1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
// SPDX-License-Identifier: GPL-3.0-or-later
#include "../libnetdata.h"
NETDATA_DOUBLE default_single_exponential_smoothing_alpha = 0.1;
void log_series_to_stderr(NETDATA_DOUBLE *series, size_t entries, NETDATA_DOUBLE result, const char *msg) {
const NETDATA_DOUBLE *value, *end = &series[entries];
fprintf(stderr, "%s of %zu entries [ ", msg, entries);
for(value = series; value < end ;value++) {
if(value != series) fprintf(stderr, ", ");
fprintf(stderr, "%" NETDATA_DOUBLE_MODIFIER, *value);
}
fprintf(stderr, " ] results in " NETDATA_DOUBLE_FORMAT "\n", result);
}
// --------------------------------------------------------------------------------------------------------------------
inline NETDATA_DOUBLE sum_and_count(const NETDATA_DOUBLE *series, size_t entries, size_t *count) {
const NETDATA_DOUBLE *value, *end = &series[entries];
NETDATA_DOUBLE sum = 0;
size_t c = 0;
for(value = series; value < end ; value++) {
if(netdata_double_isnumber(*value)) {
sum += *value;
c++;
}
}
if(unlikely(!c)) sum = NAN;
if(likely(count)) *count = c;
return sum;
}
inline NETDATA_DOUBLE sum(const NETDATA_DOUBLE *series, size_t entries) {
return sum_and_count(series, entries, NULL);
}
inline NETDATA_DOUBLE average(const NETDATA_DOUBLE *series, size_t entries) {
size_t count = 0;
NETDATA_DOUBLE sum = sum_and_count(series, entries, &count);
if(unlikely(!count)) return NAN;
return sum / (NETDATA_DOUBLE)count;
}
// --------------------------------------------------------------------------------------------------------------------
NETDATA_DOUBLE moving_average(const NETDATA_DOUBLE *series, size_t entries, size_t period) {
if(unlikely(period <= 0))
return 0.0;
size_t i, count;
NETDATA_DOUBLE sum = 0, avg = 0;
NETDATA_DOUBLE p[period];
for(count = 0; count < period ; count++)
p[count] = 0.0;
for(i = 0, count = 0; i < entries; i++) {
NETDATA_DOUBLE value = series[i];
if(unlikely(!netdata_double_isnumber(value))) continue;
if(unlikely(count < period)) {
sum += value;
avg = (count == period - 1) ? sum / (NETDATA_DOUBLE)period : 0;
}
else {
sum = sum - p[count % period] + value;
avg = sum / (NETDATA_DOUBLE)period;
}
p[count % period] = value;
count++;
}
return avg;
}
// --------------------------------------------------------------------------------------------------------------------
static int qsort_compare(const void *a, const void *b) {
NETDATA_DOUBLE *p1 = (NETDATA_DOUBLE *)a, *p2 = (NETDATA_DOUBLE *)b;
NETDATA_DOUBLE n1 = *p1, n2 = *p2;
if(unlikely(isnan(n1) || isnan(n2))) {
if(isnan(n1) && !isnan(n2)) return -1;
if(!isnan(n1) && isnan(n2)) return 1;
return 0;
}
if(unlikely(isinf(n1) || isinf(n2))) {
if(!isinf(n1) && isinf(n2)) return -1;
if(isinf(n1) && !isinf(n2)) return 1;
return 0;
}
if(unlikely(n1 < n2)) return -1;
if(unlikely(n1 > n2)) return 1;
return 0;
}
inline void sort_series(NETDATA_DOUBLE *series, size_t entries) {
qsort(series, entries, sizeof(NETDATA_DOUBLE), qsort_compare);
}
inline NETDATA_DOUBLE *copy_series(const NETDATA_DOUBLE *series, size_t entries) {
NETDATA_DOUBLE *copy = mallocz(sizeof(NETDATA_DOUBLE) * entries);
memcpy(copy, series, sizeof(NETDATA_DOUBLE) * entries);
return copy;
}
NETDATA_DOUBLE median_on_sorted_series(const NETDATA_DOUBLE *series, size_t entries) {
if(unlikely(entries == 0)) return NAN;
if(unlikely(entries == 1)) return series[0];
if(unlikely(entries == 2)) return (series[0] + series[1]) / 2;
NETDATA_DOUBLE average;
if(entries % 2 == 0) {
size_t m = entries / 2;
average = (series[m] + series[m + 1]) / 2;
}
else {
average = series[entries / 2];
}
return average;
}
NETDATA_DOUBLE median(const NETDATA_DOUBLE *series, size_t entries) {
if(unlikely(entries == 0)) return NAN;
if(unlikely(entries == 1)) return series[0];
if(unlikely(entries == 2))
return (series[0] + series[1]) / 2;
NETDATA_DOUBLE *copy = copy_series(series, entries);
sort_series(copy, entries);
NETDATA_DOUBLE avg = median_on_sorted_series(copy, entries);
freez(copy);
return avg;
}
// --------------------------------------------------------------------------------------------------------------------
NETDATA_DOUBLE moving_median(const NETDATA_DOUBLE *series, size_t entries, size_t period) {
if(entries <= period)
return median(series, entries);
NETDATA_DOUBLE *data = copy_series(series, entries);
size_t i;
for(i = period; i < entries; i++) {
data[i - period] = median(&series[i - period], period);
}
NETDATA_DOUBLE avg = median(data, entries - period);
freez(data);
return avg;
}
// --------------------------------------------------------------------------------------------------------------------
// http://stackoverflow.com/a/15150143/4525767
NETDATA_DOUBLE running_median_estimate(const NETDATA_DOUBLE *series, size_t entries) {
NETDATA_DOUBLE median = 0.0f;
NETDATA_DOUBLE average = 0.0f;
size_t i;
for(i = 0; i < entries ; i++) {
NETDATA_DOUBLE value = series[i];
if(unlikely(!netdata_double_isnumber(value))) continue;
average += ( value - average ) * 0.1f; // rough running average.
