>
<p>rename a <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> named <code>oldname</code> to <code>newname</code> (requires netcdf &gt;= 4.3.1).</p></div>
</dd>
<dt id="netCDF4.Dataset.renameVariable"><code class="name flex">
<span>def <span class="ident">renameVariable</span></span>(<span>self, oldname, newname)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>renameVariable(self, oldname, newname)</code></strong></p>
<p>rename a <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> named <code>oldname</code> to <code>newname</code></p></div>
</dd>
<dt id="netCDF4.Dataset.set_always_mask"><code class="name flex">
<span>def <span class="ident">set_always_mask</span></span>(<span>self, value)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_always_mask(self, True_or_False)</code></strong></p>
<p>Call <code><a title="netCDF4.Variable.set_always_mask" href="#netCDF4.Variable.set_always_mask">Variable.set_always_mask()</a></code> for all variables contained in
this <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code>, as well as for all
variables in all its subgroups.</p>
<p><strong><code>True_or_False</code></strong>: Boolean determining if automatic conversion of
masked arrays with no missing values to regular numpy arrays shall be
applied for all variables. Default True. Set to False to restore the default behaviour
in versions prior to 1.4.1 (numpy array returned unless missing values are present,
otherwise masked array returned).</p>
<p><strong><em>Note</em></strong>: Calling this function only affects existing
variables. Variables created after calling this function will follow
the default behaviour.</p></div>
</dd>
<dt id="netCDF4.Dataset.set_auto_chartostring"><code class="name flex">
<span>def <span class="ident">set_auto_chartostring</span></span>(<span>self, value)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_auto_chartostring(self, True_or_False)</code></strong></p>
<p>Call <code><a title="netCDF4.Variable.set_auto_chartostring" href="#netCDF4.Variable.set_auto_chartostring">Variable.set_auto_chartostring()</a></code> for all variables contained in this <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or
<code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code>, as well as for all variables in all its subgroups.</p>
<p><strong><code>True_or_False</code></strong>: Boolean determining if automatic conversion of
all character arrays &lt;&ndash;&gt; string arrays should be performed for
character variables (variables of type <code>NC_CHAR</code> or <code>S1</code>) with the
<code>_Encoding</code> attribute set.</p>
<p><strong><em>Note</em></strong>: Calling this function only affects existing variables. Variables created
after calling this function will follow the default behaviour.</p></div>
</dd>
<dt id="netCDF4.Dataset.set_auto_mask"><code class="name flex">
<span>def <span class="ident">set_auto_mask</span></span>(<span>self, value)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_auto_mask(self, True_or_False)</code></strong></p>
<p>Call <code><a title="netCDF4.Variable.set_auto_mask" href="#netCDF4.Variable.set_auto_mask">Variable.set_auto_mask()</a></code> for all variables contained in this <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or
<code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code>, as well as for all variables in all its subgroups. Only affects
Variables with primitive or enum types (not compound or vlen Variables).</p>
<p><strong><code>True_or_False</code></strong>: Boolean determining if automatic conversion to masked arrays
shall be applied for all variables.</p>
<p><strong><em>Note</em></strong>: Calling this function only affects existing variables. Variables created
after calling this function will follow the default behaviour.</p></div>
</dd>
<dt id="netCDF4.Dataset.set_auto_maskandscale"><code class="name flex">
<span>def <span class="ident">set_auto_maskandscale</span></span>(<span>self, value)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_auto_maskandscale(self, True_or_False)</code></strong></p>
<p>Call <code><a title="netCDF4.Variable.set_auto_maskandscale" href="#netCDF4.Variable.set_auto_maskandscale">Variable.set_auto_maskandscale()</a></code> for all variables contained in this <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or
<code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code>, as well as for all variables in all its subgroups.</p>
<p><strong><code>True_or_False</code></strong>: Boolean determining if automatic conversion to masked arrays
and variable scaling shall be applied for all variables.</p>
<p><strong><em>Note</em></strong>: Calling this function only affects existing variables. Variables created
after calling this function will follow the default behaviour.</p></div>
</dd>
<dt id="netCDF4.Dataset.set_auto_scale"><code class="name flex">
<span>def <span class="ident">set_auto_scale</span></span>(<span>self, value)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_auto_scale(self, True_or_False)</code></strong></p>
<p>Call <code><a title="netCDF4.Variable.set_auto_scale" href="#netCDF4.Variable.set_auto_scale">Variable.set_auto_scale()</a></code> for all variables contained in this <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or
<code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code>, as well as for all variables in all its subgroups.</p>
<p><strong><code>True_or_False</code></strong>: Boolean determining if automatic variable scaling
shall be applied for all variables.</p>
<p><strong><em>Note</em></strong>: Calling this function only affects existing variables. Variables created
after calling this function will follow the default behaviour.</p></div>
</dd>
<dt id="netCDF4.Dataset.set_fill_off"><code class="name flex">
<span>def <span class="ident">set_fill_off</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_fill_off(self)</code></strong></p>
<p>Sets the fill mode for a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> open for writing to <code>off</code>.</p>
<p>This will prevent the data from being pre-filled with fill values, which
may result in some performance improvements. However, you must then make
sure the data is actually written before being read.</p></div>
</dd>
<dt id="netCDF4.Dataset.set_fill_on"><code class="name flex">
<span>def <span class="ident">set_fill_on</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_fill_on(self)</code></strong></p>
<p>Sets the fill mode for a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> open for writing to <code>on</code>.</p>
<p>This causes data to be pre-filled with fill values. The fill values can be
controlled by the variable's <code>_Fill_Value</code> attribute, but is usually
sufficient to the use the netCDF default <code>_Fill_Value</code> (defined
separately for each variable type). The default behavior of the netCDF
library corresponds to <code>set_fill_on</code>.
Data which are equal to the
<code>_Fill_Value</code> indicate that the variable was created, but never written
to.</p></div>
</dd>
<dt id="netCDF4.Dataset.set_ncstring_attrs"><code class="name flex">
<span>def <span class="ident">set_ncstring_attrs</span></span>(<span>self, value)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_ncstring_attrs(self, True_or_False)</code></strong></p>
<p>Call <code><a title="netCDF4.Variable.set_ncstring_attrs" href="#netCDF4.Variable.set_ncstring_attrs">Variable.set_ncstring_attrs()</a></code> for all variables contained in
this <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code>, as well as for all its
subgroups and their variables.</p>
<p><strong><code>True_or_False</code></strong>: Boolean determining if all string attributes are
created as variable-length NC_STRINGs, (if True), or if ascii text
attributes are stored as NC_CHARs (if False; default)</p>
<p><strong><em>Note</em></strong>: Calling this function only affects newly created attributes
of existing (sub-) groups and their variables.</p></div>
</dd>
<dt id="netCDF4.Dataset.setncattr"><code class="name flex">
<span>def <span class="ident">setncattr</span></span>(<span>self, name, value)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>setncattr(self,name,value)</code></strong></p>
<p>set a netCDF dataset or group attribute using name,value pair.
Use if you need to set a netCDF attribute with the
with the same name as one of the reserved python attributes.</p></div>
</dd>
<dt id="netCDF4.Dataset.setncattr_string"><code class="name flex">
<span>def <span class="ident">setncattr_string</span></span>(<span>self, name, value)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>setncattr_string(self,name,value)</code></strong></p>
<p>set a netCDF dataset or group string attribute using name,value pair.
Use if you need to ensure that a netCDF attribute is created with type
<code>NC_STRING</code> if the file format is <code>NETCDF4</code>.</p></div>
</dd>
<dt id="netCDF4.Dataset.setncatts"><code class="name flex">
<span>def <span class="ident">setncatts</span></span>(<span>self, attdict)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>setncatts(self,attdict)</code></strong></p>
<p>set a bunch of netCDF dataset or group attributes at once using a python dictionary.
This may be faster when setting a lot of attributes for a <code>NETCDF3</code>
formatted file, since nc_redef/nc_enddef is not called in between setting
each attribute</p></div>
</dd>
<dt id="netCDF4.Dataset.sync"><code class="name flex">
<span>def <span class="ident">sync</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>sync(self)</code></strong></p>
<p>Writes all buffered data in the <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> to the disk file.</p></div>
</dd>
<dt id="netCDF4.Dataset.tocdl"><code class="name flex">
<span>def <span class="ident">tocdl</span></span>(<span>self, coordvars=False, data=False, outfile=None)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>tocdl(self, coordvars=False, data=False, outfile=None)</code></strong></p>
<p>call <a href="https://www.unidata.ucar.edu/software/netcdf/docs/netcdf_utilities_guide.html#ncdump_guide">ncdump</a> via subprocess to create <a href="https://www.unidata.ucar.edu/software/netcdf/docs/netcdf_utilities_guide.html#cdl_guide">CDL</a>
text representation of Dataset. Requires <a href="https://www.unidata.ucar.edu/software/netcdf/docs/netcdf_utilities_guide.html#ncdump_guide">ncdump</a>
to be installed and in <code>$PATH</code>.</p>
<p><strong><code>coordvars</code></strong>: include coordinate variable data (via <code>ncdump -c</code>). Default False</p>
<p><strong><code>data</code></strong>: if True, write out variable data (Default False).</p>
<p><strong><code>outfile</code></strong>: If not None, file to output ncdump to. Default is to return a string.</p></div>
</dd>
</dl>
</dd>
<dt id="netCDF4.Dimension"><code class="flex name class">
<span>class <span class="ident">Dimension</span></span>
<span>(</span><span>...)</span>
</code></dt>
<dd>
<div class="desc"><p>A netCDF <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> is used to describe the coordinates of a <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code>.
