File: netmask.c

package info (click to toggle)
netmask 2.4.4-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 400 kB
  • sloc: ansic: 881; sh: 83; perl: 29; makefile: 10
file content (593 lines) | stat: -rw-r--r-- 17,264 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
/* netmask.c - a netmask generator
 *
 * Copyright (c) 2013  Robert Stone <talby@trap.mtview.ca.us>,
 *                     Tom Lear <tom@trap.mtview.ca.us>

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */

#include <stdlib.h>
#include <string.h>

#include <arpa/inet.h>

#include "errors.h"
#include "netmask.h"

typedef struct {
    uint64_t h;
    uint64_t l;
} u128_t;

static inline u128_t u128_add(u128_t x, u128_t y, int *carry) {
    /* this relies on the sum being greater than both terms of the
     * addition, otherwise an overflow must have occurred. */
    u128_t rv;
    rv.l = x.l + y.l;
    if(rv.l < x.l || rv.l < y.l)
        rv.h = 1;
    else
        rv.h = 0;
    rv.h += x.h + y.h;
    if(carry) {
        if(rv.h < x.h || rv.h < y.h)
            *carry = 1;
        else
            *carry = 0;
    }
    return rv;
}

static inline u128_t u128_and(u128_t x, u128_t y) {
    u128_t rv;
    rv.h = x.h & y.h;
    rv.l = x.l & y.l;
    return rv;
}

static inline u128_t u128_or(u128_t x, u128_t y) {
    u128_t rv;
    rv.h = x.h | y.h;
    rv.l = x.l | y.l;
    return rv;
}

static inline u128_t u128_xor(u128_t x, u128_t y) {
    u128_t rv;
    rv.h = x.h ^ y.h;
    rv.l = x.l ^ y.l;
    return rv;
}

static inline u128_t u128_neg(u128_t v) {
    u128_t rv;
    rv.h = ~v.h;
    rv.l = ~v.l;
    return rv;
}

static inline u128_t u128_lsh(u128_t v, uint8_t d) {
    u128_t rv;
    rv.h = v.h << 1 | v.l >> 63;
    rv.l = v.l << 1;
    return rv;
}

static inline int u128_cmp(u128_t x, u128_t y) {
    /* return -1, 0, 1 on sort order */
    if(x.h < y.h)
        return -1;
    if(x.h > y.h)
        return 1;
    if(x.l < y.l)
        return -1;
    if(x.l > y.l)
        return 1;
    return 0;
}

static inline u128_t u128_of_s6(struct in6_addr *s6) {
    u128_t rv;
    rv.h = (((uint64_t)s6->s6_addr[0])  << 56) |
           (((uint64_t)s6->s6_addr[1])  << 48) |
           (((uint64_t)s6->s6_addr[2])  << 40) |
           (((uint64_t)s6->s6_addr[3])  << 32) |
           (((uint64_t)s6->s6_addr[4])  << 24) |
           (((uint64_t)s6->s6_addr[5])  << 16) |
           (((uint64_t)s6->s6_addr[6])  <<  8) |
           (((uint64_t)s6->s6_addr[7])  <<  0);
    rv.l = (((uint64_t)s6->s6_addr[8])  << 56) |
           (((uint64_t)s6->s6_addr[9])  << 48) |
           (((uint64_t)s6->s6_addr[10]) << 40) |
           (((uint64_t)s6->s6_addr[11]) << 32) |
           (((uint64_t)s6->s6_addr[12]) << 24) |
           (((uint64_t)s6->s6_addr[13]) << 16) |
           (((uint64_t)s6->s6_addr[14]) <<  8) |
           (((uint64_t)s6->s6_addr[15]) <<  0);
    return rv;
}
static inline struct in6_addr s6_of_u128(u128_t v) {
    struct in6_addr s6;
    s6.s6_addr[0]  = 0xff & (v.h >> 56);
    s6.s6_addr[1]  = 0xff & (v.h >> 48);
    s6.s6_addr[2]  = 0xff & (v.h >> 40);
    s6.s6_addr[3]  = 0xff & (v.h >> 32);
    s6.s6_addr[4]  = 0xff & (v.h >> 24);
    s6.s6_addr[5]  = 0xff & (v.h >> 16);
    s6.s6_addr[6]  = 0xff & (v.h >>  8);
    s6.s6_addr[7]  = 0xff & (v.h >>  0);
    s6.s6_addr[8]  = 0xff & (v.l >> 56);
    s6.s6_addr[9]  = 0xff & (v.l >> 48);
    s6.s6_addr[10] = 0xff & (v.l >> 40);
    s6.s6_addr[11] = 0xff & (v.l >> 32);
    s6.s6_addr[12] = 0xff & (v.l >> 24);
    s6.s6_addr[13] = 0xff & (v.l >> 16);
    s6.s6_addr[14] = 0xff & (v.l >>  8);
    s6.s6_addr[15] = 0xff & (v.l >>  0);
    return s6;
}

