1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
import sys
import unittest
import os
import tempfile
from netCDF4 import Dataset, CompoundType
import numpy as np
from numpy.testing import assert_array_equal, assert_array_almost_equal
# test compound data types.
FILE_NAME = tempfile.NamedTemporaryFile(suffix='.nc', delete=False).name
DIM_NAME = 'phony_dim'
GROUP_NAME = 'phony_group'
VAR_NAME = 'phony_compound_var'
TYPE_NAME1 = 'cmp1'
TYPE_NAME2 = 'cmp2'
TYPE_NAME3 = 'cmp3'
TYPE_NAME4 = 'cmp4'
TYPE_NAME5 = 'cmp5'
DIM_SIZE=3
# unaligned data types (note they are nested)
dtype1=np.dtype([('i', 'i2'), ('j', 'i8')])
dtype2=np.dtype([('x', 'f4',), ('y', 'f8',(3,2))])
dtype3=np.dtype([('xx', dtype1), ('yy', dtype2)])
dtype4=np.dtype([('xxx',dtype3),('yyy','f8', (4,))])
dtype5=np.dtype([('x1', dtype1), ('y1', dtype2)])
# aligned data types
dtype1a = np.dtype({'names':['i','j'],'formats':['<i2','<i8']},align=True)
dtype2a = np.dtype({'names':['x','y'],'formats':['<f4',('<f8', (3, 2))]},align=True)
dtype3a = np.dtype({'names':['xx','yy'],'formats':[dtype1a,dtype2a]},align=True)
dtype4a = np.dtype({'names':['xxx','yyy'],'formats':[dtype3a,('f8', (4,))]},align=True)
dtype5a = np.dtype({'names':['x1','y1'],'formats':[dtype1a,dtype2a]},align=True)
data = np.zeros(DIM_SIZE,dtype4)
data['xxx']['xx']['i']=1
data['xxx']['xx']['j']=2
data['xxx']['yy']['x']=3
data['xxx']['yy']['y']=4
data['yyy'] = 5
datag = np.zeros(DIM_SIZE,dtype5)
datag['x1']['i']=10
datag['x1']['j']=20
datag['y1']['x']=30
datag['y1']['y']=40
class VariablesTestCase(unittest.TestCase):
def setUp(self):
self.file = FILE_NAME
f = Dataset(self.file, 'w')
d = f.createDimension(DIM_NAME,DIM_SIZE)
g = f.createGroup(GROUP_NAME)
# simple compound types.
cmptype1 = f.createCompoundType(dtype1, TYPE_NAME1)
cmptype2 = f.createCompoundType(dtype2, TYPE_NAME2)
# close and reopen the file to make sure compound
# type info read back in correctly.
f.close()
f = Dataset(self.file,'r+')
g = f.groups[GROUP_NAME]
# multiply nested compound types
cmptype3 = f.createCompoundType(dtype3, TYPE_NAME3)
cmptype4 = f.createCompoundType(dtype4, TYPE_NAME4)
cmptype5 = f.createCompoundType(dtype5, TYPE_NAME5)
v = f.createVariable(VAR_NAME,cmptype4, DIM_NAME)
vv = g.createVariable(VAR_NAME,cmptype5, DIM_NAME)
v[:] = data
vv[:] = datag
# try reading the data back before the file is closed
dataout = v[:]
dataoutg = vv[:]
assert (cmptype4 == dtype4a) # data type should be aligned
assert (dataout.dtype == dtype4a) # data type should be aligned
assert list(f.cmptypes.keys()) ==\
[TYPE_NAME1,TYPE_NAME2,TYPE_NAME3,TYPE_NAME4,TYPE_NAME5]
assert_array_equal(dataout['xxx']['xx']['i'],data['xxx']['xx']['i'])
assert_array_equal(dataout['xxx']['xx']['j'],data['xxx']['xx']['j'])
assert_array_almost_equal(dataout['xxx']['yy']['x'],data['xxx']['yy']['x'])
assert_array_almost_equal(dataout['xxx']['yy']['y'],data['xxx']['yy']['y'])
assert_array_almost_equal(dataout['yyy'],data['yyy'])
assert_array_equal(dataoutg['x1']['i'],datag['x1']['i'])
assert_array_equal(dataoutg['x1']['j'],datag['x1']['j'])
assert_array_almost_equal(dataoutg['y1']['x'],datag['y1']['x'])
assert_array_almost_equal(dataoutg['y1']['y'],datag['y1']['y'])
f.close()
def tearDown(self):
# Remove the temporary files
os.remove(self.file)
#pass
def runTest(self):
"""testing compound variables"""
f = Dataset(self.file, 'r')
v = f.variables[VAR_NAME]
g = f.groups[GROUP_NAME]
vv = g.variables[VAR_NAME]
dataout = v[:]
dataoutg = vv[:]
# make sure data type is aligned
assert (f.cmptypes['cmp4'] == dtype4a)
assert list(f.cmptypes.keys()) ==\
[TYPE_NAME1,TYPE_NAME2,TYPE_NAME3,TYPE_NAME4,TYPE_NAME5]
assert_array_equal(dataout['xxx']['xx']['i'],data['xxx']['xx']['i'])
assert_array_equal(dataout['xxx']['xx']['j'],data['xxx']['xx']['j'])
assert_array_almost_equal(dataout['xxx']['yy']['x'],data['xxx']['yy']['x'])
assert_array_almost_equal(dataout['xxx']['yy']['y'],data['xxx']['yy']['y'])
assert_array_almost_equal(dataout['yyy'],data['yyy'])
assert_array_equal(dataoutg['x1']['i'],datag['x1']['i'])
assert_array_equal(dataoutg['x1']['j'],datag['x1']['j'])
assert_array_almost_equal(dataoutg['y1']['x'],datag['y1']['x'])
assert_array_almost_equal(dataoutg['y1']['y'],datag['y1']['y'])
f.close()
# issue 773
f = Dataset(self.file,'w')
dtype = np.dtype([('observation', 'i4'),
('station_name','S80')])
dtype_nest = np.dtype([('observation', 'i4'),
('station_name','S80'),
('nested_observation',dtype)])
station_data_t1 = f.createCompoundType(dtype,'station_data1')
station_data_t2 = f.createCompoundType(dtype_nest,'station_data')
f.createDimension('station',None)
statdat = f.createVariable('station_obs', station_data_t2, ('station',))
assert statdat.dtype == station_data_t2.dtype
datain = np.empty(2,station_data_t2.dtype_view)
datain['observation'][:] = (123,314)
datain['station_name'][:] = ('Boulder','New York')
datain['nested_observation']['observation'][:] = (-999,999)
datain['nested_observation']['station_name'][:] = ('Boston','Chicago')
statdat[:] = datain
f.close()
f = Dataset(self.file)
dataout = f['station_obs'][:]
assert dataout.dtype == station_data_t2.dtype_view
assert_array_equal(datain, dataout)
f.close()
if __name__ == '__main__':
from netCDF4 import getlibversion
version = getlibversion().split()[0]
unittest.main()
|