See <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> for more details.</p>
<p>The current maximum size of a <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> instance can be obtained by
calling the python <code>len</code> function on the <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> instance. The
<code><a title="netCDF4.Dimension.isunlimited" href="#netCDF4.Dimension.isunlimited">Dimension.isunlimited()</a></code> method of a <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> instance can be used to
determine if the dimension is unlimited.</p>
<p>Read-only class variables:</p>
<p><strong><code>name</code></strong>: String name, used when creating a <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> with
<code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code>.</p>
<p><strong><code>size</code></strong>: Current <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> size (same as <code>len(d)</code>, where <code>d</code> is a
<code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> instance).</p>
<p><strong><code>__init__(self, group, name, size=None)</code></strong></p>
<p><code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> constructor.</p>
<p><strong><code>group</code></strong>: <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance to associate with dimension.</p>
<p><strong><code>name</code></strong>: Name of the dimension.</p>
<p><strong><code>size</code></strong>: Size of the dimension. <code>None</code> or 0 means unlimited. (Default <code>None</code>).</p>
<p><strong><em>Note</em></strong>: <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> instances should be created using the
<code><a title="netCDF4.Dataset.createDimension" href="#netCDF4.Dataset.createDimension">Dataset.createDimension()</a></code> method of a <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> or
<code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> instance, not using <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> directly.</p></div>
<h3>Instance variables</h3>
<dl>
<dt id="netCDF4.Dimension.name"><code class="name">var <span class="ident">name</span></code></dt>
<dd>
<div class="desc"><p>string name of Dimension instance</p></div>
</dd>
<dt id="netCDF4.Dimension.size"><code class="name">var <span class="ident">size</span></code></dt>
<dd>
<div class="desc"><p>current size of Dimension (calls <code>len</code> on Dimension instance)</p></div>
</dd>
</dl>
<h3>Methods</h3>
<dl>
<dt id="netCDF4.Dimension.group"><code class="name flex">
<span>def <span class="ident">group</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>group(self)</code></strong></p>
<p>return the group that this <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> is a member of.</p></div>
</dd>
<dt id="netCDF4.Dimension.isunlimited"><code class="name flex">
<span>def <span class="ident">isunlimited</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>isunlimited(self)</code></strong></p>
<p>returns <code>True</code> if the <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> instance is unlimited, <code>False</code> otherwise.</p></div>
</dd>
</dl>
</dd>
<dt id="netCDF4.EnumType"><code class="flex name class">
<span>class <span class="ident">EnumType</span></span>
<span>(</span><span>...)</span>
</code></dt>
<dd>
<div class="desc"><p>A <code><a title="netCDF4.EnumType" href="#netCDF4.EnumType">EnumType</a></code> instance is used to describe an Enum data
type, and can be passed to the the <code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code> method of
a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance. See
<code><a title="netCDF4.EnumType" href="#netCDF4.EnumType">EnumType</a></code> for more details.</p>
<p>The instance variables <code>dtype</code>, <code>name</code> and <code>enum_dict</code> should not be modified by
the user.</p>
<p><strong><code>__init__(group, datatype, datatype_name, enum_dict)</code></strong></p>
<p>EnumType constructor.</p>
<p><strong><code>group</code></strong>: <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance to associate with the VLEN datatype.</p>
<p><strong><code>datatype</code></strong>: An numpy integer dtype object describing the base type
for the Enum.</p>
<p><strong><code>datatype_name</code></strong>: a Python string containing a description of the
Enum data type.</p>
<p><strong><code>enum_dict</code></strong>: a Python dictionary containing the Enum field/value
pairs.</p>
<p><strong><em><code>Note</code></em></strong>: <code><a title="netCDF4.EnumType" href="#netCDF4.EnumType">EnumType</a></code> instances should be created using the
<code><a title="netCDF4.Dataset.createEnumType" href="#netCDF4.Dataset.createEnumType">Dataset.createEnumType()</a></code> method of a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or
<code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance, not using this class directly.</p></div>
<h3>Instance variables</h3>
<dl>
<dt id="netCDF4.EnumType.dtype"><code class="name">var <span class="ident">dtype</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.EnumType.enum_dict"><code class="name">var <span class="ident">enum_dict</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.EnumType.name"><code class="name">var <span class="ident">name</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
</dl>
</dd>
<dt id="netCDF4.Group"><code class="flex name class">
<span>class <span class="ident">Group</span></span>
<span>(</span><span>...)</span>
</code></dt>
<dd>
<div class="desc"><p>Groups define a hierarchical namespace within a netCDF file. They are
analogous to directories in a unix filesystem. Each <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> behaves like
a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> within a Dataset, and can contain it's own variables,
dimensions and attributes (and other Groups). See <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code>
for more details.</p>
<p><code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> inherits from <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code>, so all the
<code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> class methods and variables are available
to a <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance (except the <code>close</code> method).</p>
<p>Additional read-only class variables:</p>
<p><strong><code>name</code></strong>: String describing the group name.</p>
<p><strong><code>__init__(self, parent, name)</code></strong>
<code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> constructor.</p>
<p><strong><code>parent</code></strong>: <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance for the parent group.
If being created
in the root group, use a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> instance.</p>
<p><strong><code>name</code></strong>: - Name of the group.</p>
<p><strong><em>Note</em></strong>: <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instances should be created using the
<code><a title="netCDF4.Dataset.createGroup" href="#netCDF4.Dataset.createGroup">Dataset.createGroup()</a></code> method of a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> instance, or
another <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance, not using this class directly.</p></div>
<h3>Ancestors</h3>
<ul class="hlist">
<li>netCDF4._netCDF4.Dataset</li>
</ul>
<h3>Methods</h3>
<dl>
<dt id="netCDF4.Group.close"><code class="name flex">
<span>def <span class="ident">close</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>close(self)</code></strong></p>
<p>overrides <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> close method which does not apply to <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code>
instances, raises OSError.</p></div>
</dd>
</dl>
</dd>
<dt id="netCDF4.MFDataset"><code class="flex name class">
<span>class <span class="ident">MFDataset</span></span>
<span>(</span><span>files, check=False, aggdim=None, exclude=[], master_file=None)</span>
</code></dt>
<dd>
<div class="desc"><p>Class for reading multi-file netCDF Datasets, making variables
spanning multiple files appear as if they were in one file.
Datasets must be in <code>NETCDF4_CLASSIC, NETCDF3_CLASSIC, NETCDF3_64BIT_OFFSET
or NETCDF3_64BIT_DATA&lt;code&gt; format (&lt;/code&gt;NETCDF4</code> Datasets won't work).</p>
<p>Adapted from <a href="http://pysclint.sourceforge.net/pycdf">pycdf</a> by Andre Gosselin.</p>
<p>Example usage (See <code><a title="netCDF4.MFDataset" href="#netCDF4.MFDataset">MFDataset</a></code> for more details):</p>
<pre><code class="language-python">&gt;&gt;&gt; import numpy as np
&gt;&gt;&gt; # create a series of netCDF files with a variable sharing
&gt;&gt;&gt; # the same unlimited dimension.
&gt;&gt;&gt; for nf in range(10):
...     with Dataset(&quot;mftest%s.nc&quot; % nf, &quot;w&quot;, format='NETCDF4_CLASSIC') as f:
...         f.createDimension(&quot;x&quot;,None)
...         x = f.createVariable(&quot;x&quot;,&quot;i&quot;,(&quot;x&quot;,))
...         x[0:10] = np.arange(nf*10,10*(nf+1))
&gt;&gt;&gt; # now read all those files in at once, in one Dataset.
&gt;&gt;&gt; f = MFDataset(&quot;mftest*nc&quot;)
&gt;&gt;&gt; print(f.variables[&quot;x&quot;][:])
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
 96 97 98 99]
</code></pre>
<p><strong><code>__init__(self, files, check=False, aggdim=None, exclude=[],
master_file=None)</code></strong></p>
<p>Open a Dataset spanning multiple files, making it look as if it was a
single file. Variables in the list of files that share the same
dimension (specified with the keyword <code>aggdim</code>) are aggregated. If
<code>aggdim</code> is not specified, the unlimited is aggregated.
Currently,
<code>aggdim</code> must be the leftmost (slowest varying) dimension of each
of the variables to be aggregated.</p>
<p><strong><code>files</code></strong>: either a sequence of netCDF files or a string with a
wildcard (converted to a sorted list of files using glob)
If
the <code>master_file</code> kwarg is not specified, the first file
in the list will become the "master" file, defining all the
variables with an aggregation dimension which may span
subsequent files. Attribute access returns attributes only from "master"
file. The files are always opened in read-only mode.</p>
<p><strong><code>check</code></strong>: True if you want to do consistency checking to ensure the
correct variables structure for all of the netcdf files.
Checking makes
the initialization of the MFDataset instance much slower. Default is
False.</p>
<p><strong><code>aggdim</code></strong>: The name of the dimension to aggregate over (must
be the leftmost dimension of each of the variables to be aggregated).
If None (default), aggregate over the unlimited dimension.</p>
<p><strong><code>exclude</code></strong>: A list of variable names to exclude from aggregation.