static inline u128_t u128_lit(uint64_t h, uint64_t l) {
    u128_t rv;
    rv.h = h;
    rv.l = l;
    return rv;
}

static inline u128_t u128_cidr(uint8_t n) {
    u128_t rv;
    if(n <= 0) {
        rv.h = 0;
        rv.l = 0;
    } else if(n <= 64) {
        rv.h = ~0ULL << (64 - n);
        rv.l = 0;
    } else if(n <= 128) {
        rv.h = ~0ULL;
        rv.l = ~0ULL << (128 - n);
    } else {
        rv.h = ~0ULL;
        rv.l = ~0ULL;
    }
    return rv;
}
static inline int cidr(u128_t u) {
    uint64_t v;
    int n = 0;
    for(v = u.l; v > 0; v <<= 1) n++;
    for(v = u.h; v > 0; v <<= 1) n++;
    return n;
}

static inline int chkmask(u128_t v) {
    /* this is sort of specialized */
    int i;
    u128_t m = u128_lit(~0ULL, ~0ULL);

    for(i = 0; i < 129; i++) {
        if(u128_cmp(v, m) == 0)
            return 1;
        m = u128_lsh(m, 1);
    }
    return 0;
}

struct nm {
    u128_t neta;
    u128_t mask;
    int domain;
    NM next;
};

NM nm_new_v4(struct in_addr *s) {
    NM self;
    union {
      struct in6_addr s6;
      uint32_t u32[4];
    } v;

    v.u32[0] = 0;
    v.u32[1] = 0;
    v.u32[2] = htonl(0x0000ffff);
    v.u32[3] = s->s_addr;
    self = nm_new_v6(&v.s6);
    self->domain = AF_INET;
    return self;
}

NM nm_new_v6(struct in6_addr *s6) {
    NM self = (NM)malloc(sizeof(struct nm));
    self->neta = u128_of_s6(s6);
    self->mask = u128_cidr(128);
    self->domain = AF_INET6;
    self->next = (NM)0;
    return self;
}

/* is "a" a subset of "b"? */
static inline int subset_of(NM a, NM b) {
    return(
        u128_cmp(a->mask, b->mask) >= 0 &&
        u128_cmp(b->neta, u128_and(a->neta, b->mask)) == 0
    );
}
/* are "a" and "b" a joinable pair? */
static inline int joinable_pair(NM a, NM b) {
    return(
        /* nets have the same mask */
        u128_cmp(a->mask, b->mask) == 0 &&
        /* but are distinct */
        u128_cmp(a->neta, b->neta) != 0 &&
        /* and would both be subsets of the same mask << 1 */
        u128_cmp(u128_lit(0, 0), u128_and(
            u128_xor(a->neta, b->neta),
            u128_lsh(a->mask, 1)
        )) == 0
    );
}

/* this is slightly complicated because an NM can outgrow it's initial
 * v4 state, but if it doesn't, we want to retain the fact that it
 * was and remained v4.  */
static inline int is_v4(NM self) {
    struct nm v4map;

    v4map.neta = u128_lit(0, 0x0000ffff00000000ULL);
    v4map.mask = u128_cidr(96);

    return(self->domain == AF_INET && subset_of(self, &v4map));
}

NM nm_new_ai(struct addrinfo *ai) {
    NM self = NULL;
    struct addrinfo *cur;

    for(cur = ai; cur; cur = cur->ai_next) {
        switch(cur->ai_family) {
            case AF_INET:
                self = nm_merge(self, nm_new_v4(&(
                    (struct sockaddr_in *)cur->ai_addr
                )->sin_addr));
                break;
            case AF_INET6:
                self = nm_merge(self, nm_new_v6(&(
                    (struct sockaddr_in6 *)cur->ai_addr
                )->sin6_addr));
                break;
            default:
                panic("unknown ai_family %d in struct addrinfo",
                        cur->ai_family);
        }
    }
    return self;
}

static inline NM parse_addr(const char *str, int flags) {
    struct in6_addr s6;
    struct in_addr s;

    if(inet_pton(AF_INET6, str, &s6))
        return nm_new_v6(&s6);

    if(inet_aton(str, &s))
        return nm_new_v4(&s);

    if(NM_USE_DNS & flags) {
        struct addrinfo in, *out;

        memset(&in, 0, sizeof(struct addrinfo));
        in.ai_family = AF_UNSPEC;
        if(getaddrinfo(str, NULL, &in, &out) == 0) {
            NM self = nm_new_ai(out);
            freeaddrinfo(out);
            return self;
        }
    }
    return NULL;
}

