1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
|
// SPDX-License-Identifier: GPL-3.0-or-later
#include "daemon/common.h"
#include "database/KolmogorovSmirnovDist.h"
#define MAX_POINTS 10000
int enable_metric_correlations = CONFIG_BOOLEAN_YES;
int metric_correlations_version = 1;
WEIGHTS_METHOD default_metric_correlations_method = WEIGHTS_METHOD_MC_KS2;
typedef struct weights_stats {
NETDATA_DOUBLE max_base_high_ratio;
size_t db_points;
size_t result_points;
size_t db_queries;
size_t db_points_per_tier[RRD_STORAGE_TIERS];
size_t binary_searches;
} WEIGHTS_STATS;
// ----------------------------------------------------------------------------
// parse and render metric correlations methods
static struct {
const char *name;
WEIGHTS_METHOD value;
} weights_methods[] = {
{ "ks2" , WEIGHTS_METHOD_MC_KS2}
, { "volume" , WEIGHTS_METHOD_MC_VOLUME}
, { "anomaly-rate" , WEIGHTS_METHOD_ANOMALY_RATE}
, { NULL , 0 }
};
WEIGHTS_METHOD weights_string_to_method(const char *method) {
for(int i = 0; weights_methods[i].name ;i++)
if(strcmp(method, weights_methods[i].name) == 0)
return weights_methods[i].value;
return default_metric_correlations_method;
}
const char *weights_method_to_string(WEIGHTS_METHOD method) {
for(int i = 0; weights_methods[i].name ;i++)
if(weights_methods[i].value == method)
return weights_methods[i].name;
return "unknown";
}
// ----------------------------------------------------------------------------
// The results per dimension are aggregated into a dictionary
typedef enum {
RESULT_IS_BASE_HIGH_RATIO = (1 << 0),
RESULT_IS_PERCENTAGE_OF_TIME = (1 << 1),
} RESULT_FLAGS;
struct register_result {
RESULT_FLAGS flags;
RRDCONTEXT_ACQUIRED *rca;
RRDINSTANCE_ACQUIRED *ria;
RRDMETRIC_ACQUIRED *rma;
NETDATA_DOUBLE value;
};
static DICTIONARY *register_result_init() {
DICTIONARY *results = dictionary_create(DICT_OPTION_SINGLE_THREADED);
return results;
}
static void register_result_destroy(DICTIONARY *results) {
dictionary_destroy(results);
}
static void register_result(DICTIONARY *results,
RRDCONTEXT_ACQUIRED *rca,
RRDINSTANCE_ACQUIRED *ria,
RRDMETRIC_ACQUIRED *rma,
NETDATA_DOUBLE value,
RESULT_FLAGS flags,
WEIGHTS_STATS *stats,
bool register_zero) {
if(!netdata_double_isnumber(value)) return;
// make it positive
NETDATA_DOUBLE v = fabsndd(value);
// no need to store zero scored values
if(unlikely(fpclassify(v) == FP_ZERO && !register_zero))
return;
// keep track of the max of the baseline / highlight ratio
if(flags & RESULT_IS_BASE_HIGH_RATIO && v > stats->max_base_high_ratio)
stats->max_base_high_ratio = v;
struct register_result t = {
.flags = flags,
.rca = rca,
.ria = ria,
.rma = rma,
.value = v
};
// we can use the pointer address or RMA as a unique key for each metric
char buf[20 + 1];
ssize_t len = snprintfz(buf, 20, "%p", rma);
dictionary_set_advanced(results, buf, len + 1, &t, sizeof(struct register_result), NULL);
}
// ----------------------------------------------------------------------------
// Generation of JSON output for the results
static void results_header_to_json(DICTIONARY *results __maybe_unused, BUFFER *wb,
time_t after, time_t before,
time_t baseline_after, time_t baseline_before,
size_t points, WEIGHTS_METHOD method,
RRDR_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
size_t examined_dimensions __maybe_unused, usec_t duration,
WEIGHTS_STATS *stats) {
buffer_sprintf(wb, "{\n"
"\t\"after\": %lld,\n"
"\t\"before\": %lld,\n"
"\t\"duration\": %lld,\n"
"\t\"points\": %zu,\n",
(long long)after,
(long long)before,
(long long)(before - after),
points
);
if(method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME)
buffer_sprintf(wb, ""
"\t\"baseline_after\": %lld,\n"
"\t\"baseline_before\": %lld,\n"
"\t\"baseline_duration\": %lld,\n"
"\t\"baseline_points\": %zu,\n",
(long long)baseline_after,