Default is an empty list.</p>
<p><strong><code>master_file</code></strong>: file to use as "master file", defining all the
variables with an aggregation dimension and all global attributes.</p></div>
<h3>Ancestors</h3>
<ul class="hlist">
<li>netCDF4._netCDF4.Dataset</li>
</ul>
<h3>Methods</h3>
<dl>
<dt id="netCDF4.MFDataset.close"><code class="name flex">
<span>def <span class="ident">close</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>close(self)</code></strong></p>
<p>close all the open files.</p></div>
</dd>
<dt id="netCDF4.MFDataset.isopen"><code class="name flex">
<span>def <span class="ident">isopen</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>isopen(self)</code></strong></p>
<p>True if all files are open, False otherwise.</p></div>
</dd>
<dt id="netCDF4.MFDataset.ncattrs"><code class="name flex">
<span>def <span class="ident">ncattrs</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>ncattrs(self)</code></strong></p>
<p>return the netcdf attribute names from the master file.</p></div>
</dd>
</dl>
</dd>
<dt id="netCDF4.MFTime"><code class="flex name class">
<span>class <span class="ident">MFTime</span></span>
<span>(</span><span>time, units=None, calendar=None)</span>
</code></dt>
<dd>
<div class="desc"><p>Class providing an interface to a MFDataset time Variable by imposing a unique common
time unit and/or calendar to all files.</p>
<p>Example usage (See <code><a title="netCDF4.MFTime" href="#netCDF4.MFTime">MFTime</a></code> for more details):</p>
<pre><code class="language-python">&gt;&gt;&gt; import numpy as np
&gt;&gt;&gt; f1 = Dataset(&quot;mftest_1.nc&quot;,&quot;w&quot;, format=&quot;NETCDF4_CLASSIC&quot;)
&gt;&gt;&gt; f2 = Dataset(&quot;mftest_2.nc&quot;,&quot;w&quot;, format=&quot;NETCDF4_CLASSIC&quot;)
&gt;&gt;&gt; f1.createDimension(&quot;time&quot;,None)
&gt;&gt;&gt; f2.createDimension(&quot;time&quot;,None)
&gt;&gt;&gt; t1 = f1.createVariable(&quot;time&quot;,&quot;i&quot;,(&quot;time&quot;,))
&gt;&gt;&gt; t2 = f2.createVariable(&quot;time&quot;,&quot;i&quot;,(&quot;time&quot;,))
&gt;&gt;&gt; t1.units = &quot;days since 2000-01-01&quot;
&gt;&gt;&gt; t2.units = &quot;days since 2000-02-01&quot;
&gt;&gt;&gt; t1.calendar = &quot;standard&quot;
&gt;&gt;&gt; t2.calendar = &quot;standard&quot;
&gt;&gt;&gt; t1[:] = np.arange(31)
&gt;&gt;&gt; t2[:] = np.arange(30)
&gt;&gt;&gt; f1.close()
&gt;&gt;&gt; f2.close()
&gt;&gt;&gt; # Read the two files in at once, in one Dataset.
&gt;&gt;&gt; f = MFDataset(&quot;mftest_*nc&quot;)
&gt;&gt;&gt; t = f.variables[&quot;time&quot;]
&gt;&gt;&gt; print(t.units)
days since 2000-01-01
&gt;&gt;&gt; print(t[32])  # The value written in the file, inconsistent with the MF time units.
1
&gt;&gt;&gt; T = MFTime(t)
&gt;&gt;&gt; print(T[32])
32
</code></pre>
<p><strong><code>__init__(self, time, units=None, calendar=None)</code></strong></p>
<p>Create a time Variable with units consistent across a multifile
dataset.</p>
<p><strong><code>time</code></strong>: Time variable from a <code><a title="netCDF4.MFDataset" href="#netCDF4.MFDataset">MFDataset</a></code>.</p>
<p><strong><code>units</code></strong>: Time units, for example, <code>'days since 1979-01-01'</code>. If <code>None</code>,
use the units from the master variable.</p>
<p><strong><code>calendar</code></strong>: Calendar overload to use across all files, for example,
<code>'standard'</code> or <code>'gregorian'</code>. If <code>None</code>, check that the calendar attribute
is present on each variable and values are unique across files raising a
<code>ValueError</code> otherwise.</p></div>
<h3>Ancestors</h3>
<ul class="hlist">
<li>netCDF4._netCDF4._Variable</li>
</ul>
</dd>
<dt id="netCDF4.VLType"><code class="flex name class">
<span>class <span class="ident">VLType</span></span>
<span>(</span><span>...)</span>
</code></dt>
<dd>
<div class="desc"><p>A <code><a title="netCDF4.VLType" href="#netCDF4.VLType">VLType</a></code> instance is used to describe a variable length (VLEN) data
type, and can be passed to the the <code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code> method of
a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance. See
<code><a title="netCDF4.VLType" href="#netCDF4.VLType">VLType</a></code> for more details.</p>
<p>The instance variables <code>dtype</code> and <code>name</code> should not be modified by
the user.</p>
<p><strong><code>__init__(group, datatype, datatype_name)</code></strong></p>
<p>VLType constructor.</p>
<p><strong><code>group</code></strong>: <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance to associate with the VLEN datatype.</p>
<p><strong><code>datatype</code></strong>: An numpy dtype object describing the component type for the
variable length array.</p>
<p><strong><code>datatype_name</code></strong>: a Python string containing a description of the
VLEN data type.</p>
<p><strong><em><code>Note</code></em></strong>: <code><a title="netCDF4.VLType" href="#netCDF4.VLType">VLType</a></code> instances should be created using the
<code><a title="netCDF4.Dataset.createVLType" href="#netCDF4.Dataset.createVLType">Dataset.createVLType()</a></code> method of a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or
<code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance, not using this class directly.</p></div>
<h3>Instance variables</h3>
<dl>
<dt id="netCDF4.VLType.dtype"><code class="name">var <span class="ident">dtype</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.VLType.name"><code class="name">var <span class="ident">name</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
</dl>
</dd>
<dt id="netCDF4.Variable"><code class="flex name class">
<span>class <span class="ident">Variable</span></span>
<span>(</span><span>...)</span>
</code></dt>
<dd>
<div class="desc"><p>A netCDF <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> is used to read and write netCDF data.
They are
analogous to numpy array objects. See <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> for more
details.</p>
<p>A list of attribute names corresponding to netCDF attributes defined for
the variable can be obtained with the <code><a title="netCDF4.Variable.ncattrs" href="#netCDF4.Variable.ncattrs">Variable.ncattrs()</a></code> method. These
attributes can be created by assigning to an attribute of the
<code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> instance. A dictionary containing all the netCDF attribute
name/value pairs is provided by the <code>__dict__</code> attribute of a
<code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> instance.</p>
<p>The following class variables are read-only:</p>
<p><strong><code>dimensions</code></strong>: A tuple containing the names of the
dimensions associated with this variable.</p>
<p><strong><code>dtype</code></strong>: A numpy dtype object describing the
variable's data type.</p>
<p><strong><code>ndim</code></strong>: The number of variable dimensions.</p>
<p><strong><code>shape</code></strong>: A tuple with the current shape (length of all dimensions).</p>
<p><strong><code>scale</code></strong>: If True, <code>scale_factor</code> and <code>add_offset</code> are
applied, and signed integer data is automatically converted to
unsigned integer data if the <code>_Unsigned</code> attribute is set to "true" or "True".
Default is <code>True</code>, can be reset using <code><a title="netCDF4.Variable.set_auto_scale" href="#netCDF4.Variable.set_auto_scale">Variable.set_auto_scale()</a></code> and
<code><a title="netCDF4.Variable.set_auto_maskandscale" href="#netCDF4.Variable.set_auto_maskandscale">Variable.set_auto_maskandscale()</a></code> methods.</p>
<p><strong><code>mask</code></strong>: If True, data is automatically converted to/from masked
arrays when missing values or fill values are present. Default is <code>True</code>, can be
reset using <code><a title="netCDF4.Variable.set_auto_mask" href="#netCDF4.Variable.set_auto_mask">Variable.set_auto_mask()</a></code> and <code><a title="netCDF4.Variable.set_auto_maskandscale" href="#netCDF4.Variable.set_auto_maskandscale">Variable.set_auto_maskandscale()</a></code>
methods. Only relevant for Variables with primitive or enum types (ignored
for compound and vlen Variables).</p>
<p><strong><code><a title="netCDF4.chartostring" href="#netCDF4.chartostring">chartostring()</a></code></strong>: If True, data is automatically converted to/from character
arrays to string arrays when the <code>_Encoding</code> variable attribute is set.
Default is <code>True</code>, can be reset using
<code><a title="netCDF4.Variable.set_auto_chartostring" href="#netCDF4.Variable.set_auto_chartostring">Variable.set_auto_chartostring()</a></code> method.</p>
<p><strong><code>least_significant_digit</code></strong>: Describes the power of ten of the
smallest decimal place in the data the contains a reliable value.
Data is
truncated to this decimal place when it is assigned to the <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code>
instance. If <code>None</code>, the data is not truncated.</p>
<p><strong><code>significant_digits</code></strong>: New in version 1.6.0. Describes the number of significant
digits in the data the contains a reliable value.
Data is
truncated to retain this number of significant digits when it is assigned to the
<code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> instance. If <code>None</code>, the data is not truncated.