static inline int parse_mask(NM self, const char *str, int flags) {
    char *p;
    uint32_t v;
    struct in6_addr s6;
    struct in_addr s;

    v = strtoul(str, &p, 0);
    if(*p == '\0') {
        /* read it as a CIDR value */
        if(is_v4(self)) {
            if(v > 32) return 0;
            v += 96;
        } else {
            if(v > 128) return 0;
        }
        self->mask = u128_cidr(v);
    } else if(inet_pton(AF_INET6, str, &s6)) {
        self->mask = u128_of_s6(&s6);
        /* flip cisco style masks */
        if(u128_cmp(
            u128_lit(0, 0),
            u128_and(
                u128_lit(1ULL << 63, 1),
                u128_xor(u128_lit(0, 1), self->mask)
            )
        ) == 0) {
            self->mask = u128_neg(self->mask);
        }
        self->domain = AF_INET6;
    } else if(self->domain == AF_INET && inet_aton(str, &s)) {
        v = htonl(s.s_addr);
        if(v & 1 && ~v >> 31) /* flip cisco style masks */
            v = ~v;
        /* since mask is currently all 1s, mask ^ ~m will
         * set the low 32. */
        self->mask = u128_xor(self->mask, u128_lit(0, ~v));
    } else {
        return 0;
    }
    if(!chkmask(self->mask))
        return 0;
    /* apply mask to neta */
    self->neta = u128_and(self->neta, self->mask);
    return 1;
}

/* widen the mask as much as possible without including addresses below
 * neta or above max.  return one if more ranges are needed to complete
 * the span or zero if this nm includes max. */
static inline int nm_widen(NM self, u128_t max, u128_t *last) {
    u128_t mask, neta, bcst;
    int cmp = u128_cmp(self->neta, max);

    while(cmp < 0) {
        /* attempt widening by one bit */
        mask = u128_lsh(self->mask, 1);
        neta = u128_and(self->neta, mask);
        bcst = u128_or(self->neta, u128_neg(mask));
        /* check ranges */
        if(u128_cmp(neta, self->neta) < 0)
            break;
        cmp = u128_cmp(bcst, max);
        if(cmp > 0)
            break;
        /* successful attempt */
        self->mask = mask;
        *last = bcst;
        status("widen %016llx %016llx/%d", self->neta.h, self->neta.l, cidr(self->mask));
        if(cmp == 0)
            break;
    }
    return cmp;
}

static inline void nm_order(NM *low, NM *high) {
    if(u128_cmp((*low)->neta, (*high)->neta) > 0) {
        NM tmp = *low;
        *low = *high;
        *high = tmp;
    }
}

/* convert first and last into a list from first to last.  (both these
 * should be single addresses, not lists.) */
static inline NM nm_seq(NM first, NM last) {
    /* if first is higher than last, swap them (legacy) */
    nm_order(&first, &last);
    NM cur = first;
    u128_t pos = cur->neta;
    u128_t one = u128_lit(0, 1);
    u128_t max = last->neta;
    int domain = is_v4(first) && is_v4(last) ? AF_INET : AF_INET6;

    free(last);
    while(nm_widen(cur, max, &pos)) {
        cur->next = (NM)malloc(sizeof(struct nm));
        cur = cur->next;
        cur->neta = u128_add(pos, one, NULL);
        cur->mask = u128_cidr(128);
        cur->domain = domain;
        cur->next = NULL;
    }
    return first;
}

NM nm_new_str(const char *str, int flags) {
    char *p, buf[2048];
    NM self;

    if((p = strchr(str, '/'))) { /* mask separator */
        strncpy(buf, str, p - str);
        buf[p - str] = '\0';
        self = parse_addr(buf, flags);
        if(!self)
            return NULL;
        if(!parse_mask(self, p + 1, flags)) {
            free(self);
            return NULL;
        }
        return self;
    } else if((p = strchr(str, ','))) { /* new range character */
        NM top;
        int add;