(long long)baseline_before,
(long long)(baseline_before - baseline_after),
points << shifts
);
buffer_sprintf(wb, ""
"\t\"statistics\": {\n"
"\t\t\"query_time_ms\": %f,\n"
"\t\t\"db_queries\": %zu,\n"
"\t\t\"query_result_points\": %zu,\n"
"\t\t\"binary_searches\": %zu,\n"
"\t\t\"db_points_read\": %zu,\n"
"\t\t\"db_points_per_tier\": [ ",
(double)duration / (double)USEC_PER_MS,
stats->db_queries,
stats->result_points,
stats->binary_searches,
stats->db_points
);
for(size_t tier = 0; tier < storage_tiers ;tier++)
buffer_sprintf(wb, "%s%zu", tier?", ":"", stats->db_points_per_tier[tier]);
buffer_sprintf(wb, " ]\n"
"\t},\n"
"\t\"group\": \"%s\",\n"
"\t\"method\": \"%s\",\n"
"\t\"options\": \"",
web_client_api_request_v1_data_group_to_string(group),
weights_method_to_string(method)
);
web_client_api_request_v1_data_options_to_buffer(wb, options);
}
static size_t registered_results_to_json_charts(DICTIONARY *results, BUFFER *wb,
time_t after, time_t before,
time_t baseline_after, time_t baseline_before,
size_t points, WEIGHTS_METHOD method,
RRDR_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
size_t examined_dimensions, usec_t duration,
WEIGHTS_STATS *stats) {
results_header_to_json(results, wb, after, before, baseline_after, baseline_before,
points, method, group, options, shifts, examined_dimensions, duration, stats);
buffer_strcat(wb, "\",\n\t\"correlated_charts\": {\n");
size_t charts = 0, chart_dims = 0, total_dimensions = 0;
struct register_result *t;
RRDINSTANCE_ACQUIRED *last_ria = NULL; // never access this - we use it only for comparison
dfe_start_read(results, t) {
if(t->ria != last_ria) {
last_ria = t->ria;
if(charts) buffer_strcat(wb, "\n\t\t\t}\n\t\t},\n");
buffer_strcat(wb, "\t\t\"");
buffer_strcat(wb, rrdinstance_acquired_id(t->ria));
buffer_strcat(wb, "\": {\n");
buffer_strcat(wb, "\t\t\t\"context\": \"");
buffer_strcat(wb, rrdcontext_acquired_id(t->rca));
buffer_strcat(wb, "\",\n\t\t\t\"dimensions\": {\n");
charts++;
chart_dims = 0;
}
if (chart_dims) buffer_sprintf(wb, ",\n");
buffer_sprintf(wb, "\t\t\t\t\"%s\": " NETDATA_DOUBLE_FORMAT, rrdmetric_acquired_name(t->rma), t->value);
chart_dims++;
total_dimensions++;
}
dfe_done(t);
// close dimensions and chart
if (total_dimensions)
buffer_strcat(wb, "\n\t\t\t}\n\t\t}\n");
// close correlated_charts
buffer_sprintf(wb, "\t},\n"
"\t\"correlated_dimensions\": %zu,\n"
"\t\"total_dimensions_count\": %zu\n"
"}\n",
total_dimensions,
examined_dimensions
);
return total_dimensions;
}
static size_t registered_results_to_json_contexts(DICTIONARY *results, BUFFER *wb,
time_t after, time_t before,
time_t baseline_after, time_t baseline_before,
size_t points, WEIGHTS_METHOD method,
RRDR_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
size_t examined_dimensions, usec_t duration,
WEIGHTS_STATS *stats) {
results_header_to_json(results, wb, after, before, baseline_after, baseline_before,
points, method, group, options, shifts, examined_dimensions, duration, stats);
buffer_strcat(wb, "\",\n\t\"contexts\": {\n");
size_t contexts = 0, charts = 0, total_dimensions = 0, context_dims = 0, chart_dims = 0;
NETDATA_DOUBLE contexts_total_weight = 0.0, charts_total_weight = 0.0;
struct register_result *t;
RRDCONTEXT_ACQUIRED *last_rca = NULL;
RRDINSTANCE_ACQUIRED *last_ria = NULL;
dfe_start_read(results, t) {
if(t->rca != last_rca) {
last_rca = t->rca;
if(contexts)
buffer_sprintf(wb, "\n"
"\t\t\t\t\t},\n"
"\t\t\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n"
"\t\t\t\t}\n\t\t\t},\n"
"\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n\t\t},\n"
, charts_total_weight / (double)chart_dims
, contexts_total_weight / (double)context_dims);
buffer_strcat(wb, "\t\t\"");
buffer_strcat(wb, rrdcontext_acquired_id(t->rca));
buffer_strcat(wb, "\": {\n\t\t\t\"charts\":{\n");