Only available with netcdf-c &gt;= 4.9.0,
and only works with <code>NETCDF4</code> or <code>NETCDF4_CLASSIC</code> formatted files.
The number of significant digits used in the quantization of variable data can be
obtained using the <code>Variable.significant_digits</code> method. Default <code>None</code> -
no quantization done.</p>
<p><strong><code>quantize_mode</code></strong>: New in version 1.6.0. Controls
the quantization algorithm (default 'BitGroom', 'BitRound' and
'GranularBitRound' also available).
The 'GranularBitRound'
algorithm may result in better compression for typical geophysical datasets.
Ignored if <code>significant_digits</code> not specified. If 'BitRound' is used, then
<code>significant_digits</code> is interpreted as binary (not decimal) digits.</p>
<p><strong><code>__orthogonal_indexing__</code></strong>: Always <code>True</code>.
Indicates to client code
that the object supports 'orthogonal indexing', which means that slices
that are 1d arrays or lists slice along each dimension independently.
This
behavior is similar to Fortran or Matlab, but different than numpy.</p>
<p><strong><code>datatype</code></strong>: numpy data type (for primitive data types) or VLType/CompoundType
instance (for compound or vlen data types).</p>
<p><strong><code>name</code></strong>: String name.</p>
<p><strong><code>size</code></strong>: The number of stored elements.</p>
<p><strong><code>__init__(self, group, name, datatype, dimensions=(), compression=None, zlib=False,
complevel=4, shuffle=True, szip_coding='nn', szip_pixels_per_block=8,
blosc_shuffle=1, fletcher32=False, contiguous=False,
chunksizes=None, endian='native',
least_significant_digit=None,fill_value=None,chunk_cache=None)</code></strong></p>
<p><code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> constructor.</p>
<p><strong><code>group</code></strong>: <code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> or <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> instance to associate with variable.</p>
<p><strong><code>name</code></strong>: Name of the variable.</p>
<p><strong><code>datatype</code></strong>: <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> data type. Can be specified by providing a
numpy dtype object, or a string that describes a numpy dtype object.
Supported values, corresponding to <code>str</code> attribute of numpy dtype
objects, include <code>'f4'</code> (32-bit floating point), <code>'f8'</code> (64-bit floating
point), <code>'i4'</code> (32-bit signed integer), <code>'i2'</code> (16-bit signed integer),
<code>'i8'</code> (64-bit signed integer), <code>'i4'</code> (8-bit signed integer), <code>'i1'</code>
(8-bit signed integer), <code>'u1'</code> (8-bit unsigned integer), <code>'u2'</code> (16-bit
unsigned integer), <code>'u4'</code> (32-bit unsigned integer), <code>'u8'</code> (64-bit
unsigned integer), or <code>'S1'</code> (single-character string).
From
compatibility with Scientific.IO.NetCDF, the old Numeric single character
typecodes can also be used (<code>'f'</code> instead of <code>'f4'</code>, <code>'d'</code> instead of
<code>'f8'</code>, <code>'h'</code> or <code>'s'</code> instead of <code>'i2'</code>, <code>'b'</code> or <code>'B'</code> instead of
<code>'i1'</code>, <code>'c'</code> instead of <code>'S1'</code>, and <code>'i'</code> or <code>'l'</code> instead of
<code>'i4'</code>). <code>datatype</code> can also be a <code><a title="netCDF4.CompoundType" href="#netCDF4.CompoundType">CompoundType</a></code> instance
(for a structured, or compound array), a <code><a title="netCDF4.VLType" href="#netCDF4.VLType">VLType</a></code> instance
(for a variable-length array), or the python <code>str</code> builtin
(for a variable-length string array). Numpy string and unicode datatypes with
length greater than one are aliases for <code>str</code>.</p>
<p><strong><code>dimensions</code></strong>: a tuple containing the variable's Dimension instances
(defined previously with <code>createDimension</code>). Default is an empty tuple
which means the variable is a scalar (and therefore has no dimensions).</p>
<p><strong><code>compression</code></strong>: compression algorithm to use.
Currently <code>zlib</code>,<code>szip</code>,<code>zstd</code>,<code>bzip2</code>,<code>blosc_lz</code>,<code>blosc_lz4</code>,<code>blosc_lz4hc</code>,
<code>blosc_zlib</code> and <code>blosc_zstd</code> are supported.
Default is <code>None</code> (no compression).
All of the compressors except
<code>zlib</code> and <code>szip</code> use the HDF5 plugin architecture.</p>
<p><strong><code>zlib</code></strong>: if <code>True</code>, data assigned to the <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code>
instance is compressed on disk. Default <code>False</code>. Deprecated - use
<code>compression='zlib'</code> instead.</p>
<p><strong><code>complevel</code></strong>: the level of compression to use (1 is the fastest,
but poorest compression, 9 is the slowest but best compression). Default 4.
Ignored if <code>compression=None</code> or <code>szip</code>. A value of 0 disables compression.</p>
<p><strong><code>shuffle</code></strong>: if <code>True</code>, the HDF5 shuffle filter is applied
to improve zlib compression. Default <code>True</code>. Ignored unless <code>compression = 'zlib'</code>.</p>
<p><strong><code>blosc_shuffle</code></strong>: shuffle filter inside blosc compressor (only
relevant if compression kwarg set to one of the blosc compressors).
Can be 0 (no blosc shuffle), 1 (bytewise shuffle) or 2 (bitwise
shuffle)). Default is 1. Ignored if blosc compressor not used.</p>
<p><strong><code>szip_coding</code></strong>: szip coding method. Can be <code>ec</code> (entropy coding)
or <code>nn</code> (nearest neighbor coding). Default is <code>nn</code>.
Ignored if szip compressor not used.</p>
<p><strong><code>szip_pixels_per_block</code></strong>: Can be 4,8,16 or 32 (Default 8).
Ignored if szip compressor not used.</p>
<p><strong><code>fletcher32</code></strong>: if <code>True</code> (default <code>False</code>), the Fletcher32 checksum
algorithm is used for error detection.</p>
<p><strong><code>contiguous</code></strong>: if <code>True</code> (default <code>False</code>), the variable data is
stored contiguously on disk.
Default <code>False</code>. Setting to <code>True</code> for
a variable with an unlimited dimension will trigger an error. Fixed
size variables (with no unlimited dimension) with no compression
filters are contiguous by default.</p>
<p><strong><code>chunksizes</code></strong>: Can be used to specify the HDF5 chunksizes for each
dimension of the variable. A detailed discussion of HDF chunking and I/O
performance is available
<a href="https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking">here</a>.
The default chunking scheme in the netcdf-c library is discussed
<a href="https://www.unidata.ucar.edu/software/netcdf/documentation/NUG/netcdf_perf_chunking.html">here</a>.
Basically, you want the chunk size for each dimension to match as
closely as possible the size of the data block that users will read
from the file. <code>chunksizes</code> cannot be set if <code>contiguous=True</code>.</p>
<p><strong><code>endian</code></strong>: Can be used to control whether the
data is stored in little or big endian format on disk. Possible
values are <code>little, big</code> or <code>native</code> (default). The library
will automatically handle endian conversions when the data is read,
but if the data is always going to be read on a computer with the
opposite format as the one used to create the file, there may be
some performance advantage to be gained by setting the endian-ness.
For netCDF 3 files (that don't use HDF5), only <code>endian='native'</code> is allowed.</p>
<p>The <code>compression, zlib, complevel, shuffle, fletcher32, contiguous</code> and <code>chunksizes</code>
keywords are silently ignored for netCDF 3 files that do not use HDF5.</p>
<p><strong><code>least_significant_digit</code></strong>: If this or <code>significant_digits</code> are specified,
variable data will be truncated (quantized).
In conjunction with <code>compression='zlib'</code> this produces
'lossy', but significantly more efficient compression. For example, if
<code>least_significant_digit=1</code>, data will be quantized using
around(scale<em>data)/scale, where scale = 2</em>*bits, and bits is determined
so that a precision of 0.1 is retained (in this case bits=4). Default is
<code>None</code>, or no quantization.</p>
<p><strong><code>significant_digits</code></strong>: New in version 1.6.0.
As described for <code>least_significant_digit</code>
except the number of significant digits retained is prescribed independent
of the floating point exponent. Default <code>None</code> - no quantization done.</p>
<p><strong><code>quantize_mode</code></strong>: New in version 1.6.0. Controls
the quantization algorithm (default 'BitGroom', 'BitRound' and
'GranularBitRound' also available).
The 'GranularBitRound'
algorithm may result in better compression for typical geophysical datasets.
Ignored if <code>significant_digts</code> not specified. If 'BitRound' is used, then
<code>significant_digits</code> is interpreted as binary (not decimal) digits.</p>
<p><strong><code>fill_value</code></strong>:
If specified, the default netCDF fill value (the
value that the variable gets filled with before any data is written to it)
is replaced with this value, and the <code>_FillValue</code> attribute is set.
If fill_value is set to <code>False</code>, then the variable is not pre-filled.
The default netCDF fill values can be found in the dictionary <code>netCDF4.default_fillvals</code>.
