1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
|
// SPDX-License-Identifier: GPL-3.0-or-later
#include "../libnetdata.h"
// defaults are for compatibility
// call clocks_init() once, to optimize these default settings
static clockid_t clock_boottime_to_use = CLOCK_MONOTONIC;
static clockid_t clock_monotonic_to_use = CLOCK_MONOTONIC;
usec_t clock_monotonic_resolution = 1000;
usec_t clock_realtime_resolution = 1000;
#ifndef HAVE_CLOCK_GETTIME
inline int clock_gettime(clockid_t clk_id __maybe_unused, struct timespec *ts) {
struct timeval tv;
if(unlikely(gettimeofday(&tv, NULL) == -1)) {
error("gettimeofday() failed.");
return -1;
}
ts->tv_sec = tv.tv_sec;
ts->tv_nsec = (long)((tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC);
return 0;
}
#endif
// Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-based time that is not subject to NTP adjustments
// or the incremental adjustments performed by adjtime(3). This clock does not count time that the system is suspended
static void test_clock_monotonic_raw(void) {
#ifdef CLOCK_MONOTONIC_RAW
struct timespec ts;
if(clock_gettime(CLOCK_MONOTONIC_RAW, &ts) == -1 && errno == EINVAL)
clock_monotonic_to_use = CLOCK_MONOTONIC;
else
clock_monotonic_to_use = CLOCK_MONOTONIC_RAW;
#else
clock_monotonic_to_use = CLOCK_MONOTONIC;
#endif
}
// When running a binary with CLOCK_BOOTTIME defined on a system with a linux kernel older than Linux 2.6.39 the
// clock_gettime(2) system call fails with EINVAL. In that case it must fall-back to CLOCK_MONOTONIC.
static void test_clock_boottime(void) {
struct timespec ts;
if(clock_gettime(CLOCK_BOOTTIME, &ts) == -1 && errno == EINVAL)
clock_boottime_to_use = clock_monotonic_to_use;
else
clock_boottime_to_use = CLOCK_BOOTTIME;
}
static usec_t get_clock_resolution(clockid_t clock) {
struct timespec ts;
clock_getres(clock, &ts);
return ts.tv_sec * USEC_PER_SEC + ts.tv_nsec * NSEC_PER_USEC;
}
// perform any initializations required for clocks
void clocks_init(void) {
// monotonic raw has to be tested before boottime
test_clock_monotonic_raw();
// boottime has to be tested after monotonic coarse
test_clock_boottime();
clock_monotonic_resolution = get_clock_resolution(clock_monotonic_to_use);
clock_realtime_resolution = get_clock_resolution(CLOCK_REALTIME);
// if for any reason these are zero, netdata will crash
// since we use them as modulo to calculations
if(!clock_realtime_resolution)
clock_realtime_resolution = 1000;
if(!clock_monotonic_resolution)
clock_monotonic_resolution = 1000;
}
inline time_t now_sec(clockid_t clk_id) {
struct timespec ts;
if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
error("clock_gettime(%d, ×pec) failed.", clk_id);
return 0;
}
return ts.tv_sec;
}
inline usec_t now_usec(clockid_t clk_id) {
struct timespec ts;
if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
error("clock_gettime(%d, ×pec) failed.", clk_id);
return 0;
}
return (usec_t)ts.tv_sec * USEC_PER_SEC + (ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC;
}
inline int now_timeval(clockid_t clk_id, struct timeval *tv) {
struct timespec ts;
if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
error("clock_gettime(%d, ×pec) failed.", clk_id);
tv->tv_sec = 0;
tv->tv_usec = 0;
return -1;
}
tv->tv_sec = ts.tv_sec;
tv->tv_usec = (suseconds_t)((ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC);
return 0;
}
inline time_t now_realtime_sec(void) {
return now_sec(CLOCK_REALTIME);
}
inline usec_t now_realtime_usec(void) {
return now_usec(CLOCK_REALTIME);
}
inline int now_realtime_timeval(struct timeval *tv) {
return now_timeval(CLOCK_REALTIME, tv);
}
inline time_t now_monotonic_sec(void) {
return now_sec(clock_monotonic_to_use);
}
inline usec_t now_monotonic_usec(void) {
return now_usec(clock_monotonic_to_use);
}
inline int now_monotonic_timeval(struct timeval *tv) {
return now_timeval(clock_monotonic_to_use, tv);
}
inline time_t now_monotonic_high_precision_sec(void) {
return now_sec(CLOCK_MONOTONIC);
}
inline usec_t now_monotonic_high_precision_usec(void) {
return now_usec(CLOCK_MONOTONIC);
}
inline int now_monotonic_high_precision_timeval(struct timeval *tv) {
return now_timeval(CLOCK_MONOTONIC, tv);
}
inline time_t now_boottime_sec(void) {
return now_sec(clock_boottime_to_use);
}
inline usec_t now_boottime_usec(void) {
return now_usec(clock_boottime_to_use);
}
inline int now_boottime_timeval(struct timeval *tv) {
return now_timeval(clock_boottime_to_use, tv);
}
inline usec_t timeval_usec(struct timeval *tv) {
return (usec_t)tv->tv_sec * USEC_PER_SEC + (tv->tv_usec % USEC_PER_SEC);