contexts++;
charts = 0;
context_dims = 0;
contexts_total_weight = 0.0;
last_ria = NULL;
}
if(t->ria != last_ria) {
last_ria = t->ria;
if(charts)
buffer_sprintf(wb, "\n"
"\t\t\t\t\t},\n"
"\t\t\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n"
"\t\t\t\t},\n"
, charts_total_weight / (double)chart_dims);
buffer_strcat(wb, "\t\t\t\t\"");
buffer_strcat(wb, rrdinstance_acquired_id(t->ria));
buffer_strcat(wb, "\": {\n");
buffer_strcat(wb, "\t\t\t\t\t\"dimensions\": {\n");
charts++;
chart_dims = 0;
charts_total_weight = 0.0;
}
if (chart_dims) buffer_sprintf(wb, ",\n");
buffer_sprintf(wb, "\t\t\t\t\t\t\"%s\": " NETDATA_DOUBLE_FORMAT, rrdmetric_acquired_name(t->rma), t->value);
charts_total_weight += t->value;
contexts_total_weight += t->value;
chart_dims++;
context_dims++;
total_dimensions++;
}
dfe_done(t);
// close dimensions and chart
if (total_dimensions)
buffer_sprintf(wb, "\n"
"\t\t\t\t\t},\n"
"\t\t\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n"
"\t\t\t\t}\n"
"\t\t\t},\n"
"\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n"
"\t\t}\n"
, charts_total_weight / (double)chart_dims
, contexts_total_weight / (double)context_dims);
// close correlated_charts
buffer_sprintf(wb, "\t},\n"
"\t\"weighted_dimensions\": %zu,\n"
"\t\"total_dimensions_count\": %zu\n"
"}\n",
total_dimensions,
examined_dimensions
);
return total_dimensions;
}
// ----------------------------------------------------------------------------
// KS2 algorithm functions
typedef long int DIFFS_NUMBERS;
#define DOUBLE_TO_INT_MULTIPLIER 100000
static inline int binary_search_bigger_than(const DIFFS_NUMBERS arr[], int left, int size, DIFFS_NUMBERS K) {
// binary search to find the index the smallest index
// of the first value in the array that is greater than K
int right = size;
while(left < right) {
int middle = (int)(((unsigned int)(left + right)) >> 1);
if(arr[middle] > K)
right = middle;
else
left = middle + 1;
}
return left;
}
int compare_diffs(const void *left, const void *right) {
DIFFS_NUMBERS lt = *(DIFFS_NUMBERS *)left;
DIFFS_NUMBERS rt = *(DIFFS_NUMBERS *)right;
// https://stackoverflow.com/a/3886497/1114110
return (lt > rt) - (lt < rt);
}
static size_t calculate_pairs_diff(DIFFS_NUMBERS *diffs, NETDATA_DOUBLE *arr, size_t size) {
NETDATA_DOUBLE *last = &arr[size - 1];
size_t added = 0;
while(last > arr) {
NETDATA_DOUBLE second = *last--;
NETDATA_DOUBLE first = *last;
*diffs++ = (DIFFS_NUMBERS)((first - second) * (NETDATA_DOUBLE)DOUBLE_TO_INT_MULTIPLIER);
added++;
}
return added;
}
static double ks_2samp(
DIFFS_NUMBERS baseline_diffs[], int base_size,
DIFFS_NUMBERS highlight_diffs[], int high_size,
uint32_t base_shifts) {
qsort(baseline_diffs, base_size, sizeof(DIFFS_NUMBERS), compare_diffs);
qsort(highlight_diffs, high_size, sizeof(DIFFS_NUMBERS), compare_diffs);
// Now we should be calculating this:
//
// For each number in the diffs arrays, we should find the index of the
// number bigger than them in both arrays and calculate the % of this index
// vs the total array size. Once we have the 2 percentages, we should find
// the min and max across the delta of all of them.
//
// It should look like this:
//
// base_pcent = binary_search_bigger_than(...) / base_size;
// high_pcent = binary_search_bigger_than(...) / high_size;
// delta = base_pcent - high_pcent;
// if(delta < min) min = delta;
// if(delta > max) max = delta;
//
// This would require a lot of multiplications and divisions.
//
// To speed it up, we do the binary search to find the index of each number
// but, then we divide the base index by the power of two number (shifts) it
// is bigger than high index. So the 2 indexes are now comparable.
// We also keep track of the original indexes with min and max, to properly
// calculate their percentages once the loops finish.