If not set, the default fill value will be used but no <code>_FillValue</code> attribute will be created
(this is the default behavior of the netcdf-c library). If you want to use the
default fill value, but have the <code>_FillValue</code> attribute set, use
<code>fill_value='default'</code> (note - this only works for primitive data types). <code><a title="netCDF4.Variable.get_fill_value" href="#netCDF4.Variable.get_fill_value">Variable.get_fill_value()</a></code>
can be used to retrieve the fill value, even if the <code>_FillValue</code> attribute is not set.</p>
<p><strong><code>chunk_cache</code></strong>: If specified, sets the chunk cache size for this variable.
Persists as long as Dataset is open. Use <code>set_var_chunk_cache</code> to
change it when Dataset is re-opened.</p>
<p><strong><em>Note</em></strong>: <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> instances should be created using the
<code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">Dataset.createVariable()</a></code> method of a <code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code> or
<code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code> instance, not using this class directly.</p></div>
<h3>Instance variables</h3>
<dl>
<dt id="netCDF4.Variable.always_mask"><code class="name">var <span class="ident">always_mask</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Variable.auto_complex"><code class="name">var <span class="ident">auto_complex</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Variable.chartostring"><code class="name">var <span class="ident">chartostring</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Variable.datatype"><code class="name">var <span class="ident">datatype</span></code></dt>
<dd>
<div class="desc"><p>numpy data type (for primitive data types) or
VLType/CompoundType/EnumType instance
(for compound, vlen
or enum data types)</p></div>
</dd>
<dt id="netCDF4.Variable.dimensions"><code class="name">var <span class="ident">dimensions</span></code></dt>
<dd>
<div class="desc"><p>get variables's dimension names</p></div>
</dd>
<dt id="netCDF4.Variable.dtype"><code class="name">var <span class="ident">dtype</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Variable.mask"><code class="name">var <span class="ident">mask</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Variable.name"><code class="name">var <span class="ident">name</span></code></dt>
<dd>
<div class="desc"><p>string name of Variable instance</p></div>
</dd>
<dt id="netCDF4.Variable.ndim"><code class="name">var <span class="ident">ndim</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Variable.scale"><code class="name">var <span class="ident">scale</span></code></dt>
<dd>
<div class="desc"></div>
</dd>
<dt id="netCDF4.Variable.shape"><code class="name">var <span class="ident">shape</span></code></dt>
<dd>
<div class="desc"><p>find current sizes of all variable dimensions</p></div>
</dd>
<dt id="netCDF4.Variable.size"><code class="name">var <span class="ident">size</span></code></dt>
<dd>
<div class="desc"><p>Return the number of stored elements.</p></div>
</dd>
</dl>
<h3>Methods</h3>
<dl>
<dt id="netCDF4.Variable.assignValue"><code class="name flex">
<span>def <span class="ident">assignValue</span></span>(<span>self, val)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>assignValue(self, val)</code></strong></p>
<p>assign a value to a scalar variable.
Provided for compatibility with
Scientific.IO.NetCDF, can also be done by assigning to an Ellipsis slice ([&hellip;]).</p></div>
</dd>
<dt id="netCDF4.Variable.chunking"><code class="name flex">
<span>def <span class="ident">chunking</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>chunking(self)</code></strong></p>
<p>return variable chunking information.
If the dataset is
defined to be contiguous (and hence there is no chunking) the word 'contiguous'
is returned.
Otherwise, a sequence with the chunksize for
each dimension is returned.</p></div>
</dd>
<dt id="netCDF4.Variable.delncattr"><code class="name flex">
<span>def <span class="ident">delncattr</span></span>(<span>self, name)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>delncattr(self,name,value)</code></strong></p>
<p>delete a netCDF variable attribute.
Use if you need to delete a
netCDF attribute with the same name as one of the reserved python
attributes.</p></div>
</dd>
<dt id="netCDF4.Variable.endian"><code class="name flex">
<span>def <span class="ident">endian</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>endian(self)</code></strong></p>
<p>return endian-ness (<code>little,big,native</code>) of variable (as stored in HDF5 file).</p></div>
</dd>
<dt id="netCDF4.Variable.filters"><code class="name flex">
<span>def <span class="ident">filters</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>filters(self)</code></strong></p>
<p>return dictionary containing HDF5 filter parameters.</p></div>
</dd>
<dt id="netCDF4.Variable.getValue"><code class="name flex">
<span>def <span class="ident">getValue</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>getValue(self)</code></strong></p>
<p>get the value of a scalar variable.
Provided for compatibility with
Scientific.IO.NetCDF, can also be done by slicing with an Ellipsis ([&hellip;]).</p></div>
</dd>
<dt id="netCDF4.Variable.get_dims"><code class="name flex">
<span>def <span class="ident">get_dims</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>get_dims(self)</code></strong></p>
<p>return a tuple of <code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code> instances associated with this
<code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code>.</p></div>
</dd>
<dt id="netCDF4.Variable.get_fill_value"><code class="name flex">
<span>def <span class="ident">get_fill_value</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>get_fill_value(self)</code></strong></p>
<p>return the fill value associated with this <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> (returns <code>None</code> if data is not
pre-filled). Works even if default fill value was used, and <code>_FillValue</code> attribute
does not exist.</p></div>
</dd>
<dt id="netCDF4.Variable.get_var_chunk_cache"><code class="name flex">
<span>def <span class="ident">get_var_chunk_cache</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>get_var_chunk_cache(self)</code></strong></p>
<p>return variable chunk cache information in a tuple (size,nelems,preemption).
See netcdf C library documentation for <code>nc_get_var_chunk_cache</code> for
details.</p></div>
</dd>
<dt id="netCDF4.Variable.getncattr"><code class="name flex">
<span>def <span class="ident">getncattr</span></span>(<span>self, name, encoding='utf-8')</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>getncattr(self,name)</code></strong></p>
<p>retrieve a netCDF variable attribute.
Use if you need to set a
netCDF attribute with the same name as one of the reserved python
attributes.</p>
<p>option kwarg <code>encoding</code> can be used to specify the
character encoding of a string attribute (default is <code>utf-8</code>).</p></div>
</dd>
<dt id="netCDF4.Variable.group"><code class="name flex">
<span>def <span class="ident">group</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>group(self)</code></strong></p>
<p>return the group that this <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> is a member of.</p></div>
</dd>
<dt id="netCDF4.Variable.ncattrs"><code class="name flex">
<span>def <span class="ident">ncattrs</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>ncattrs(self)</code></strong></p>
<p>return netCDF attribute names for this <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> in a list.</p></div>
</dd>
<dt id="netCDF4.Variable.quantization"><code class="name flex">
<span>def <span class="ident">quantization</span></span>(<span>self)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>quantization(self)</code></strong></p>
<p>return number of significant digits and the algorithm used in quantization.
Returns None if quantization not active.</p></div>
</dd>
<dt id="netCDF4.Variable.renameAttribute"><code class="name flex">
<span>def <span class="ident">renameAttribute</span></span>(<span>self, oldname, newname)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>renameAttribute(self, oldname, newname)</code></strong></p>
<p>rename a <code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code> attribute named <code>oldname</code> to <code>newname</code>.</p></div>
</dd>
<dt id="netCDF4.Variable.set_always_mask"><code class="name flex">
<span>def <span class="ident">set_always_mask</span></span>(<span>self, always_mask)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_always_mask(self,always_mask)</code></strong></p>
<p>turn on or off conversion of data without missing values to regular
numpy arrays.</p>
<p><code>always_mask</code> is a Boolean determining if automatic conversion of
masked arrays with no missing values to regular numpy arrays shall be
applied. Default is True. Set to False to restore the default behaviour
in versions prior to 1.4.1 (numpy array returned unless missing values are present,
otherwise masked array returned).</p></div>
</dd>
<dt id="netCDF4.Variable.set_auto_chartostring"><code class="name flex">
<span>def <span class="ident">set_auto_chartostring</span></span>(<span>self, chartostring)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_auto_chartostring(self,<a title="netCDF4.chartostring" href="#netCDF4.chartostring">chartostring()</a>)</code></strong></p>
<p>turn on or off automatic conversion of character variable data to and
from numpy fixed length string arrays when the <code>_Encoding</code> variable attribute
is set.</p>
<p>If <code><a title="netCDF4.chartostring" href="#netCDF4.chartostring">chartostring()</a></code> is set to <code>True</code>, when data is read from a character variable
(dtype = <code>S1</code>) that has an <code>_Encoding</code> attribute, it is converted to a numpy
fixed length unicode string array (dtype = <code>UN</code>, where <code>N</code> is the length
of the the rightmost dimension of the variable).
The value of <code>_Encoding</code>
is the unicode encoding that is used to decode the bytes into strings.</p>
<p>When numpy string data is written to a variable it is converted back to
individual bytes, with the number of bytes in each string equalling the
rightmost dimension of the variable.</p>
<p>The default value of <code><a title="netCDF4.chartostring" href="#netCDF4.chartostring">chartostring()</a></code> is <code>True</code>
(automatic conversions are performed).</p></div>
</dd>
<dt id="netCDF4.Variable.set_auto_mask"><code class="name flex">
<span>def <span class="ident">set_auto_mask</span></span>(<span>self, mask)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_auto_mask(self,mask)</code></strong></p>
<p>turn on or off automatic conversion of variable data to and
from masked arrays .</p>
<p>If <code>mask</code> is set to <code>True</code>, when data is read from a variable
it is converted to a masked array if any of the values are exactly
equal to the either the netCDF _FillValue or the value specified by the
missing_value variable attribute. The fill_value of the masked array
is set to the missing_value attribute (if it exists), otherwise
the netCDF _FillValue attribute (which has a default value
for each data type). If the variable has no missing_value attribute, the
_FillValue is used instead. If the variable has valid_min/valid_max and
missing_value attributes, data outside the specified range will be masked.