median += copysignndd( average * 0.01, value - median );
}
return median;
}
// --------------------------------------------------------------------------------------------------------------------
NETDATA_DOUBLE standard_deviation(const NETDATA_DOUBLE *series, size_t entries) {
if(unlikely(entries == 0)) return NAN;
if(unlikely(entries == 1)) return series[0];
const NETDATA_DOUBLE *value, *end = &series[entries];
size_t count;
NETDATA_DOUBLE sum;
for(count = 0, sum = 0, value = series ; value < end ;value++) {
if(likely(netdata_double_isnumber(*value))) {
count++;
sum += *value;
}
}
if(unlikely(count == 0)) return NAN;
if(unlikely(count == 1)) return sum;
NETDATA_DOUBLE average = sum / (NETDATA_DOUBLE)count;
for(count = 0, sum = 0, value = series ; value < end ;value++) {
if(netdata_double_isnumber(*value)) {
count++;
sum += powndd(*value - average, 2);
}
}
if(unlikely(count == 0)) return NAN;
if(unlikely(count == 1)) return average;
NETDATA_DOUBLE variance = sum / (NETDATA_DOUBLE)(count); // remove -1 from count to have a population stddev
NETDATA_DOUBLE stddev = sqrtndd(variance);
return stddev;
}
// --------------------------------------------------------------------------------------------------------------------
NETDATA_DOUBLE single_exponential_smoothing(const NETDATA_DOUBLE *series, size_t entries, NETDATA_DOUBLE alpha) {
if(unlikely(entries == 0))
return NAN;
if(unlikely(isnan(alpha)))
alpha = default_single_exponential_smoothing_alpha;
const NETDATA_DOUBLE *value = series, *end = &series[entries];
NETDATA_DOUBLE level = (1.0 - alpha) * (*value);
for(value++ ; value < end; value++) {
if(likely(netdata_double_isnumber(*value)))
level = alpha * (*value) + (1.0 - alpha) * level;
}
return level;
}
NETDATA_DOUBLE single_exponential_smoothing_reverse(const NETDATA_DOUBLE *series, size_t entries, NETDATA_DOUBLE alpha) {
if(unlikely(entries == 0))
return NAN;
if(unlikely(isnan(alpha)))
alpha = default_single_exponential_smoothing_alpha;
const NETDATA_DOUBLE *value = &series[entries -1];
NETDATA_DOUBLE level = (1.0 - alpha) * (*value);
for(value++ ; value >= series; value--) {
if(likely(netdata_double_isnumber(*value)))
level = alpha * (*value) + (1.0 - alpha) * level;
}
return level;
}
// --------------------------------------------------------------------------------------------------------------------
// http://grisha.org/blog/2016/02/16/triple-exponential-smoothing-forecasting-part-ii/
NETDATA_DOUBLE double_exponential_smoothing(const NETDATA_DOUBLE *series, size_t entries,
NETDATA_DOUBLE alpha,
NETDATA_DOUBLE beta,
NETDATA_DOUBLE *forecast) {
if(unlikely(entries == 0))
return NAN;
NETDATA_DOUBLE level, trend;
if(unlikely(isnan(alpha)))
alpha = 0.3;
if(unlikely(isnan(beta)))
beta = 0.05;
level = series[0];
if(likely(entries > 1))
trend = series[1] - series[0];
else
trend = 0;
const NETDATA_DOUBLE *value = series;
for(value++ ; value >= series; value--) {
if(likely(netdata_double_isnumber(*value))) {
NETDATA_DOUBLE last_level = level;
level = alpha * *value + (1.0 - alpha) * (level + trend);
trend = beta * (level - last_level) + (1.0 - beta) * trend;
}
}
if(forecast)
*forecast = level + trend;
return level;
}
// --------------------------------------------------------------------------------------------------------------------
/*
* Based on th R implementation
*
* a: level component
* b: trend component
* s: seasonal component
*
* Additive:
*
* Yhat[t+h] = a[t] + h * b[t] + s[t + 1 + (h - 1) mod p],
* a[t] = α (Y[t] - s[t-p]) + (1-α) (a[t-1] + b[t-1])
* b[t] = β (a[t] - a[t-1]) + (1-β) b[t-1]
* s[t] = γ (Y[t] - a[t]) + (1-γ) s[t-p]
*
* Multiplicative:
*
* Yhat[t+h] = (a[t] + h * b[t]) * s[t + 1 + (h - 1) mod p],
* a[t] = α (Y[t] / s[t-p]) + (1-α) (a[t-1] + b[t-1])
* b[t] = β (a[t] - a[t-1]) + (1-β) b[t-1]
* s[t] = γ (Y[t] / a[t]) + (1-γ) s[t-p]
*/
static int __HoltWinters(
const NETDATA_DOUBLE *series,
int entries, // start_time + h
NETDATA_DOUBLE alpha, // alpha parameter of Holt-Winters Filter.