// initialize min and max using the first number of baseline_diffs
DIFFS_NUMBERS K = baseline_diffs[0];
int base_idx = binary_search_bigger_than(baseline_diffs, 1, base_size, K);
int high_idx = binary_search_bigger_than(highlight_diffs, 0, high_size, K);
int delta = base_idx - (high_idx << base_shifts);
int min = delta, max = delta;
int base_min_idx = base_idx;
int base_max_idx = base_idx;
int high_min_idx = high_idx;
int high_max_idx = high_idx;
// do the baseline_diffs starting from 1 (we did position 0 above)
for(int i = 1; i < base_size; i++) {
K = baseline_diffs[i];
base_idx = binary_search_bigger_than(baseline_diffs, i + 1, base_size, K); // starting from i, since data1 is sorted
high_idx = binary_search_bigger_than(highlight_diffs, 0, high_size, K);
delta = base_idx - (high_idx << base_shifts);
if(delta < min) {
min = delta;
base_min_idx = base_idx;
high_min_idx = high_idx;
}
else if(delta > max) {
max = delta;
base_max_idx = base_idx;
high_max_idx = high_idx;
}
}
// do the highlight_diffs starting from 0
for(int i = 0; i < high_size; i++) {
K = highlight_diffs[i];
base_idx = binary_search_bigger_than(baseline_diffs, 0, base_size, K);
high_idx = binary_search_bigger_than(highlight_diffs, i + 1, high_size, K); // starting from i, since data2 is sorted
delta = base_idx - (high_idx << base_shifts);
if(delta < min) {
min = delta;
base_min_idx = base_idx;
high_min_idx = high_idx;
}
else if(delta > max) {
max = delta;
base_max_idx = base_idx;
high_max_idx = high_idx;
}
}
// now we have the min, max and their indexes
// properly calculate min and max as dmin and dmax
double dbase_size = (double)base_size;
double dhigh_size = (double)high_size;
double dmin = ((double)base_min_idx / dbase_size) - ((double)high_min_idx / dhigh_size);
double dmax = ((double)base_max_idx / dbase_size) - ((double)high_max_idx / dhigh_size);
dmin = -dmin;
if(islessequal(dmin, 0.0)) dmin = 0.0;
else if(isgreaterequal(dmin, 1.0)) dmin = 1.0;
double d;
if(isgreaterequal(dmin, dmax)) d = dmin;
else d = dmax;
double en = round(dbase_size * dhigh_size / (dbase_size + dhigh_size));
// under these conditions, KSfbar() crashes
if(unlikely(isnan(en) || isinf(en) || en == 0.0 || isnan(d) || isinf(d)))
return NAN;
return KSfbar((int)en, d);
}
static double kstwo(
NETDATA_DOUBLE baseline[], int baseline_points,
NETDATA_DOUBLE highlight[], int highlight_points,
uint32_t base_shifts) {
// -1 in size, since the calculate_pairs_diffs() returns one less point
DIFFS_NUMBERS baseline_diffs[baseline_points - 1];
DIFFS_NUMBERS highlight_diffs[highlight_points - 1];
int base_size = (int)calculate_pairs_diff(baseline_diffs, baseline, baseline_points);
int high_size = (int)calculate_pairs_diff(highlight_diffs, highlight, highlight_points);
if(unlikely(!base_size || !high_size))
return NAN;
if(unlikely(base_size != baseline_points - 1 || high_size != highlight_points - 1)) {
error("Metric correlations: internal error - calculate_pairs_diff() returns the wrong number of entries");
return NAN;
}
return ks_2samp(baseline_diffs, base_size, highlight_diffs, high_size, base_shifts);
}
NETDATA_DOUBLE *rrd2rrdr_ks2(
ONEWAYALLOC *owa, RRDHOST *host,
RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma,
time_t after, time_t before, size_t points, RRDR_OPTIONS options,
RRDR_GROUPING group_method, const char *group_options, size_t tier,
WEIGHTS_STATS *stats,
size_t *entries
) {
NETDATA_DOUBLE *ret = NULL;
QUERY_TARGET_REQUEST qtr = {
.host = host,
.rca = rca,
.ria = ria,
.rma = rma,
.after = after,
.before = before,
.points = points,
.options = options,
.group_method = group_method,
.group_options = group_options,
.tier = tier,
.query_source = QUERY_SOURCE_API_WEIGHTS,
};
RRDR *r = rrd2rrdr(owa, query_target_create(&qtr));
if(!r)
goto cleanup;
stats->db_queries++;
stats->result_points += r->internal.result_points_generated;
stats->db_points += r->internal.db_points_read;
for(size_t tr = 0; tr < storage_tiers ; tr++)
stats->db_points_per_tier[tr] += r->internal.tier_points_read[tr];