When data is written to a variable, the masked
array is converted back to a regular numpy array by replacing all the
masked values by the missing_value attribute of the variable (if it
exists).
If the variable has no missing_value attribute, the _FillValue
is used instead.</p>
<p>The default value of <code>mask</code> is <code>True</code>
(automatic conversions are performed).</p></div>
</dd>
<dt id="netCDF4.Variable.set_auto_maskandscale"><code class="name flex">
<span>def <span class="ident">set_auto_maskandscale</span></span>(<span>self, maskandscale)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_auto_maskandscale(self,maskandscale)</code></strong></p>
<p>turn on or off automatic conversion of variable data to and
from masked arrays, automatic packing/unpacking of variable
data using <code>scale_factor</code> and <code>add_offset</code> attributes and
automatic conversion of signed integer data to unsigned integer
data if the <code>_Unsigned</code> attribute exists and is set to "true" (or "True").</p>
<p>If <code>maskandscale</code> is set to <code>True</code>, when data is read from a variable
it is converted to a masked array if any of the values are exactly
equal to the either the netCDF _FillValue or the value specified by the
missing_value variable attribute. The fill_value of the masked array
is set to the missing_value attribute (if it exists), otherwise
the netCDF _FillValue attribute (which has a default value
for each data type). If the variable has no missing_value attribute, the
_FillValue is used instead. If the variable has valid_min/valid_max and
missing_value attributes, data outside the specified range will be masked.
When data is written to a variable, the masked
array is converted back to a regular numpy array by replacing all the
masked values by the missing_value attribute of the variable (if it
exists).
If the variable has no missing_value attribute, the _FillValue
is used instead.</p>
<p>If <code>maskandscale</code> is set to <code>True</code>, and the variable has a
<code>scale_factor</code> or an <code>add_offset</code> attribute, then data read
from that variable is unpacked using::</p>
<pre><code>data = self.scale_factor*data + self.add_offset
</code></pre>
<p>When data is written to a variable it is packed using::</p>
<pre><code>data = (data - self.add_offset)/self.scale_factor
</code></pre>
<p>If either scale_factor is present, but add_offset is missing, add_offset
is assumed zero.
If add_offset is present, but scale_factor is missing,
scale_factor is assumed to be one.
For more information on how <code>scale_factor</code> and <code>add_offset</code> can be
used to provide simple compression, see the
<a href="http://www.esrl.noaa.gov/psl/data/gridded/conventions/cdc_netcdf_standard.shtml">PSL metadata conventions</a>.</p>
<p>In addition, if <code>maskandscale</code> is set to <code>True</code>, and if the variable has an
attribute <code>_Unsigned</code> set to "true", and the variable has a signed integer data type,
a view to the data is returned with the corresponding unsigned integer data type.
This convention is used by the netcdf-java library to save unsigned integer
data in <code>NETCDF3</code> or <code>NETCDF4_CLASSIC</code> files (since the <code>NETCDF3</code>
data model does not have unsigned integer data types).</p>
<p>The default value of <code>maskandscale</code> is <code>True</code>
(automatic conversions are performed).</p></div>
</dd>
<dt id="netCDF4.Variable.set_auto_scale"><code class="name flex">
<span>def <span class="ident">set_auto_scale</span></span>(<span>self, scale)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_auto_scale(self,scale)</code></strong></p>
<p>turn on or off automatic packing/unpacking of variable
data using <code>scale_factor</code> and <code>add_offset</code> attributes.
Also turns on and off automatic conversion of signed integer data
to unsigned integer data if the variable has an <code>_Unsigned</code>
attribute set to "true" or "True".</p>
<p>If <code>scale</code> is set to <code>True</code>, and the variable has a
<code>scale_factor</code> or an <code>add_offset</code> attribute, then data read
from that variable is unpacked using::</p>
<pre><code>data = self.scale_factor*data + self.add_offset
</code></pre>
<p>When data is written to a variable it is packed using::</p>
<pre><code>data = (data - self.add_offset)/self.scale_factor
</code></pre>
<p>If either scale_factor is present, but add_offset is missing, add_offset
is assumed zero.
If add_offset is present, but scale_factor is missing,
scale_factor is assumed to be one.
For more information on how <code>scale_factor</code> and <code>add_offset</code> can be
used to provide simple compression, see the
<a href="http://www.esrl.noaa.gov/psl/data/gridded/conventions/cdc_netcdf_standard.shtml">PSL metadata conventions</a>.</p>
<p>In addition, if <code>scale</code> is set to <code>True</code>, and if the variable has an
attribute <code>_Unsigned</code> set to "true", and the variable has a signed integer data type,
a view to the data is returned with the corresponding unsigned integer datatype.
This convention is used by the netcdf-java library to save unsigned integer
data in <code>NETCDF3</code> or <code>NETCDF4_CLASSIC</code> files (since the <code>NETCDF3</code>
data model does not have unsigned integer data types).</p>
<p>The default value of <code>scale</code> is <code>True</code>
(automatic conversions are performed).</p></div>
</dd>
<dt id="netCDF4.Variable.set_collective"><code class="name flex">
<span>def <span class="ident">set_collective</span></span>(<span>self, value)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_collective(self,True_or_False)</code></strong></p>
<p>turn on or off collective parallel IO access. Ignored if file is not
open for parallel access.</p></div>
</dd>
<dt id="netCDF4.Variable.set_ncstring_attrs"><code class="name flex">
<span>def <span class="ident">set_ncstring_attrs</span></span>(<span>self, ncstring_attrs)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_always_mask(self,ncstring_attrs)</code></strong></p>
<p>turn on or off creating NC_STRING string attributes.</p>
<p>If <code>ncstring_attrs</code> is set to <code>True</code> then text attributes will be variable-length
NC_STRINGs.</p>
<p>The default value of <code>ncstring_attrs</code> is <code>False</code> (writing ascii text attributes as
NC_CHAR).</p></div>
</dd>
<dt id="netCDF4.Variable.set_var_chunk_cache"><code class="name flex">
<span>def <span class="ident">set_var_chunk_cache</span></span>(<span>self, size=None, nelems=None, preemption=None)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>set_var_chunk_cache(self,size=None,nelems=None,preemption=None)</code></strong></p>
<p>change variable chunk cache settings.
See netcdf C library documentation for <code>nc_set_var_chunk_cache</code> for
details.</p></div>
</dd>
<dt id="netCDF4.Variable.setncattr"><code class="name flex">
<span>def <span class="ident">setncattr</span></span>(<span>self, name, value)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>setncattr(self,name,value)</code></strong></p>
<p>set a netCDF variable attribute using name,value pair.
Use if you need to set a
netCDF attribute with the same name as one of the reserved python
attributes.</p></div>
</dd>
<dt id="netCDF4.Variable.setncattr_string"><code class="name flex">
<span>def <span class="ident">setncattr_string</span></span>(<span>self, name, value)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>setncattr_string(self,name,value)</code></strong></p>
<p>set a netCDF variable string attribute using name,value pair.
Use if you need to ensure that a netCDF attribute is created with type
<code>NC_STRING</code> if the file format is <code>NETCDF4</code>.
Use if you need to set an attribute to an array of variable-length strings.</p></div>
</dd>
<dt id="netCDF4.Variable.setncatts"><code class="name flex">
<span>def <span class="ident">setncatts</span></span>(<span>self, attdict)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>setncatts(self,attdict)</code></strong></p>
<p>set a bunch of netCDF variable attributes at once using a python dictionary.
This may be faster when setting a lot of attributes for a <code>NETCDF3</code>
formatted file, since nc_redef/nc_enddef is not called in between setting
each attribute</p></div>
</dd>
<dt id="netCDF4.Variable.use_nc_get_vars"><code class="name flex">
<span>def <span class="ident">use_nc_get_vars</span></span>(<span>self, use_nc_get_vars)</span>
</code></dt>
<dd>
<div class="desc"><p><strong><code>use_nc_get_vars(self,_use_get_vars)</code></strong></p>
<p>enable the use of netcdf library routine <code>nc_get_vars</code>
to retrieve strided variable slices.