}
inline msec_t timeval_msec(struct timeval *tv) {
return (msec_t)tv->tv_sec * MSEC_PER_SEC + ((tv->tv_usec % USEC_PER_SEC) / MSEC_PER_SEC);
}
inline susec_t dt_usec_signed(struct timeval *now, struct timeval *old) {
usec_t ts1 = timeval_usec(now);
usec_t ts2 = timeval_usec(old);
if(likely(ts1 >= ts2)) return (susec_t)(ts1 - ts2);
return -((susec_t)(ts2 - ts1));
}
inline usec_t dt_usec(struct timeval *now, struct timeval *old) {
usec_t ts1 = timeval_usec(now);
usec_t ts2 = timeval_usec(old);
return (ts1 > ts2) ? (ts1 - ts2) : (ts2 - ts1);
}
#ifdef __linux__
void sleep_to_absolute_time(usec_t usec) {
static int einval_printed = 0, enotsup_printed = 0, eunknown_printed = 0;
clockid_t clock = CLOCK_REALTIME;
struct timespec req = {
.tv_sec = (time_t)(usec / USEC_PER_SEC),
.tv_nsec = (suseconds_t)((usec % USEC_PER_SEC) * NSEC_PER_USEC)
};
int ret = 0;
while( (ret = clock_nanosleep(clock, TIMER_ABSTIME, &req, NULL)) != 0 ) {
if(ret == EINTR) continue;
else {
if (ret == EINVAL) {
if (!einval_printed) {
einval_printed++;
error(
"Invalid time given to clock_nanosleep(): clockid = %d, tv_sec = %lld, tv_nsec = %ld",
clock,
(long long)req.tv_sec,
req.tv_nsec);
}
} else if (ret == ENOTSUP) {
if (!enotsup_printed) {
enotsup_printed++;
error(
"Invalid clock id given to clock_nanosleep(): clockid = %d, tv_sec = %lld, tv_nsec = %ld",
clock,
(long long)req.tv_sec,
req.tv_nsec);
}
} else {
if (!eunknown_printed) {
eunknown_printed++;
error(
"Unknown return value %d from clock_nanosleep(): clockid = %d, tv_sec = %lld, tv_nsec = %ld",
ret,
clock,
(long long)req.tv_sec,
req.tv_nsec);
}
}
sleep_usec(usec);
}
}
};
#endif
#define HEARTBEAT_ALIGNMENT_STATISTICS_SIZE 10
netdata_mutex_t heartbeat_alignment_mutex = NETDATA_MUTEX_INITIALIZER;
static size_t heartbeat_alignment_id = 0;
struct heartbeat_thread_statistics {
size_t sequence;
usec_t dt;
};
static struct heartbeat_thread_statistics heartbeat_alignment_values[HEARTBEAT_ALIGNMENT_STATISTICS_SIZE] = { 0 };
void heartbeat_statistics(usec_t *min_ptr, usec_t *max_ptr, usec_t *average_ptr, size_t *count_ptr) {
struct heartbeat_thread_statistics current[HEARTBEAT_ALIGNMENT_STATISTICS_SIZE];
static struct heartbeat_thread_statistics old[HEARTBEAT_ALIGNMENT_STATISTICS_SIZE] = { 0 };
memcpy(current, heartbeat_alignment_values, sizeof(struct heartbeat_thread_statistics) * HEARTBEAT_ALIGNMENT_STATISTICS_SIZE);
usec_t min = 0, max = 0, total = 0, average = 0;
size_t i, count = 0;
for(i = 0; i < HEARTBEAT_ALIGNMENT_STATISTICS_SIZE ;i++) {
if(current[i].sequence == old[i].sequence) continue;
usec_t value = current[i].dt - old[i].dt;
if(!count) {
min = max = total = value;
count = 1;
}
else {
total += value;
if(value < min) min = value;
if(value > max) max = value;
count++;
}
}
if(count)
average = total / count;
if(min_ptr) *min_ptr = min;
if(max_ptr) *max_ptr = max;
if(average_ptr) *average_ptr = average;
if(count_ptr) *count_ptr = count;
memcpy(old, current, sizeof(struct heartbeat_thread_statistics) * HEARTBEAT_ALIGNMENT_STATISTICS_SIZE);
}
inline void heartbeat_init(heartbeat_t *hb) {
hb->realtime = 0ULL;
hb->randomness = 250 * USEC_PER_MS + ((now_realtime_usec() * clock_realtime_resolution) % (250 * USEC_PER_MS));
hb->randomness -= (hb->randomness % clock_realtime_resolution);
netdata_mutex_lock(&heartbeat_alignment_mutex);
hb->statistics_id = heartbeat_alignment_id;
heartbeat_alignment_id++;
netdata_mutex_unlock(&heartbeat_alignment_mutex);
if(hb->statistics_id < HEARTBEAT_ALIGNMENT_STATISTICS_SIZE) {
heartbeat_alignment_values[hb->statistics_id].dt = 0;
heartbeat_alignment_values[hb->statistics_id].sequence = 0;
}
}
// waits for the next heartbeat
// it waits using the monotonic clock
// it returns the dt using the realtime clock
usec_t heartbeat_next(heartbeat_t *hb, usec_t tick) {
if(unlikely(hb->randomness > tick / 2)) {
// TODO: The heartbeat tick should be specified at the heartbeat_init() function
usec_t tmp = (now_realtime_usec() * clock_realtime_resolution) % (tick / 2);
info("heartbeat randomness of %llu is too big for a tick of %llu - setting it to %llu", hb->randomness, tick, tmp);
hb->randomness = tmp;
}
usec_t dt;
usec_t now = now_realtime_usec();
usec_t next = now - (now % tick) + tick + hb->randomness;
// align the next time we want to the clock resolution
if(next % clock_realtime_resolution)
next = next - (next % clock_realtime_resolution) + clock_realtime_resolution;
// sleep_usec() has a loop to guarantee we will sleep for at least the requested time.