        strncpy(buf, str, p - str);
        buf[p - str] = '\0';
        self = parse_addr(buf, flags);
        if(!self)
            return NULL;
        if(p[1] == '+')
            add = 1;
        else
            add = 0;
        top = parse_addr(p + add + 1, flags);
        if(!top) {
            free(self);
            return NULL;
        }
        if(add) {
            int carry;
            if(is_v4(top))
                top->neta.l &= 0xffffffffULL;
            top->neta = u128_add(self->neta, top->neta, &carry);
            if(carry) {
                free(self);
                free(top);
                return NULL;
            }
        }
        return nm_seq(self, top);
    } else if((self = parse_addr(str, flags))) {
        return self;
    } else if((p = strchr(str, ':'))) { /* old range character (sloppy) */
        NM top;
        int add;
        strncpy(buf, str, p - str);
        buf[p - str] = '\0';
        self = parse_addr(buf, flags);
        if(!self)
            return NULL;
        if(p[1] == '+') {
            add = 1;
            if(p[2] == '-') {
                /* this is a pretty special reverse compatibility
                 * situation.  N:+-5" would actually emit the range from
                 * N-5 to N because strtoul() hilariously accepts
                 * negative numbers and the original code never detected
                 * overflow and things just happened to work out. */
                struct in_addr s;
                char *endp;
                uint32_t v = self->neta.l + strtoul(p + 2, &endp, 0);
                if(*endp == '\0') {
                    s.s_addr = htonl(v);
                    top = nm_new_v4(&s);
                    if(!top) {
                        free(self);
                        return NULL;
                    }
                    return nm_seq(self, top);
                }
            }
        } else {
            add = 0;
        }

        top = parse_addr(p + add + 1, flags);
        if(!top) {
            free(self);
            return NULL;
        }
        if(add) {
            int carry;
            if(is_v4(top))
                top->neta.l &= 0xffffffffULL;
            top->neta = u128_add(self->neta, top->neta, &carry);
            if(carry) {
                free(self);
                free(top);
                return NULL;
            }
        }
        return nm_seq(self, top);
    } else {
        return NULL;
    }
}

NM nm_merge(NM dst, NM src) {
    /* both lists are ordered and non-overlapping.  Knit them into a
     * single ordered, non-overlapping list.  */
    NM tmp;
    NM *pos = &dst; /* double indirect pointer simplifies list insertion
                       logic. */
    while(src) {
        if(*pos == NULL) {
            /* remains of src go to tail of dst */
            tmp = src;
            src = *pos;
            *pos = tmp;
        } else if(subset_of(src, *pos)) {
            status("found %016llx %016llx/%d a subset of %016llx %016llx/%d", src->neta.h, src->neta.l, cidr(src->mask), (*pos)->neta.h, (*pos)->neta.l, cidr((*pos)->mask));
            /* drop src elt on the floor */
            if(src->domain != AF_INET) /* may need to promote domain */
                (*pos)->domain = src->domain;
            tmp = src;
            src = src->next;
            free(tmp);
        } else if(subset_of(*pos, src)) {
            /* src seems larger, merge the other direction instead */
            tmp = src;
            src = *pos;
            *pos = tmp;
        } else if(joinable_pair(src, *pos)) {
            status("joinable %016llx %016llx/%d and %016llx %016llx/%d", src->neta.h, src->neta.l, cidr(src->mask), (*pos)->neta.h, (*pos)->neta.l, cidr((*pos)->mask));
            /* pull the dst elt */
            tmp = *pos;
            *pos = (*pos)->next;
            if(src->domain == AF_INET)
                src->domain = tmp->domain;
            free(tmp);
            /* widen the src elt */
            src->mask = u128_lsh(src->mask, 1);
            src->neta = u128_and(src->neta, src->mask);
            /* and merge it back into the src tail */
            tmp = src->next;
            src->next = NULL;
            src = nm_merge(src, tmp);
            /* now the dst scan needs to start over to find preceding
             * join candidates. */
            pos = &dst;
            /* TODO: there should be a cheaper way to do this than an
             * effective double recursion, but the possibility of joins
             * cascading backwards makes this difficult */
        } else if(u128_cmp(src->neta, (*pos)->neta) < 0) {
            /* src elt goes here in dst list.  if top src elt were
             * spliced into dst, it may duplicate later elts in dst.
             * swap tails instead because src is well formed. */
            tmp = src;
            src = *pos;
            *pos = tmp;
        } else {
            /* move down the dst list */
            pos = &(*pos)->next;
        }
    }
    return dst;
}

void nm_walk(NM self, void (*cb)(int, nm_addr *, nm_addr *)) {
    int domain;
    nm_addr neta, mask;

    while(self) {
        neta.s6 = s6_of_u128(self->neta);
        mask.s6 = s6_of_u128(self->mask);
        if(is_v4(self)) {
            domain = AF_INET;
            neta.s.s_addr = htonl(
                    neta.s6.s6_addr[12] << 24 |
                    neta.s6.s6_addr[13] << 16 |
                    neta.s6.s6_addr[14] <<  8 |
                    neta.s6.s6_addr[15] <<  0);
            mask.s.s_addr = htonl(
                    mask.s6.s6_addr[12] << 24 |
                    mask.s6.s6_addr[13] << 16 |
                    mask.s6.s6_addr[14] <<  8 |
                    mask.s6.s6_addr[15] <<  0);
        } else {
            domain = AF_INET6;
        }
        cb(domain, &neta, &mask);
        self = self->next;
    }
}