if(r->d != 1) {
error("WEIGHTS: on query '%s' expected 1 dimension in RRDR but got %zu", r->internal.qt->id, r->d);
goto cleanup;
}
if(unlikely(r->od[0] & RRDR_DIMENSION_HIDDEN))
goto cleanup;
if(unlikely(!(r->od[0] & RRDR_DIMENSION_NONZERO)))
goto cleanup;
if(rrdr_rows(r) < 2)
goto cleanup;
*entries = rrdr_rows(r);
ret = onewayalloc_mallocz(owa, sizeof(NETDATA_DOUBLE) * rrdr_rows(r));
// copy the points of the dimension to a contiguous array
// there is no need to check for empty values, since empty values are already zero
// https://github.com/netdata/netdata/blob/6e3144683a73a2024d51425b20ecfd569034c858/web/api/queries/average/average.c#L41-L43
memcpy(ret, r->v, rrdr_rows(r) * sizeof(NETDATA_DOUBLE));
cleanup:
rrdr_free(owa, r);
return ret;
}
static void rrdset_metric_correlations_ks2(
RRDHOST *host,
RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma,
DICTIONARY *results,
time_t baseline_after, time_t baseline_before,
time_t after, time_t before,
size_t points, RRDR_OPTIONS options,
RRDR_GROUPING group_method, const char *group_options, size_t tier,
uint32_t shifts,
WEIGHTS_STATS *stats, bool register_zero
) {
options |= RRDR_OPTION_NATURAL_POINTS;
ONEWAYALLOC *owa = onewayalloc_create(16 * 1024);
size_t high_points = 0;
NETDATA_DOUBLE *highlight = rrd2rrdr_ks2(
owa, host, rca, ria, rma, after, before, points,
options, group_method, group_options, tier, stats, &high_points);
if(!highlight)
goto cleanup;
size_t base_points = 0;
NETDATA_DOUBLE *baseline = rrd2rrdr_ks2(
owa, host, rca, ria, rma, baseline_after, baseline_before, high_points << shifts,
options, group_method, group_options, tier, stats, &base_points);
if(!baseline)
goto cleanup;
stats->binary_searches += 2 * (base_points - 1) + 2 * (high_points - 1);
double prob = kstwo(baseline, (int)base_points, highlight, (int)high_points, shifts);
if(!isnan(prob) && !isinf(prob)) {
// these conditions should never happen, but still let's check
if(unlikely(prob < 0.0)) {
error("Metric correlations: kstwo() returned a negative number: %f", prob);
prob = -prob;
}
if(unlikely(prob > 1.0)) {
error("Metric correlations: kstwo() returned a number above 1.0: %f", prob);
prob = 1.0;
}
// to spread the results evenly, 0.0 needs to be the less correlated and 1.0 the most correlated
// so, we flip the result of kstwo()
register_result(results, rca, ria, rma, 1.0 - prob, RESULT_IS_BASE_HIGH_RATIO, stats, register_zero);
}
cleanup:
onewayalloc_destroy(owa);
}
// ----------------------------------------------------------------------------
// VOLUME algorithm functions
static void merge_query_value_to_stats(QUERY_VALUE *qv, WEIGHTS_STATS *stats) {
stats->db_queries++;
stats->result_points += qv->result_points;
stats->db_points += qv->points_read;
for(size_t tier = 0; tier < storage_tiers ; tier++)
stats->db_points_per_tier[tier] += qv->storage_points_per_tier[tier];
}
static void rrdset_metric_correlations_volume(
RRDHOST *host,
RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma,
DICTIONARY *results,
time_t baseline_after, time_t baseline_before,
time_t after, time_t before,
RRDR_OPTIONS options, RRDR_GROUPING group_method, const char *group_options,
size_t tier,
WEIGHTS_STATS *stats, bool register_zero) {
options |= RRDR_OPTION_MATCH_IDS | RRDR_OPTION_ABSOLUTE | RRDR_OPTION_NATURAL_POINTS;
QUERY_VALUE baseline_average = rrdmetric2value(host, rca, ria, rma, baseline_after, baseline_before, options, group_method, group_options, tier, 0, QUERY_SOURCE_API_WEIGHTS);
merge_query_value_to_stats(&baseline_average, stats);
if(!netdata_double_isnumber(baseline_average.value)) {
// this means no data for the baseline window, but we may have data for the highlighted one - assume zero
baseline_average.value = 0.0;
}
QUERY_VALUE highlight_average = rrdmetric2value(host, rca, ria, rma, after, before, options, group_method, group_options, tier, 0, QUERY_SOURCE_API_WEIGHTS);
merge_query_value_to_stats(&highlight_average, stats);
if(!netdata_double_isnumber(highlight_average.value))
return;