// According the specs, when we sleep for a relative time, clock adjustments should not affect the duration
// we sleep.
sleep_usec(next - now);
now = now_realtime_usec();
dt = now - hb->realtime;
if(hb->statistics_id < HEARTBEAT_ALIGNMENT_STATISTICS_SIZE) {
heartbeat_alignment_values[hb->statistics_id].dt += now - next;
heartbeat_alignment_values[hb->statistics_id].sequence++;
}
if(unlikely(now < next)) {
errno = 0;
error("heartbeat clock: woke up %llu microseconds earlier than expected (can be due to the CLOCK_REALTIME set to the past).", next - now);
}
else if(unlikely(now - next > tick / 2)) {
errno = 0;
error("heartbeat clock: woke up %llu microseconds later than expected (can be due to system load or the CLOCK_REALTIME set to the future).", now - next);
}
if(unlikely(!hb->realtime)) {
// the first time return zero
dt = 0;
}
hb->realtime = now;
return dt;
}
void sleep_usec(usec_t usec) {
// we expect microseconds (1.000.000 per second)
// but timespec is nanoseconds (1.000.000.000 per second)
struct timespec rem = { 0, 0 }, req = {
.tv_sec = (time_t) (usec / USEC_PER_SEC),
.tv_nsec = (suseconds_t) ((usec % USEC_PER_SEC) * NSEC_PER_USEC)
};
#ifdef __linux__
while (clock_nanosleep(CLOCK_REALTIME, 0, &req, &rem) != 0) {
#else
while (nanosleep(&req, &rem) != 0) {
#endif
if (likely(errno == EINTR && (rem.tv_sec || rem.tv_nsec))) {
req = rem;
rem = (struct timespec){ 0, 0 };
}
else {
#ifdef __linux__
error("Cannot clock_nanosleep(CLOCK_REALTIME) for %llu microseconds.", usec);
#else
error("Cannot nanosleep() for %llu microseconds.", usec);
#endif
break;
}
}
}
static inline collected_number uptime_from_boottime(void) {
#ifdef CLOCK_BOOTTIME_IS_AVAILABLE
return (collected_number)(now_boottime_usec() / USEC_PER_MS);
#else
error("uptime cannot be read from CLOCK_BOOTTIME on this system.");
return 0;
#endif
}
static procfile *read_proc_uptime_ff = NULL;
static inline collected_number read_proc_uptime(char *filename) {
if(unlikely(!read_proc_uptime_ff)) {
read_proc_uptime_ff = procfile_open(filename, " \t", PROCFILE_FLAG_DEFAULT);
if(unlikely(!read_proc_uptime_ff)) return 0;
}
read_proc_uptime_ff = procfile_readall(read_proc_uptime_ff);
if(unlikely(!read_proc_uptime_ff)) return 0;
if(unlikely(procfile_lines(read_proc_uptime_ff) < 1)) {
error("/proc/uptime has no lines.");
return 0;
}
if(unlikely(procfile_linewords(read_proc_uptime_ff, 0) < 1)) {
error("/proc/uptime has less than 1 word in it.");
return 0;
}
return (collected_number)(strtondd(procfile_lineword(read_proc_uptime_ff, 0, 0), NULL) * 1000.0);
}
inline collected_number uptime_msec(char *filename){
static int use_boottime = -1;
if(unlikely(use_boottime == -1)) {
collected_number uptime_boottime = uptime_from_boottime();
collected_number uptime_proc = read_proc_uptime(filename);
long long delta = (long long)uptime_boottime - (long long)uptime_proc;
if(delta < 0) delta = -delta;
if(delta <= 1000 && uptime_boottime != 0) {
procfile_close(read_proc_uptime_ff);
info("Using now_boottime_usec() for uptime (dt is %lld ms)", delta);
use_boottime = 1;
}
else if(uptime_proc != 0) {
info("Using /proc/uptime for uptime (dt is %lld ms)", delta);
use_boottime = 0;
}
else {
error("Cannot find any way to read uptime on this system.");
return 1;
}
}
collected_number uptime;
if(use_boottime)
uptime = uptime_from_boottime();
else
uptime = read_proc_uptime(filename);
return uptime;
}
|