1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
from netCDF4 import Dataset
from numpy.random import seed, randint
from numpy.testing import assert_array_equal, assert_equal
import tempfile, unittest, os, random
import numpy as np
"""
Bug note
There seems to be a bug when two unlimited dimensions are used,
ie ('x', 'y', 'time'), where x and time are unlimited dimensions.
Specifically, the x dimension is set to a random length after setting
it from an array. No data is lost, but the shape is wrong, and this
can hog down the computer when taking all data along x.
This bug appeared on Huard's box with netCDF4.0 and HDF5 1.8.1, and
seems to be absent in later versions of those libraries (this needs
to be checked.)
See test2unlim below for an example.
"""
file_name = tempfile.NamedTemporaryFile(suffix='.nc', delete=False).name
xdim=9; ydim=10; zdim=11
i = np.array([2,5,7],'i4')
i2 = np.array([0,8],'i4')
i3 = np.array([3,7,9,10],'i4')
ib = np.zeros(ydim,dtype=np.bool_)
ib[2] = True; ib[5] = True; ib[7] = True
ib2 = np.zeros(xdim, dtype=np.bool_)
ib2[1] = True; ib2[4] = True; ib2[6] = True
# this one should be converted to a slice.
ib3 = np.zeros(xdim, dtype=np.bool_)
ib3[0] = True; ib2[4] = True; ib2[8] = True
#seed(9) # fix seed
data = randint(0,10,size=(xdim,ydim,zdim)).astype('i2')
data1 = data[:,0,0].copy()
class VariablesTestCase(unittest.TestCase):
def setUp(self):
self.file = file_name
f = Dataset(file_name,'w')
f.createDimension('x',None)
f.createDimension('y',ydim)
f.createDimension('z',zdim)
v = f.createVariable('data','i2',('x','y','z'))
v[:] = data
v1 = f.createVariable('data1','i2','x')
self.data1 = data1
self.data = data
# test __setitem___
v[0:xdim] = self.data
# integer array slice.
v[:,i,:] = -100
self.data[:,i,:] = -100
# boolean array slice.
v[ib2] = -200
self.data[ib2] = -200
v[ib3,:,:] = -300
self.data[ib3,:,:] = -300
# same as above, for 1d array
v1[0:xdim] = self.data1
v1[i] = -100
self.data1[i] = -100
v1[ib2] = -200
self.data1[ib2] = -200
v1[ib3] = -300
self.data1[ib3] = -300
f.close()
def tearDown(self):
# Remove the temporary files
os.remove(self.file)
def test_get(self):
"""testing 'fancy indexing'"""
f = Dataset(self.file, 'r')
v = f.variables['data']
# slice with an array of integers.
assert_array_equal(v[0:-1:2,i,:],self.data[0:-1:2,i,:])
# slice with an array of booleans.
assert_array_equal(v[0:-1:2,ib,:],self.data[0:-1:2,ib,:])
# Two slices
assert_array_equal(v[1:2,1:3,:], self.data[1:2,1:3,:])
# Three integer sequences
# sequences should be equivalent to booleans
ib1 = np.zeros(v.shape[0], np.bool_); ib1[i]=True
ib2 = np.zeros(v.shape[1], np.bool_); ib2[i2]=True
ib3 = np.zeros(v.shape[2], np.bool_); ib3[i3]=True
assert_array_equal(v[i,i2,i3], v[ib1,ib2,ib3])
assert_equal(v[i,i2,i3].shape, (len(i),len(i2),len(i3)))
# Two booleans and one slice. Different from NumPy
# ibx,ibz should be converted to slice, iby not.
ibx = np.array([True, False, True, False, True, False, True, False, True])
iby = np.array([True, False, True, False, False, False, True, False, True, False])
ibz = np.array([True, False, True, False, True, False, True, False,\
True, False, True])
datatmp = self.data[::2,:,:]
datatmp = datatmp[:,iby,:]
assert_array_equal(v[ibx, iby, :], datatmp)
# Three booleans
datatmp = self.data[::2,:,:]
datatmp = datatmp[:,iby,::2]
assert_array_equal(v[ibx,iby,ibz], datatmp)
# Empty boolean -- all False
d1 = f.variables['data1']
m = np.zeros(xdim, bool)
if np.__version__ > '1.9.0':
# fails for old numpy versions
assert_equal(d1[m], ())
# Check that no assignment is made
d1[m] = 0
assert_equal(d1[:], self.data1)
# boolean slices, only single items returned.
iby = np.array([True, False, False, False, False, False, False, False,\
False, False])
ibz = np.array([False, True, False, False, False, False, False, False,\
False,False,False])
assert_array_equal(v[:,iby,ibz],self.data[:,0:1,1:2])
# check slicing with unsorted integer sequences
# and integer sequences with duplicate elements.
v1 = v[:,[1],:]; v2 = v[:,[3],:]; v3 = v[:,[2],:]
vcheck = np.concatenate((v1,v2,v3),axis=1)
assert_array_equal(vcheck,v[:,[1,3,2],:])
vcheck = np.concatenate((v1,v3,v3),axis=1)
assert_array_equal(vcheck,v[:,[1,2,2],:])
# Ellipse
assert_array_equal(v[...,::2],self.data[..., ::2])
assert_array_equal(v[...,::-2],self.data[..., ::-2])
assert_array_equal(v[[1,2],...],self.data[[1,2],...])
assert_array_equal(v[0], self.data[0])
# slicing with all False booleans (PR #1197)
iby[:] = False
data = v[ibx,iby,ibz]
assert data.size == 0
f.close()
def test_set(self):
f = Dataset(self.file, 'a')
data = np.arange(xdim*ydim*zdim).reshape((xdim,ydim,zdim)).astype('i4')
vu = f.variables['data']
vu[0,:,:] = data[0,:,:]
assert_array_equal(vu[0,:,:], data[0,:,:])
vu[1:,:,:] = data[:]
assert_array_equal(vu[1:, :, :], data)
f.close()
def test2unlim(self):
"""Test with a variable that has two unlimited dimensions."""
f = Dataset(self.file, 'a')
f.createDimension('time',None)
v = f.createVariable('u2data', 'i2', ('time', 'x', 'y'))
xdim = len(f.dimensions['x'])
data = np.arange(3*xdim*ydim).reshape((3, xdim, ydim))
v[:] = data
assert_equal(v.shape, data.shape)
v[3:6, 0:xdim, 0:ydim] = data
try:
assert_equal(v.shape, (6, xdim, ydim))
except AssertionError:
import warnings
warnings.warn("""
There seems to be a bug in the netCDF4 or HDF5 library that is
installed on your computer. Please upgrade to the latest version
to avoid being affected. This only matters if you use more than
1 unlimited dimension.""")
raise AssertionError
f.close()
if __name__ == '__main__':
unittest.main()
|