1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
import unittest
import os
import tempfile
import numpy as np
from numpy import ma
from numpy.testing import assert_array_almost_equal
from netCDF4 import Dataset, default_fillvals
# Test automatic scaling of variables (set_auto_scale())
class SetAutoScaleTestBase(unittest.TestCase):
"""Base object for tests checking the functionality of set_auto_scale()"""
def setUp(self):
self.testfile = tempfile.NamedTemporaryFile(suffix='.nc', delete=False).name
self.fillval = default_fillvals["i2"]
self.missing_value = -9999
self.v = np.array([0, 5, 4, self.missing_value], dtype = "i2")
self.v_ma = ma.array([0, 5, 4, self.missing_value], dtype = "i2",
mask = [True, False, False, True], fill_value = self.fillval)
self.scale_factor = 10.
self.add_offset = 5.
self.v_scaled = self.v * self.scale_factor + self.add_offset
self.v_ma_scaled = self.v_ma * self.scale_factor + self.add_offset
f = Dataset(self.testfile, 'w')
x = f.createDimension('x', None)
xx = f.createDimension('xx', 10)
v = f.createVariable('v', "i2", 'x')
vv = f.createVariable('vv', "i2", 'xx')
vv.add_offset=0; vv.scale_factor=np.float32(1.0)
v[:] = self.v
vv[:] = np.ones(10)
# Note: Scale factors are only added after writing, so that no auto-scaling takes place!
v.scale_factor = self.scale_factor
v.add_offset = self.add_offset
f.close()
def tearDown(self):
os.remove(self.testfile)
class SetAutoScaleFalse(SetAutoScaleTestBase):
def test_unmasked(self):
"""Testing (not) auto-scaling of variables for set_auto_scale(False)"""
f = Dataset(self.testfile, "r")
f.variables["v"].set_auto_scale(False)
v = f.variables["v"][:]
self.assertEqual(v.dtype, "i2")
self.assertTrue(isinstance(v, np.ndarray))
# issue 785: always return masked array by default
self.assertTrue(isinstance(v, ma.masked_array))
assert_array_almost_equal(v, self.v)
f.close()
def test_masked(self):
"""Testing auto-conversion of masked arrays for set_auto_mask(False) with masking"""
# Update test data file
f = Dataset(self.testfile, "a")
f.variables["v"].missing_value = self.missing_value
f.close()
# Note: Converting arrays to masked arrays is default if missing_value is present
f = Dataset(self.testfile, "r")
f.variables["v"].set_auto_scale(False)
v_ma = f.variables["v"][:]
self.assertEqual(v_ma.dtype, "i2")
self.assertTrue(isinstance(v_ma, np.ndarray))
self.assertTrue(isinstance(v_ma, ma.masked_array))
assert_array_almost_equal(v_ma, self.v_ma)
f.close()
class SetAutoScaleTrue(SetAutoScaleTestBase):
def test_unmasked(self):
"""Testing auto-scaling of variables for set_auto_scale(True)"""
f = Dataset(self.testfile)
f.variables["v"].set_auto_scale(True) # The default anyway...
v_scaled = f.variables['v'][:]
# issue 913
vv_scaled = f.variables['vv'][:]
self.assertEqual(vv_scaled.dtype,f.variables['vv'].scale_factor.dtype)
assert_array_almost_equal(vv_scaled, np.ones(10))
self.assertEqual(v_scaled.dtype, "f8")
self.assertTrue(isinstance(v_scaled, np.ndarray))
# issue 785: always return masked array by default
self.assertTrue(isinstance(v_scaled, ma.masked_array))
assert_array_almost_equal(v_scaled, self.v_scaled)
f.close()
def test_masked(self):
"""Testing auto-scaling of variables for set_auto_scale(True) with masking"""
# Update test data file
f = Dataset(self.testfile, "a")
f.variables["v"].missing_value = self.missing_value
f.close()
# Note: Converting arrays to masked arrays is default if missing_value is present
f = Dataset(self.testfile)
f.variables["v"].set_auto_scale(True) # The default anyway...
v_ma_scaled = f.variables['v'][:]
self.assertEqual(v_ma_scaled.dtype, "f8")
self.assertTrue(isinstance(v_ma_scaled, np.ndarray))
self.assertTrue(isinstance(v_ma_scaled, ma.masked_array))
assert_array_almost_equal(v_ma_scaled, self.v_ma_scaled)
f.close()
class WriteAutoScaleTest(SetAutoScaleTestBase):
def test_auto_scale_write(self):
"""Testing automatic packing to all kinds of integer types"""
def packparams(dmax, dmin, dtyp):
kind = dtyp[0]
n = int(dtyp[1]) * 8
scale_factor = (dmax - dmin) / (2**n - 1)
if kind == 'i':
add_offset = dmin + 2**(n-1) * scale_factor
elif kind == 'u':
add_offset = dmin
else:
raise Exception
return((add_offset, scale_factor))
for dtyp in ['i1', 'i2', 'i4', 'u1', 'u2', 'u4']:
np.random.seed(456)
data = np.random.uniform(size=100)
f = Dataset(self.testfile, 'w')
f.createDimension('x')
#
# save auto_scaled
v = f.createVariable('v', dtyp, ('x',))
v.set_auto_scale(True) # redundant
v.add_offset, v.scale_factor = packparams(
np.max(data), np.min(data), dtyp)
v[:] = data
f.close()
#
# read back
f = Dataset(self.testfile, 'r')
v = f.variables['v']
v.set_auto_mask(False)
v.set_auto_scale(True) # redundant
vdata = v[:]
# error normalized by scale factor
maxerrnorm = np.max(np.abs((vdata - data) / v.scale_factor))
# 1e-5 accounts for floating point errors
assert maxerrnorm < 0.5 + 1e-5
f.close()
class GlobalSetAutoScaleTest(unittest.TestCase):
def setUp(self):
self.testfile = tempfile.NamedTemporaryFile(suffix='.nc', delete=False).name
f = Dataset(self.testfile, 'w')
grp1 = f.createGroup('Group1')
grp2 = f.createGroup('Group2')
f.createGroup('Group3') # empty group
f.createVariable('var0', "i2", ())
grp1.createVariable('var1', 'f8', ())
grp2.createVariable('var2', 'f4', ())
f.close()
def tearDown(self):
os.remove(self.testfile)
def runTest(self):
f = Dataset(self.testfile, "r")
# Default is both scaling and masking enabled
v0 = f.variables['var0']
v1 = f.groups['Group1'].variables['var1']
v2 = f.groups['Group2'].variables['var2']
self.assertTrue(v0.scale)
self.assertTrue(v0.mask)
self.assertTrue(v1.scale)
self.assertTrue(v1.mask)
self.assertTrue(v2.scale)
self.assertTrue(v2.mask)
# No auto-scaling
f.set_auto_scale(False)
self.assertFalse(v0.scale)
self.assertTrue(v0.mask)
self.assertFalse(v1.scale)
self.assertTrue(v1.mask)
self.assertFalse(v2.scale)
self.assertTrue(v2.mask)
f.close()
if __name__ == '__main__':
unittest.main()
|