NETDATA_DOUBLE
beta, // beta parameter of Holt-Winters Filter. If set to 0, the function will do exponential smoothing.
NETDATA_DOUBLE
gamma, // gamma parameter used for the seasonal component. If set to 0, an non-seasonal model is fitted.
const int *seasonal,
const int *period,
const NETDATA_DOUBLE *a, // Start value for level (a[0]).
const NETDATA_DOUBLE *b, // Start value for trend (b[0]).
NETDATA_DOUBLE *s, // Vector of start values for the seasonal component (s_1[0] ... s_p[0])
/* return values */
NETDATA_DOUBLE *SSE, // The final sum of squared errors achieved in optimizing
NETDATA_DOUBLE *level, // Estimated values for the level component (size entries - t + 2)
NETDATA_DOUBLE *trend, // Estimated values for the trend component (size entries - t + 2)
NETDATA_DOUBLE *season // Estimated values for the seasonal component (size entries - t + 2)
)
{
if(unlikely(entries < 4))
return 0;
int start_time = 2;
NETDATA_DOUBLE res = 0, xhat = 0, stmp = 0;
int i, i0, s0;
/* copy start values to the beginning of the vectors */
level[0] = *a;
if(beta > 0) trend[0] = *b;
if(gamma > 0) memcpy(season, s, *period * sizeof(NETDATA_DOUBLE));
for(i = start_time - 1; i < entries; i++) {
/* indices for period i */
i0 = i - start_time + 2;
s0 = i0 + *period - 1;
/* forecast *for* period i */
xhat = level[i0 - 1] + (beta > 0 ? trend[i0 - 1] : 0);
stmp = gamma > 0 ? season[s0 - *period] : (*seasonal != 1);
if (*seasonal == 1)
xhat += stmp;
else
xhat *= stmp;
/* Sum of Squared Errors */
res = series[i] - xhat;
*SSE += res * res;
/* estimate of level *in* period i */
if (*seasonal == 1)
level[i0] = alpha * (series[i] - stmp)
+ (1 - alpha) * (level[i0 - 1] + trend[i0 - 1]);
else
level[i0] = alpha * (series[i] / stmp)
+ (1 - alpha) * (level[i0 - 1] + trend[i0 - 1]);
/* estimate of trend *in* period i */
if (beta > 0)
trend[i0] = beta * (level[i0] - level[i0 - 1])
+ (1 - beta) * trend[i0 - 1];
/* estimate of seasonal component *in* period i */
if (gamma > 0) {
if (*seasonal == 1)
season[s0] = gamma * (series[i] - level[i0])
+ (1 - gamma) * stmp;
else
season[s0] = gamma * (series[i] / level[i0])
+ (1 - gamma) * stmp;
}
}
return 1;
}
NETDATA_DOUBLE holtwinters(const NETDATA_DOUBLE *series, size_t entries,
NETDATA_DOUBLE alpha,
NETDATA_DOUBLE beta,
NETDATA_DOUBLE gamma,
NETDATA_DOUBLE *forecast) {
if(unlikely(isnan(alpha)))
alpha = 0.3;
if(unlikely(isnan(beta)))
beta = 0.05;
if(unlikely(isnan(gamma)))
gamma = 0;
int seasonal = 0;
int period = 0;
NETDATA_DOUBLE a0 = series[0];
NETDATA_DOUBLE b0 = 0;
NETDATA_DOUBLE s[] = {};
NETDATA_DOUBLE errors = 0.0;
size_t nb_computations = entries;
NETDATA_DOUBLE *estimated_level = callocz(nb_computations, sizeof(NETDATA_DOUBLE));
NETDATA_DOUBLE *estimated_trend = callocz(nb_computations, sizeof(NETDATA_DOUBLE));
NETDATA_DOUBLE *estimated_season = callocz(nb_computations, sizeof(NETDATA_DOUBLE));
int ret = __HoltWinters(
series,
(int)entries,
alpha,
beta,
gamma,
&seasonal,
&period,
&a0,
&b0,
s,
&errors,
estimated_level,
estimated_trend,
estimated_season
);
NETDATA_DOUBLE value = estimated_level[nb_computations - 1];
if(forecast)
*forecast = 0.0;
freez(estimated_level);
freez(estimated_trend);
freez(estimated_season);
if(!ret)
return 0.0;
return value;
}
|