File: test_slicing.py

package info (click to toggle)
netcdf4-python 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 2,588 kB
  • sloc: python: 6,002; ansic: 854; makefile: 15; sh: 2
file content (273 lines) | stat: -rw-r--r-- 10,130 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from netCDF4 import Dataset
from numpy.random import seed, randint
from numpy.testing import assert_array_equal, assert_equal,\
assert_array_almost_equal
import tempfile, unittest, os, random, sys
import numpy as np

file_name = tempfile.NamedTemporaryFile(suffix='.nc', delete=False).name
xdim=9; ydim=10; zdim=11
#seed(9) # fix seed
data = randint(0,10,size=(xdim,ydim,zdim)).astype('u1')
datarev = data[:,::-1,:]

class VariablesTestCase(unittest.TestCase):

    def setUp(self):
        self.file = file_name
        f = Dataset(file_name,'w')
        f.createDimension('x',xdim)
        f.createDimension('xu',None)
        f.createDimension('xu2',None)
        f.createDimension('y',ydim)
        f.createDimension('z',zdim)
        f.createDimension('zu',None)
        v = f.createVariable('data','u1',('x','y','z'))
        vu = f.createVariable('datau','u1',('xu','y','zu'))
        v1 = f.createVariable('data1d', 'u1', ('x',))
        v2 = f.createVariable('data1dx', 'u1', ('xu2',))
        # variable with no unlimited dim.
        # write slice in reverse order
        v[:,::-1,:] = data
        # variable with an unlimited dimension.
        # write slice in reverse order
        #vu[0:xdim,::-1,0:zdim] = data
        vu[:,::-1,:] = data

        v1[:] = data[:, 0, 0]
        if sys.maxsize > 2**32:
            v2[2**31] = 1 # issue 1112 (overflow on windows)
        f.close()

    def tearDown(self):
        # Remove the temporary files
        os.remove(self.file)

    def test_3d(self):
        """testing variable slicing"""
        f  = Dataset(self.file, 'r')
        v = f.variables['data']
        vu = f.variables['datau']

        # test return of array scalar.
        assert_equal(v[0,0,0].shape,())
        assert_array_equal(v[:], datarev)
        # test reading of slices.
        # negative value means count back from end.
        assert_array_equal(v[:-1,:-2,:-3],datarev[:-1,:-2,:-3])
        # every other element (positive step)
        assert_array_equal(v[2:-1:2,2:-2:2,2:-3:2],datarev[2:-1:2,2:-2:2,2:-3:2])
        # every other element (negative step)
        assert_array_equal(v[-1:2:-2,-2:2:-2,-3:2:-2],datarev[-1:2:-2,-2:2:-2,-3:2:-2])
        # read elements in reverse order
        assert_array_equal(v[:,::-1,:],data)
        assert_array_equal(v[::-1,:,::-1],datarev[::-1,:,::-1])
        assert_array_equal(v[xdim-1::-3,:,zdim-1::-3],datarev[xdim-1::-3,:,zdim-1::-3])

        # ellipsis slice.
        assert_array_equal(v[...,2:],datarev[...,2:])
        # variable with an unlimited dimension.
        assert_array_equal(vu[:], data[:,::-1,:])
        # read data in reverse order
        assert_array_equal(vu[:,::-1,:],data)
        # index using an integer array scalar
        i = np.ones(1,'i4')[0]
        assert_array_equal(v[i],datarev[1])

        f.close()

    def test_1d(self):
        f  = Dataset(self.file, 'r')
        v1 = f.variables['data1d']
        v2 = f.variables['data1dx']
        d = data[:,0,0]
        assert_equal(v1[:], d)
        if sys.maxsize > 2**32:
            assert_equal(v2[2**31], 1)
        assert_equal(v1[4:], d[4:])
        # test return of array scalar.
        assert_equal(v1[0].shape, ())
        i1 = np.array([2,3,4])
        assert_equal(v1[i1], d[i1])
        i2 = np.array([2,3,5])
        assert_equal(v1[i2], d[i2])
        assert_equal(v1[d<5], d[d<5])
        assert_equal(v1[5], d[5])
        f.close()

    def test_0d(self):
        f = Dataset(self.file, 'w')
        v = f.createVariable('data', float)
        v[...] = 10
        assert_array_equal(v[...], 10)
        assert_equal(v.shape, v[...].shape)
        # issue #785: always return masked array
        #assert type(v[...]) == np.ndarray 
        assert type(v[...]) == np.ma.masked_array
        f.set_auto_mask(False)
        assert type(v[...]) == np.ndarray 
        f.close()

    def test_issue259(self):
        dset = Dataset(self.file, 'w', format='NETCDF4_CLASSIC')
        dset.createDimension('dim', None)
        a = dset.createVariable('a', 'i', ('dim',))
        b = dset.createVariable('b', 'i', ('dim',))
        c = dset.createVariable('c', 'i', ('dim',))
        c[:] = 1 # c initially is empty, new entry created
        assert_array_equal(c[...], np.array([1]))
        b[:] = np.array([1,1])
        a[:] = 1 # a should be same as b
        assert_array_equal(a[...], b[...])
        dset.close()

    def test_issue371(self):
        dataset = Dataset(self.file, 'w')
        dataset.createDimension('dim', 5)
        var = dataset.createVariable('bar', 'i8', ('dim', ))
        data = [1, 2, 3, 4, 5]
        var[..., :] = data
        assert_array_equal(var[..., :], np.array(data))
        dataset.close()