if(baseline_average.value == highlight_average.value) {
// they are the same - let's move on
return;
}
char highlight_countif_options[50 + 1];
snprintfz(highlight_countif_options, 50, "%s" NETDATA_DOUBLE_FORMAT, highlight_average.value < baseline_average.value ? "<" : ">", baseline_average.value);
QUERY_VALUE highlight_countif = rrdmetric2value(host, rca, ria, rma, after, before, options, RRDR_GROUPING_COUNTIF, highlight_countif_options, tier, 0, QUERY_SOURCE_API_WEIGHTS);
merge_query_value_to_stats(&highlight_countif, stats);
if(!netdata_double_isnumber(highlight_countif.value)) {
info("WEIGHTS: highlighted countif query failed, but highlighted average worked - strange...");
return;
}
// this represents the percentage of time
// the highlighted window was above/below the baseline window
// (above or below depending on their averages)
highlight_countif.value = highlight_countif.value / 100.0; // countif returns 0 - 100.0
RESULT_FLAGS flags;
NETDATA_DOUBLE pcent = NAN;
if(isgreater(baseline_average.value, 0.0) || isless(baseline_average.value, 0.0)) {
flags = RESULT_IS_BASE_HIGH_RATIO;
pcent = (highlight_average.value - baseline_average.value) / baseline_average.value * highlight_countif.value;
}
else {
flags = RESULT_IS_PERCENTAGE_OF_TIME;
pcent = highlight_countif.value;
}
register_result(results, rca, ria, rma, pcent, flags, stats, register_zero);
}
// ----------------------------------------------------------------------------
// ANOMALY RATE algorithm functions
static void rrdset_weights_anomaly_rate(
RRDHOST *host,
RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma,
DICTIONARY *results,
time_t after, time_t before,
RRDR_OPTIONS options, RRDR_GROUPING group_method, const char *group_options,
size_t tier,
WEIGHTS_STATS *stats, bool register_zero) {
options |= RRDR_OPTION_MATCH_IDS | RRDR_OPTION_ANOMALY_BIT | RRDR_OPTION_NATURAL_POINTS;
QUERY_VALUE qv = rrdmetric2value(host, rca, ria, rma, after, before, options, group_method, group_options, tier, 0, QUERY_SOURCE_API_WEIGHTS);
merge_query_value_to_stats(&qv, stats);
if(netdata_double_isnumber(qv.value))
register_result(results, rca, ria, rma, qv.value, 0, stats, register_zero);
}
// ----------------------------------------------------------------------------
int compare_netdata_doubles(const void *left, const void *right) {
NETDATA_DOUBLE lt = *(NETDATA_DOUBLE *)left;
NETDATA_DOUBLE rt = *(NETDATA_DOUBLE *)right;
// https://stackoverflow.com/a/3886497/1114110
return (lt > rt) - (lt < rt);
}
static inline int binary_search_bigger_than_netdata_double(const NETDATA_DOUBLE arr[], int left, int size, NETDATA_DOUBLE K) {
// binary search to find the index the smallest index
// of the first value in the array that is greater than K
int right = size;
while(left < right) {
int middle = (int)(((unsigned int)(left + right)) >> 1);
if(arr[middle] > K)
right = middle;
else
left = middle + 1;
}
return left;
}
// ----------------------------------------------------------------------------
// spread the results evenly according to their value
static size_t spread_results_evenly(DICTIONARY *results, WEIGHTS_STATS *stats) {
struct register_result *t;
// count the dimensions
size_t dimensions = dictionary_entries(results);
if(!dimensions) return 0;
if(stats->max_base_high_ratio == 0.0)
stats->max_base_high_ratio = 1.0;
// create an array of the right size and copy all the values in it
NETDATA_DOUBLE slots[dimensions];
dimensions = 0;
dfe_start_read(results, t) {
if(t->flags & (RESULT_IS_PERCENTAGE_OF_TIME))
t->value = t->value * stats->max_base_high_ratio;
slots[dimensions++] = t->value;
}
dfe_done(t);
// sort the array with the values of all dimensions
qsort(slots, dimensions, sizeof(NETDATA_DOUBLE), compare_netdata_doubles);
// skip the duplicates in the sorted array
NETDATA_DOUBLE last_value = NAN;
size_t unique_values = 0;
for(size_t i = 0; i < dimensions ;i++) {
if(likely(slots[i] != last_value))
slots[unique_values++] = last_value = slots[i];
}
// this cannot happen, but coverity thinks otherwise...