By default,
<code>nc_get_vars</code> may not used by default (depending on the
version of the netcdf-c library being used) since it may be
slower than multiple calls to the unstrided read routine <code>nc_get_vara</code>.</p></div>
</dd>
</dl>
</dd>
</dl>
</section>
</article>
<nav id="sidebar">
<div class="toc">
<ul>
<li><a href="#version-172">Version 1.7.2</a></li>
<li><a href="#introduction">Introduction</a><ul>
<li><a href="#quick-install">Quick Install</a></li>
<li><a href="#developer-install">Developer Install</a></li>
</ul>
</li>
<li><a href="#tutorial">Tutorial</a><ul>
<li><a href="#creatingopeningclosing-a-netcdf-file">Creating/Opening/Closing a netCDF file</a></li>
<li><a href="#groups-in-a-netcdf-file">Groups in a netCDF file</a></li>
<li><a href="#dimensions-in-a-netcdf-file">Dimensions in a netCDF file</a></li>
<li><a href="#variables-in-a-netcdf-file">Variables in a netCDF file</a></li>
<li><a href="#attributes-in-a-netcdf-file">Attributes in a netCDF file</a></li>
<li><a href="#writing-data-to-and-retrieving-data-from-a-netcdf-variable">Writing data to and retrieving data from a netCDF variable</a></li>
<li><a href="#dealing-with-time-coordinates">Dealing with time coordinates</a></li>
<li><a href="#reading-data-from-a-multi-file-netcdf-dataset">Reading data from a multi-file netCDF dataset</a></li>
<li><a href="#efficient-compression-of-netcdf-variables">Efficient compression of netCDF variables</a></li>
<li><a href="#beyond-homogeneous-arrays-of-a-fixed-type-compound-data-types">Beyond homogeneous arrays of a fixed type - compound data types</a></li>
<li><a href="#variable-length-vlen-data-types">Variable-length (vlen) data types</a></li>
<li><a href="#enum-data-type">Enum data type</a></li>
<li><a href="#parallel-io">Parallel IO</a></li>
<li><a href="#dealing-with-strings">Dealing with strings</a></li>
<li><a href="#in-memory-diskless-datasets">In-memory (diskless) Datasets</a></li>
<li><a href="#support-for-complex-numbers">Support for complex numbers</a></li>
</ul>
</li>
</ul>
</div>
<ul id="index">
<li><h3><a href="#header-functions">Functions</a></h3>
<ul class="two-column">
<li><code><a title="netCDF4.chartostring" href="#netCDF4.chartostring">chartostring</a></code></li>
<li><code><a title="netCDF4.date2index" href="#netCDF4.date2index">date2index</a></code></li>
<li><code><a title="netCDF4.date2num" href="#netCDF4.date2num">date2num</a></code></li>
<li><code><a title="netCDF4.get_alignment" href="#netCDF4.get_alignment">get_alignment</a></code></li>
<li><code><a title="netCDF4.get_chunk_cache" href="#netCDF4.get_chunk_cache">get_chunk_cache</a></code></li>
<li><code><a title="netCDF4.getlibversion" href="#netCDF4.getlibversion">getlibversion</a></code></li>
<li><code><a title="netCDF4.num2date" href="#netCDF4.num2date">num2date</a></code></li>
<li><code><a title="netCDF4.rc_get" href="#netCDF4.rc_get">rc_get</a></code></li>
<li><code><a title="netCDF4.rc_set" href="#netCDF4.rc_set">rc_set</a></code></li>
<li><code><a title="netCDF4.set_alignment" href="#netCDF4.set_alignment">set_alignment</a></code></li>
<li><code><a title="netCDF4.set_chunk_cache" href="#netCDF4.set_chunk_cache">set_chunk_cache</a></code></li>
<li><code><a title="netCDF4.stringtoarr" href="#netCDF4.stringtoarr">stringtoarr</a></code></li>
<li><code><a title="netCDF4.stringtochar" href="#netCDF4.stringtochar">stringtochar</a></code></li>
</ul>
</li>
<li><h3><a href="#header-classes">Classes</a></h3>
<ul>
<li>
<h4><code><a title="netCDF4.CompoundType" href="#netCDF4.CompoundType">CompoundType</a></code></h4>
<ul class="">
<li><code><a title="netCDF4.CompoundType.dtype" href="#netCDF4.CompoundType.dtype">dtype</a></code></li>
<li><code><a title="netCDF4.CompoundType.dtype_view" href="#netCDF4.CompoundType.dtype_view">dtype_view</a></code></li>
<li><code><a title="netCDF4.CompoundType.name" href="#netCDF4.CompoundType.name">name</a></code></li>
</ul>
</li>
<li>
<h4><code><a title="netCDF4.Dataset" href="#netCDF4.Dataset">Dataset</a></code></h4>
<ul class="">
<li><code><a title="netCDF4.Dataset.auto_complex" href="#netCDF4.Dataset.auto_complex">auto_complex</a></code></li>
<li><code><a title="netCDF4.Dataset.close" href="#netCDF4.Dataset.close">close</a></code></li>
<li><code><a title="netCDF4.Dataset.cmptypes" href="#netCDF4.Dataset.cmptypes">cmptypes</a></code></li>
<li><code><a title="netCDF4.Dataset.createCompoundType" href="#netCDF4.Dataset.createCompoundType">createCompoundType</a></code></li>
<li><code><a title="netCDF4.Dataset.createDimension" href="#netCDF4.Dataset.createDimension">createDimension</a></code></li>
<li><code><a title="netCDF4.Dataset.createEnumType" href="#netCDF4.Dataset.createEnumType">createEnumType</a></code></li>
<li><code><a title="netCDF4.Dataset.createGroup" href="#netCDF4.Dataset.createGroup">createGroup</a></code></li>
<li><code><a title="netCDF4.Dataset.createVLType" href="#netCDF4.Dataset.createVLType">createVLType</a></code></li>
<li><code><a title="netCDF4.Dataset.createVariable" href="#netCDF4.Dataset.createVariable">createVariable</a></code></li>
<li><code><a title="netCDF4.Dataset.data_model" href="#netCDF4.Dataset.data_model">data_model</a></code></li>
<li><code><a title="netCDF4.Dataset.delncattr" href="#netCDF4.Dataset.delncattr">delncattr</a></code></li>
<li><code><a title="netCDF4.Dataset.dimensions" href="#netCDF4.Dataset.dimensions">dimensions</a></code></li>
<li><code><a title="netCDF4.Dataset.disk_format" href="#netCDF4.Dataset.disk_format">disk_format</a></code></li>
<li><code><a title="netCDF4.Dataset.enumtypes" href="#netCDF4.Dataset.enumtypes">enumtypes</a></code></li>
<li><code><a title="netCDF4.Dataset.file_format" href="#netCDF4.Dataset.file_format">file_format</a></code></li>
<li><code><a title="netCDF4.Dataset.filepath" href="#netCDF4.Dataset.filepath">filepath</a></code></li>
<li><code><a title="netCDF4.Dataset.fromcdl" href="#netCDF4.Dataset.fromcdl">fromcdl</a></code></li>
<li><code><a title="netCDF4.Dataset.get_variables_by_attributes" href="#netCDF4.Dataset.get_variables_by_attributes">get_variables_by_attributes</a></code></li>
<li><code><a title="netCDF4.Dataset.getncattr" href="#netCDF4.Dataset.getncattr">getncattr</a></code></li>
<li><code><a title="netCDF4.Dataset.groups" href="#netCDF4.Dataset.groups">groups</a></code></li>
<li><code><a title="netCDF4.Dataset.has_blosc_filter" href="#netCDF4.Dataset.has_blosc_filter">has_blosc_filter</a></code></li>
<li><code><a title="netCDF4.Dataset.has_bzip2_filter" href="#netCDF4.Dataset.has_bzip2_filter">has_bzip2_filter</a></code></li>
<li><code><a title="netCDF4.Dataset.has_szip_filter" href="#netCDF4.Dataset.has_szip_filter">has_szip_filter</a></code></li>
<li><code><a title="netCDF4.Dataset.has_zstd_filter" href="#netCDF4.Dataset.has_zstd_filter">has_zstd_filter</a></code></li>
<li><code><a title="netCDF4.Dataset.isopen" href="#netCDF4.Dataset.isopen">isopen</a></code></li>
<li><code><a title="netCDF4.Dataset.keepweakref" href="#netCDF4.Dataset.keepweakref">keepweakref</a></code></li>
<li><code><a title="netCDF4.Dataset.name" href="#netCDF4.Dataset.name">name</a></code></li>
<li><code><a title="netCDF4.Dataset.ncattrs" href="#netCDF4.Dataset.ncattrs">ncattrs</a></code></li>
<li><code><a title="netCDF4.Dataset.parent" href="#netCDF4.Dataset.parent">parent</a></code></li>
<li><code><a title="netCDF4.Dataset.path" href="#netCDF4.Dataset.path">path</a></code></li>
<li><code><a title="netCDF4.Dataset.renameAttribute" href="#netCDF4.Dataset.renameAttribute">renameAttribute</a></code></li>
<li><code><a title="netCDF4.Dataset.renameDimension" href="#netCDF4.Dataset.renameDimension">renameDimension</a></code></li>
<li><code><a title="netCDF4.Dataset.renameGroup" href="#netCDF4.Dataset.renameGroup">renameGroup</a></code></li>
<li><code><a title="netCDF4.Dataset.renameVariable" href="#netCDF4.Dataset.renameVariable">renameVariable</a></code></li>
<li><code><a title="netCDF4.Dataset.set_always_mask" href="#netCDF4.Dataset.set_always_mask">set_always_mask</a></code></li>