    def test_issue306(self):
        f = Dataset(self.file,'w')
        nlats = 7; lat = f.createDimension('lat',nlats)
        nlons = 12; lon = f.createDimension('lon',nlons)
        nlevs = 1; lev = f.createDimension('lev',nlevs)
        time = f.createDimension('time',None)
        var = f.createVariable('var',np.float64,('time','lev','lat','lon'))
        a = np.random.uniform(size=(10,nlevs,nlats,nlons))
        var[0:10] = a
        f.close()
        f = Dataset(self.file)
        aa = f.variables['var'][4,-1,:,:]
        assert_array_almost_equal(a[4,-1,:,:],aa)
        v = f.variables['var']
        try:
            aa = v[4,-2,:,:] # -2 when dimension is length 1
        except IndexError:
            pass
        else:
            raise IndexError('This test should have failed.')
        try:
            aa = v[4,...,...,:] # more than one Ellipsis
        except IndexError:
            pass
        else:
            raise IndexError('This test should have failed.')
        try:
            aa = v[:,[True,True],:,:] # boolean array too long.
        except IndexError:
            pass
        else:
            raise IndexError('This test should have failed.')
        try:
            aa = v[:,[0,1],:,:] # integer index too large
        except IndexError:
            pass
        else:
            raise IndexError('This test should have failed.')
        f.close()

    def test_issue300(self):
        f = Dataset(self.file,'w')
        nlats = 11; lat = f.createDimension('lat',nlats)
        nlons = 20; lon = f.createDimension('lon',nlons)
        time = f.createDimension('time',None)
        var = f.createVariable('var',np.float64,('time','lat','lon'))
        a = np.random.uniform(size=(3,nlats,nlons))
        var[[True,True,False,False,False,True]] = a
        var[0,2.0,"-1"] = 0 # issue 312
        a[0,2,-1]=0
        f.close()
        f = Dataset(self.file)
        var = f.variables['var']
        aa = var[[0,1,5]]
        bb = var[[True,True,False,False,False,True]]
        lats = np.arange(nlats); lons = np.arange(nlons)
        cc = var[-1,lats > 2,lons < 6]
        assert_array_almost_equal(a,aa)
        assert_array_almost_equal(bb,aa)
        assert_array_almost_equal(cc,a[-1,3:,:6])
        f.close()

    def test_retain_single_dims(self):
        f = Dataset(self.file, 'r')
        v = f.variables['data']
        keys = ((0, 1, 2, 3, 4, 5, 6, 7, 8), (5,), (4,))
        shape = (9, 1, 1)
        data = v[keys]
        assert_equal(data.shape, shape)
        keys = ((0, 1, 2, 3, 4, 5, 6, 7, 8), 5, 4,)
        shape = (9,)
        data = v[keys]
        assert_equal(data.shape, shape)
        f.close()

    def test_issue743(self):
        nc = Dataset(self.file,'w',format='NETCDF3_CLASSIC')
        td = nc.createDimension('t',None)
        xd = nc.createDimension('x',33)
        yd = nc.createDimension('y',4)
        v = nc.createVariable('v',np.float64,('t','x','y'))
        nc.close()
        nc = Dataset(self.file)
        data = np.empty(nc['v'].shape, nc['v'].dtype)
        data2 = nc['v'][...]
        assert_array_equal(data,data2)
        nc.close()

    def test_issue906(self):
        f = Dataset(self.file,'w')
        f.createDimension('d1',3)
        f.createDimension('d2',None)
        f.createDimension('d3',5)
        f.createVariable('v2',np.float64,('d1','d2','d3'))
        f['v2'][:] = np.zeros((3,4,5))
        f['v2'][0,:,0] = np.arange(4)
        f['v2'][0,:,:] = np.ones((4,5))
        f.close()

    def test_issue919(self):
        with Dataset(self.file,'w') as f:
            f.createDimension('time',2)
            f.createDimension('lat',10)
            f.createDimension('lon',9)
            f.createVariable('v1',np.int64,('time', 'lon','lat',))
            arr = np.arange(9*10).reshape((9, 10))
            f['v1'][:] = arr
            assert_array_equal(f['v1'][:],np.broadcast_to(arr,f['v1'].shape))
            arr = np.arange(10)
            f['v1'][:] = arr
            assert_array_equal(f['v1'][:],np.broadcast_to(arr,f['v1'].shape))

    def test_issue922(self):
        with Dataset(self.file,'w') as f:
            f.createDimension('d1',3)
            f.createDimension('d2',None)
            f.createVariable('v1',np.int64,('d2','d1',))
            f['v1'][0] = np.arange(3,dtype=np.int64)
            f['v1'][1:3] = np.arange(3,dtype=np.int64)
            assert_array_equal(f['v1'][:], np.broadcast_to(np.arange(3),(3,3)))
            f.createVariable('v2',np.int64,('d1','d2',))
            f['v2'][:,0] = np.arange(3,dtype=np.int64)
            f['v2'][:,1:3] = np.arange(6,dtype=np.int64).reshape(3,2)
            assert_array_equal(f['v2'][:,1:3],np.arange(6,dtype=np.int64).reshape(3,2))
            assert_array_equal(f['v2'][:,0],np.arange(3,dtype=np.int64))

    def test_issue1083(self):
        with Dataset(self.file, "w") as nc:
            nc.createDimension("test", 5)
            v = nc.createVariable("var", "f8", ("test", "test", "test"))
            v[:] = 1 # works
            v[:] = np.ones(()) # works
            v[:] = np.ones((1,)) # works
            v[:] = np.ones((5,)) # works
            v[:] = np.ones((5,5,5)) # works
            v[:] = np.ones((5,1,1)) # fails (before PR #1084)
            v[:] = np.ones((5,1,5)) # fails (before PR #1084)
            v[:] = np.ones((5,5,1)) # fails (before PR #1084)

if __name__ == '__main__':
    unittest.main()