if(!unique_values)
unique_values = dimensions;
// calculate the weight of each slot, using the number of unique values
NETDATA_DOUBLE slot_weight = 1.0 / (NETDATA_DOUBLE)unique_values;
dfe_start_read(results, t) {
int slot = binary_search_bigger_than_netdata_double(slots, 0, (int)unique_values, t->value);
NETDATA_DOUBLE v = slot * slot_weight;
if(unlikely(v > 1.0)) v = 1.0;
v = 1.0 - v;
t->value = v;
}
dfe_done(t);
return dimensions;
}
// ----------------------------------------------------------------------------
// The main function
int web_api_v1_weights(
RRDHOST *host, BUFFER *wb, WEIGHTS_METHOD method, WEIGHTS_FORMAT format,
RRDR_GROUPING group, const char *group_options,
time_t baseline_after, time_t baseline_before,
time_t after, time_t before,
size_t points, RRDR_OPTIONS options, SIMPLE_PATTERN *contexts, size_t tier, size_t timeout) {
WEIGHTS_STATS stats = {};
DICTIONARY *results = register_result_init();
DICTIONARY *metrics = NULL;
char *error = NULL;
int resp = HTTP_RESP_OK;
// if the user didn't give a timeout
// assume 60 seconds
if(!timeout)
timeout = 60 * MSEC_PER_SEC;
// if the timeout is less than 1 second
// make it at least 1 second
if(timeout < (long)(1 * MSEC_PER_SEC))
timeout = 1 * MSEC_PER_SEC;
usec_t timeout_usec = timeout * USEC_PER_MS;
usec_t started_usec = now_realtime_usec();
if(!rrdr_relative_window_to_absolute(&after, &before))
buffer_no_cacheable(wb);
if (before <= after) {
resp = HTTP_RESP_BAD_REQUEST;
error = "Invalid selected time-range.";
goto cleanup;
}
uint32_t shifts = 0;
if(method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME) {
if(!points) points = 500;
if(baseline_before <= API_RELATIVE_TIME_MAX)
baseline_before += after;
rrdr_relative_window_to_absolute(&baseline_after, &baseline_before);
if (baseline_before <= baseline_after) {
resp = HTTP_RESP_BAD_REQUEST;
error = "Invalid baseline time-range.";
goto cleanup;
}
// baseline should be a power of two multiple of highlight
long long base_delta = baseline_before - baseline_after;
long long high_delta = before - after;
uint32_t multiplier = (uint32_t)round((double)base_delta / (double)high_delta);
// check if the multiplier is a power of two
// https://stackoverflow.com/a/600306/1114110
if((multiplier & (multiplier - 1)) != 0) {
// it is not power of two
// let's find the closest power of two
// https://stackoverflow.com/a/466242/1114110
multiplier--;
multiplier |= multiplier >> 1;
multiplier |= multiplier >> 2;
multiplier |= multiplier >> 4;
multiplier |= multiplier >> 8;
multiplier |= multiplier >> 16;
multiplier++;
}
// convert the multiplier to the number of shifts
// we need to do, to divide baseline numbers to match
// the highlight ones
while(multiplier > 1) {
shifts++;
multiplier = multiplier >> 1;
}
// if the baseline size will not comply to MAX_POINTS
// lower the window of the baseline
while(shifts && (points << shifts) > MAX_POINTS)
shifts--;
// if the baseline size still does not comply to MAX_POINTS
// lower the resolution of the highlight and the baseline
while((points << shifts) > MAX_POINTS)
points = points >> 1;
if(points < 15) {
resp = HTTP_RESP_BAD_REQUEST;
error = "Too few points available, at least 15 are needed.";
goto cleanup;
}
// adjust the baseline to be multiplier times bigger than the highlight
baseline_after = baseline_before - (high_delta << shifts);
}
size_t examined_dimensions = 0;
bool register_zero = true;
if(options & RRDR_OPTION_NONZERO) {
register_zero = false;
options &= ~RRDR_OPTION_NONZERO;
}
metrics = rrdcontext_all_metrics_to_dict(host, contexts);
struct metric_entry *me;
// for every metric_entry in the dictionary
dfe_start_read(metrics, me) {
usec_t now_usec = now_realtime_usec();
if(now_usec - started_usec > timeout_usec) {
error = "timed out";
resp = HTTP_RESP_GATEWAY_TIMEOUT;
goto cleanup;
}
examined_dimensions++;
switch(method) {
case WEIGHTS_METHOD_ANOMALY_RATE:
options |= RRDR_OPTION_ANOMALY_BIT;
rrdset_weights_anomaly_rate(
host,
me->rca, me->ria, me->rma,
results,
after, before,
options, group, group_options, tier,
&stats, register_zero
);
break;