<li><code><a title="netCDF4.Dataset.set_auto_chartostring" href="#netCDF4.Dataset.set_auto_chartostring">set_auto_chartostring</a></code></li>
<li><code><a title="netCDF4.Dataset.set_auto_mask" href="#netCDF4.Dataset.set_auto_mask">set_auto_mask</a></code></li>
<li><code><a title="netCDF4.Dataset.set_auto_maskandscale" href="#netCDF4.Dataset.set_auto_maskandscale">set_auto_maskandscale</a></code></li>
<li><code><a title="netCDF4.Dataset.set_auto_scale" href="#netCDF4.Dataset.set_auto_scale">set_auto_scale</a></code></li>
<li><code><a title="netCDF4.Dataset.set_fill_off" href="#netCDF4.Dataset.set_fill_off">set_fill_off</a></code></li>
<li><code><a title="netCDF4.Dataset.set_fill_on" href="#netCDF4.Dataset.set_fill_on">set_fill_on</a></code></li>
<li><code><a title="netCDF4.Dataset.set_ncstring_attrs" href="#netCDF4.Dataset.set_ncstring_attrs">set_ncstring_attrs</a></code></li>
<li><code><a title="netCDF4.Dataset.setncattr" href="#netCDF4.Dataset.setncattr">setncattr</a></code></li>
<li><code><a title="netCDF4.Dataset.setncattr_string" href="#netCDF4.Dataset.setncattr_string">setncattr_string</a></code></li>
<li><code><a title="netCDF4.Dataset.setncatts" href="#netCDF4.Dataset.setncatts">setncatts</a></code></li>
<li><code><a title="netCDF4.Dataset.sync" href="#netCDF4.Dataset.sync">sync</a></code></li>
<li><code><a title="netCDF4.Dataset.tocdl" href="#netCDF4.Dataset.tocdl">tocdl</a></code></li>
<li><code><a title="netCDF4.Dataset.variables" href="#netCDF4.Dataset.variables">variables</a></code></li>
<li><code><a title="netCDF4.Dataset.vltypes" href="#netCDF4.Dataset.vltypes">vltypes</a></code></li>
</ul>
</li>
<li>
<h4><code><a title="netCDF4.Dimension" href="#netCDF4.Dimension">Dimension</a></code></h4>
<ul class="">
<li><code><a title="netCDF4.Dimension.group" href="#netCDF4.Dimension.group">group</a></code></li>
<li><code><a title="netCDF4.Dimension.isunlimited" href="#netCDF4.Dimension.isunlimited">isunlimited</a></code></li>
<li><code><a title="netCDF4.Dimension.name" href="#netCDF4.Dimension.name">name</a></code></li>
<li><code><a title="netCDF4.Dimension.size" href="#netCDF4.Dimension.size">size</a></code></li>
</ul>
</li>
<li>
<h4><code><a title="netCDF4.EnumType" href="#netCDF4.EnumType">EnumType</a></code></h4>
<ul class="">
<li><code><a title="netCDF4.EnumType.dtype" href="#netCDF4.EnumType.dtype">dtype</a></code></li>
<li><code><a title="netCDF4.EnumType.enum_dict" href="#netCDF4.EnumType.enum_dict">enum_dict</a></code></li>
<li><code><a title="netCDF4.EnumType.name" href="#netCDF4.EnumType.name">name</a></code></li>
</ul>
</li>
<li>
<h4><code><a title="netCDF4.Group" href="#netCDF4.Group">Group</a></code></h4>
<ul class="">
<li><code><a title="netCDF4.Group.close" href="#netCDF4.Group.close">close</a></code></li>
</ul>
</li>
<li>
<h4><code><a title="netCDF4.MFDataset" href="#netCDF4.MFDataset">MFDataset</a></code></h4>
<ul class="">
<li><code><a title="netCDF4.MFDataset.close" href="#netCDF4.MFDataset.close">close</a></code></li>
<li><code><a title="netCDF4.MFDataset.isopen" href="#netCDF4.MFDataset.isopen">isopen</a></code></li>
<li><code><a title="netCDF4.MFDataset.ncattrs" href="#netCDF4.MFDataset.ncattrs">ncattrs</a></code></li>
</ul>
</li>
<li>
<h4><code><a title="netCDF4.MFTime" href="#netCDF4.MFTime">MFTime</a></code></h4>
</li>
<li>
<h4><code><a title="netCDF4.VLType" href="#netCDF4.VLType">VLType</a></code></h4>
<ul class="">
<li><code><a title="netCDF4.VLType.dtype" href="#netCDF4.VLType.dtype">dtype</a></code></li>
<li><code><a title="netCDF4.VLType.name" href="#netCDF4.VLType.name">name</a></code></li>
</ul>
</li>
<li>
<h4><code><a title="netCDF4.Variable" href="#netCDF4.Variable">Variable</a></code></h4>
<ul class="">
<li><code><a title="netCDF4.Variable.always_mask" href="#netCDF4.Variable.always_mask">always_mask</a></code></li>
<li><code><a title="netCDF4.Variable.assignValue" href="#netCDF4.Variable.assignValue">assignValue</a></code></li>
<li><code><a title="netCDF4.Variable.auto_complex" href="#netCDF4.Variable.auto_complex">auto_complex</a></code></li>
<li><code><a title="netCDF4.Variable.chartostring" href="#netCDF4.Variable.chartostring">chartostring</a></code></li>
<li><code><a title="netCDF4.Variable.chunking" href="#netCDF4.Variable.chunking">chunking</a></code></li>
<li><code><a title="netCDF4.Variable.datatype" href="#netCDF4.Variable.datatype">datatype</a></code></li>
<li><code><a title="netCDF4.Variable.delncattr" href="#netCDF4.Variable.delncattr">delncattr</a></code></li>
<li><code><a title="netCDF4.Variable.dimensions" href="#netCDF4.Variable.dimensions">dimensions</a></code></li>
<li><code><a title="netCDF4.Variable.dtype" href="#netCDF4.Variable.dtype">dtype</a></code></li>
<li><code><a title="netCDF4.Variable.endian" href="#netCDF4.Variable.endian">endian</a></code></li>
<li><code><a title="netCDF4.Variable.filters" href="#netCDF4.Variable.filters">filters</a></code></li>
<li><code><a title="netCDF4.Variable.getValue" href="#netCDF4.Variable.getValue">getValue</a></code></li>
<li><code><a title="netCDF4.Variable.get_dims" href="#netCDF4.Variable.get_dims">get_dims</a></code></li>
<li><code><a title="netCDF4.Variable.get_fill_value" href="#netCDF4.Variable.get_fill_value">get_fill_value</a></code></li>
<li><code><a title="netCDF4.Variable.get_var_chunk_cache" href="#netCDF4.Variable.get_var_chunk_cache">get_var_chunk_cache</a></code></li>
<li><code><a title="netCDF4.Variable.getncattr" href="#netCDF4.Variable.getncattr">getncattr</a></code></li>
<li><code><a title="netCDF4.Variable.group" href="#netCDF4.Variable.group">group</a></code></li>
<li><code><a title="netCDF4.Variable.mask" href="#netCDF4.Variable.mask">mask</a></code></li>
<li><code><a title="netCDF4.Variable.name" href="#netCDF4.Variable.name">name</a></code></li>
<li><code><a title="netCDF4.Variable.ncattrs" href="#netCDF4.Variable.ncattrs">ncattrs</a></code></li>
<li><code><a title="netCDF4.Variable.ndim" href="#netCDF4.Variable.ndim">ndim</a></code></li>
<li><code><a title="netCDF4.Variable.quantization" href="#netCDF4.Variable.quantization">quantization</a></code></li>
<li><code><a title="netCDF4.Variable.renameAttribute" href="#netCDF4.Variable.renameAttribute">renameAttribute</a></code></li>
<li><code><a title="netCDF4.Variable.scale" href="#netCDF4.Variable.scale">scale</a></code></li>
<li><code><a title="netCDF4.Variable.set_always_mask" href="#netCDF4.Variable.set_always_mask">set_always_mask</a></code></li>
<li><code><a title="netCDF4.Variable.set_auto_chartostring" href="#netCDF4.Variable.set_auto_chartostring">set_auto_chartostring</a></code></li>
<li><code><a title="netCDF4.Variable.set_auto_mask" href="#netCDF4.Variable.set_auto_mask">set_auto_mask</a></code></li>
<li><code><a title="netCDF4.Variable.set_auto_maskandscale" href="#netCDF4.Variable.set_auto_maskandscale">set_auto_maskandscale</a></code></li>
<li><code><a title="netCDF4.Variable.set_auto_scale" href="#netCDF4.Variable.set_auto_scale">set_auto_scale</a></code></li>
<li><code><a title="netCDF4.Variable.set_collective" href="#netCDF4.Variable.set_collective">set_collective</a></code></li>
<li><code><a title="netCDF4.Variable.set_ncstring_attrs" href="#netCDF4.Variable.set_ncstring_attrs">set_ncstring_attrs</a></code></li>
<li><code><a title="netCDF4.Variable.set_var_chunk_cache" href="#netCDF4.Variable.set_var_chunk_cache">set_var_chunk_cache</a></code></li>
<li><code><a title="netCDF4.Variable.setncattr" href="#netCDF4.Variable.setncattr">setncattr</a></code></li>
<li><code><a title="netCDF4.Variable.setncattr_string" href="#netCDF4.Variable.setncattr_string">setncattr_string</a></code></li>
<li><code><a title="netCDF4.Variable.setncatts" href="#netCDF4.Variable.setncatts">setncatts</a></code></li>
<li><code><a title="netCDF4.Variable.shape" href="#netCDF4.Variable.shape">shape</a></code></li>
<li><code><a title="netCDF4.Variable.size" href="#netCDF4.Variable.size">size</a></code></li>
<li><code><a title="netCDF4.Variable.use_nc_get_vars" href="#netCDF4.Variable.use_nc_get_vars">use_nc_get_vars</a></code></li>
</ul>
</li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.11.1</a>.</p>
</footer>
</body>
</html>