File: test_fancyslicing.py

package info (click to toggle)
netcdf4-python 1.7.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,612 kB
  • sloc: python: 6,075; ansic: 854; makefile: 17; sh: 2
file content (191 lines) | stat: -rw-r--r-- 6,576 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from netCDF4 import Dataset
from numpy.random import seed, randint
from numpy.testing import assert_array_equal, assert_equal
import tempfile, unittest, os, random
import numpy as np

"""
Bug note

There seems to be a bug when two unlimited dimensions are used,
ie ('x', 'y', 'time'), where x and time are unlimited dimensions.
Specifically, the x dimension is set to a random length after setting
it from an array. No data is lost, but the shape is wrong, and this
can hog down the computer when taking all data along x.
This bug appeared on Huard's box with netCDF4.0 and HDF5 1.8.1, and
seems to be absent in later versions of those libraries (this needs
to be checked.)

See test2unlim below for an example.
"""

file_name = tempfile.NamedTemporaryFile(suffix='.nc', delete=False).name
xdim=9; ydim=10; zdim=11
i = np.array([2,5,7],'i4')
i2 = np.array([0,8],'i4')
i3 = np.array([3,7,9,10],'i4')
ib = np.zeros(ydim,dtype=np.bool_)
ib[2] = True; ib[5] = True; ib[7] = True
ib2 = np.zeros(xdim, dtype=np.bool_)
ib2[1] = True; ib2[4] = True; ib2[6] = True
# this one should be converted to a slice.
ib3 = np.zeros(xdim, dtype=np.bool_)
ib3[0] = True; ib2[4] = True; ib2[8] = True
#seed(9) # fix seed
data = randint(0,10,size=(xdim,ydim,zdim)).astype('i2')
data1 = data[:,0,0].copy()

class VariablesTestCase(unittest.TestCase):

    def setUp(self):
        self.file = file_name
        f = Dataset(file_name,'w')
        f.createDimension('x',None)
        f.createDimension('y',ydim)
        f.createDimension('z',zdim)
        v = f.createVariable('data','i2',('x','y','z'))


        v[:] = data

        v1 = f.createVariable('data1','i2','x')
        self.data1 = data1
        self.data = data
        # test __setitem___
        v[0:xdim] = self.data
        # integer array slice.
        v[:,i,:] = -100
        self.data[:,i,:] = -100
        # boolean array slice.
        v[ib2] = -200
        self.data[ib2] = -200
        v[ib3,:,:] = -300
        self.data[ib3,:,:] = -300
        # same as above, for 1d array
        v1[0:xdim] = self.data1
        v1[i] = -100
        self.data1[i] = -100
        v1[ib2] = -200
        self.data1[ib2] = -200
        v1[ib3] = -300
        self.data1[ib3] = -300

        f.close()

    def tearDown(self):
        # Remove the temporary files
        os.remove(self.file)

    def test_get(self):
        """testing 'fancy indexing'"""
        f  = Dataset(self.file, 'r')
        v = f.variables['data']
        # slice with an array of integers.
        assert_array_equal(v[0:-1:2,i,:],self.data[0:-1:2,i,:])
        # slice with an array of booleans.
        assert_array_equal(v[0:-1:2,ib,:],self.data[0:-1:2,ib,:])
        # Two slices
        assert_array_equal(v[1:2,1:3,:], self.data[1:2,1:3,:])
        # Three integer sequences
        # sequences should be equivalent to booleans
        ib1 = np.zeros(v.shape[0], np.bool_); ib1[i]=True
        ib2 = np.zeros(v.shape[1], np.bool_); ib2[i2]=True
        ib3 = np.zeros(v.shape[2], np.bool_); ib3[i3]=True
        assert_array_equal(v[i,i2,i3], v[ib1,ib2,ib3])
        assert_equal(v[i,i2,i3].shape, (len(i),len(i2),len(i3)))

        # Two booleans and one slice.  Different from NumPy
        # ibx,ibz should be converted to slice, iby not.
        ibx = np.array([True, False, True, False, True, False, True, False, True])
        iby = np.array([True, False, True, False, False, False, True, False, True, False])
        ibz = np.array([True, False, True, False, True, False, True, False,\
            True, False, True])
        datatmp = self.data[::2,:,:]
        datatmp = datatmp[:,iby,:]
        assert_array_equal(v[ibx, iby, :], datatmp)

        # Three booleans
        datatmp = self.data[::2,:,:]
        datatmp = datatmp[:,iby,::2]
        assert_array_equal(v[ibx,iby,ibz], datatmp)

        # Empty boolean -- all False
        d1 = f.variables['data1']
        m = np.zeros(xdim, bool)
        if np.__version__ > '1.9.0':
            # fails for old numpy versions
            assert_equal(d1[m], ())

        # Check that no assignment is made
        d1[m] = 0
        assert_equal(d1[:], self.data1)

        # boolean slices, only single items returned.
        iby = np.array([True, False, False, False, False, False, False, False,\
            False, False])
        ibz = np.array([False, True, False, False, False, False, False, False,\
            False,False,False])
        assert_array_equal(v[:,iby,ibz],self.data[:,0:1,1:2])

        # check slicing with unsorted integer sequences
        # and integer sequences with duplicate elements.
        v1 = v[:,[1],:]; v2 = v[:,[3],:]; v3 = v[:,[2],:]
        vcheck = np.concatenate((v1,v2,v3),axis=1)
        assert_array_equal(vcheck,v[:,[1,3,2],:])
        vcheck = np.concatenate((v1,v3,v3),axis=1)
        assert_array_equal(vcheck,v[:,[1,2,2],:])

        # Ellipse
        assert_array_equal(v[...,::2],self.data[..., ::2])
        assert_array_equal(v[...,::-2],self.data[..., ::-2])
        assert_array_equal(v[[1,2],...],self.data[[1,2],...])

        assert_array_equal(v[0], self.data[0])

        # slicing with all False booleans (PR #1197)
        iby[:] = False
        data = v[ibx,iby,ibz]
        assert data.size == 0 

        f.close()

    def test_set(self):
        f  = Dataset(self.file, 'a')
        data = np.arange(xdim*ydim*zdim).reshape((xdim,ydim,zdim)).astype('i4')
        vu = f.variables['data']

        vu[0,:,:] = data[0,:,:]
        assert_array_equal(vu[0,:,:], data[0,:,:])

        vu[1:,:,:] = data[:]
        assert_array_equal(vu[1:, :, :], data)

        f.close()

    def test2unlim(self):
        """Test with a variable that has two unlimited dimensions."""
        f  = Dataset(self.file, 'a')
        f.createDimension('time',None)

        v = f.createVariable('u2data', 'i2', ('time', 'x', 'y'))
        xdim = len(f.dimensions['x'])
        data = np.arange(3*xdim*ydim).reshape((3, xdim, ydim))

        v[:] = data
        assert_equal(v.shape, data.shape)

        v[3:6, 0:xdim, 0:ydim] = data
        try:
            assert_equal(v.shape, (6, xdim, ydim))
        except AssertionError:
            import warnings
            warnings.warn("""
            There seems to be a bug in the netCDF4 or HDF5 library that is
            installed on your computer. Please upgrade to the latest version
            to avoid being affected. This only matters if you use more than
            1 unlimited dimension.""")
            raise AssertionError
        f.close()

if __name__ == '__main__':
    unittest.main()