case WEIGHTS_METHOD_MC_VOLUME:
rrdset_metric_correlations_volume(
host,
me->rca, me->ria, me->rma,
results,
baseline_after, baseline_before,
after, before,
options, group, group_options, tier,
&stats, register_zero
);
break;
default:
case WEIGHTS_METHOD_MC_KS2:
rrdset_metric_correlations_ks2(
host,
me->rca, me->ria, me->rma,
results,
baseline_after, baseline_before,
after, before, points,
options, group, group_options, tier, shifts,
&stats, register_zero
);
break;
}
}
dfe_done(me);
if(!register_zero)
options |= RRDR_OPTION_NONZERO;
if(!(options & RRDR_OPTION_RETURN_RAW))
spread_results_evenly(results, &stats);
usec_t ended_usec = now_realtime_usec();
// generate the json output we need
buffer_flush(wb);
size_t added_dimensions = 0;
switch(format) {
case WEIGHTS_FORMAT_CHARTS:
added_dimensions =
registered_results_to_json_charts(
results, wb,
after, before,
baseline_after, baseline_before,
points, method, group, options, shifts,
examined_dimensions,
ended_usec - started_usec, &stats);
break;
default:
case WEIGHTS_FORMAT_CONTEXTS:
added_dimensions =
registered_results_to_json_contexts(
results, wb,
after, before,
baseline_after, baseline_before,
points, method, group, options, shifts,
examined_dimensions,
ended_usec - started_usec, &stats);
break;
}
if(!added_dimensions) {
error = "no results produced.";
resp = HTTP_RESP_NOT_FOUND;
}
cleanup:
if(metrics) dictionary_destroy(metrics);
if(results) register_result_destroy(results);
if(error) {
buffer_flush(wb);
buffer_sprintf(wb, "{\"error\": \"%s\" }", error);
}
return resp;
}
// ----------------------------------------------------------------------------
// unittest
/*
Unit tests against the output of this:
https://github.com/scipy/scipy/blob/4cf21e753cf937d1c6c2d2a0e372fbc1dbbeea81/scipy/stats/_stats_py.py#L7275-L7449
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import scipy as sp
from scipy import stats
data1 = np.array([ 1111, -2222, 33, 100, 100, 15555, -1, 19999, 888, 755, -1, -730 ])
data2 = np.array([365, -123, 0])
data1 = np.sort(data1)
data2 = np.sort(data2)
n1 = data1.shape[0]
n2 = data2.shape[0]
data_all = np.concatenate([data1, data2])
cdf1 = np.searchsorted(data1, data_all, side='right') / n1
cdf2 = np.searchsorted(data2, data_all, side='right') / n2
print(data_all)
print("\ndata1", data1, cdf1)
print("\ndata2", data2, cdf2)
cddiffs = cdf1 - cdf2
print("\ncddiffs", cddiffs)
minS = np.clip(-np.min(cddiffs), 0, 1)
maxS = np.max(cddiffs)
print("\nmin", minS)
print("max", maxS)
m, n = sorted([float(n1), float(n2)], reverse=True)
en = m * n / (m + n)
d = max(minS, maxS)
prob = stats.distributions.kstwo.sf(d, np.round(en))
print("\nprob", prob)
*/
static int double_expect(double v, const char *str, const char *descr) {
char buf[100 + 1];
snprintfz(buf, 100, "%0.6f", v);
int ret = strcmp(buf, str) ? 1 : 0;
fprintf(stderr, "%s %s, expected %s, got %s\n", ret?"FAILED":"OK", descr, str, buf);
return ret;
}
static int mc_unittest1(void) {
int bs = 3, hs = 3;
DIFFS_NUMBERS base[3] = { 1, 2, 3 };
DIFFS_NUMBERS high[3] = { 3, 4, 6 };
double prob = ks_2samp(base, bs, high, hs, 0);
return double_expect(prob, "0.222222", "3x3");
}
static int mc_unittest2(void) {
int bs = 6, hs = 3;
DIFFS_NUMBERS base[6] = { 1, 2, 3, 10, 10, 15 };
DIFFS_NUMBERS high[3] = { 3, 4, 6 };
double prob = ks_2samp(base, bs, high, hs, 1);
return double_expect(prob, "0.500000", "6x3");
}
static int mc_unittest3(void) {
int bs = 12, hs = 3;
DIFFS_NUMBERS base[12] = { 1, 2, 3, 10, 10, 15, 111, 19999, 8, 55, -1, -73 };
DIFFS_NUMBERS high[3] = { 3, 4, 6 };
double prob = ks_2samp(base, bs, high, hs, 2);
return double_expect(prob, "0.347222", "12x3");
}
static int mc_unittest4(void) {
int bs = 12, hs = 3;
DIFFS_NUMBERS base[12] = { 1111, -2222, 33, 100, 100, 15555, -1, 19999, 888, 755, -1, -730 };
DIFFS_NUMBERS high[3] = { 365, -123, 0 };
double prob = ks_2samp(base, bs, high, hs, 2);
return double_expect(prob, "0.777778", "12x3");
}
int mc_unittest(void) {
int errors = 0;
errors += mc_unittest1();
errors += mc_unittest2();
errors += mc_unittest3();
errors += mc_unittest4();
return errors;
}
|