File: bloat.py

package info (click to toggle)
netperf 2.7.0-0.1
  • links: PTS
  • area: non-free
  • in suites: bookworm, bullseye
  • size: 8,840 kB
  • sloc: ansic: 41,631; sh: 5,259; xml: 3,129; python: 2,376; awk: 68; makefile: 66
file content (573 lines) | stat: -rwxr-xr-x 22,103 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
#!/usr/bin/python -u

import os
import glob
import time
import shlex
import signal
import subprocess
import argparse
import rrdtool
import math

netperf_maertss = []
netperf_rrs = []
destinations = []

def launch_netperf(output_file,
                   error_file=None,
                   destination=None,
                   test=None,
                   length=None,
                   frequency=None,
                   units=None,
                   test_specific=None):

    arguments = ['netperf']
    if test:
        arguments.append('-t')
        arguments.append('%s' % test)
    if destination:
        arguments.append('-H')
        arguments.append('%s' % destination)
    if not length == None:
        arguments.append('-l')
        arguments.append('%d' % length)
    if frequency:
        arguments.append('-D')
        arguments.append('-%f' % frequency)
    else:
        arguments.append('-D')
        arguments.append('-0.25')
    if units:
        arguments.append('-f')
        arguments.append('%s' % units)

    # we will want some test-specific options
    arguments.append('--')

    if test_specific:
        arguments += shlex.split(test_specific)

    print "going to start netperf with '%s'" % arguments
    netperf = subprocess.Popen(arguments,
                               stdout=output_file)
    return netperf

def launch_rr(destination=None,
              length=None,
              frequency = None):
    rrs = []
    instance = 0
    output_file = open('netperf_rr_%.5d.out' % instance, 'w')
    error_file = open('netperf_rr_%.5d.err' % instance, 'w')
    
    rrs.append((launch_netperf(output_file,
                               error_file,
                               destination=destination,
                               length=length,
                               frequency=frequency,
                               test="%s_rr" % args.rr_protocol,
                               test_specific=args.rr_arguments),False))

    
    return rrs

def launch_streams(count,
                   destination=None,
                   length=None,
                   frequency=None):
    streams = []
    for instance in xrange(0,count):
        output_file = open('netperf_stream_%.5d.out' % instance, 'w')
        error_file = open('netperf_stream_%.5d.err' % instance, 'w')
        streams.append((launch_netperf(output_file,
                                       error_file=error_file,
                                       length=length,
                                       frequency=frequency,
                                       destination=destination,
                                       test="%s_stream" % args.stream_protocol,
                                       test_specific=args.stream_arguments),False))
    return streams

def launch_maerts(count,
                  destination=None,
                  length=None,
                  frequency=None):
    maerts = []
    for instance in xrange(0,count):
        output_file = open('netperf_maerts_%.5d.out' % instance, 'w')
        error_file = open('netperf_maerts_%.5d.err' % instance, 'w')
        maerts.append((launch_netperf(output_file,
                                      error_file=error_file,
                                      length=length,
                                      frequency=frequency,
                                      destination=destination,
                                      test="tcp_maerts",
                                      test_specific="-s 1M -S 1M -m 64K,64K -M 64K,64K"),True))

    return maerts

def await_netperfs_termination(netperfs):
    for netperf in netperfs:
        while netperf[0].poll() == None:
            time.sleep(1)

def terminate_netperfs(netperfs):
    for netperf in netperfs:
        print "Terminating a netperf with a SIGALRM and doubletap is %s" % netperf[1]
        netperf[0].send_signal(signal.SIGALRM)
        if netperf[1] == True:
            # This must be a test that requires a double-tap to
            # terminate. For example a TCP_MAERTS test which will
            # otherwise remain stuck waiting for a response from the
            # remote, which will not be coming for a Very Long Time
            # (tm)
            netperf[0].send_signal(signal.SIGTERM)

    await_netperfs_termination(netperfs)


# read the tea-leaves of the direction(s) given by the user and return
# things accordingly.  chunks will be the number of chunks into which
# we will break-up the test. do_stream will say whether we need to do
# a stream (outbound) test, do_maerts will say whether we need to do a
# maerts (inbound) test
def parse_direction(directions):

    do_stream = False
    do_maerts = False
    for direction in directions.lower().split(','):
        if (direction == 'inbound') or (direction == 'maerts'):
            do_maerts = True
        elif (direction == 'outbound') or (direction == 'stream'):
            do_stream = True
        elif (direction == 'both') or (direction == 'bidir'):
            do_stream = True
            do_maerts = True

    chunks = 1
    if do_stream and do_maerts:
        chunks = 5
    elif do_stream or do_maerts:
        chunks = 3
        
    return (chunks, do_stream, do_maerts)

def open_rrd(basename,start_time,end_time,max_interval):
#    print "Opening %s.rrd with start time %d and end time %d" % (basename,int(start_time),int(end_time))

    data_sources = [ 'DS:units:GAUGE:%d:U:U' % max_interval ]
    rra = [ 'RRA:AVERAGE:0.5:1:%d' % ((int(end_time) - int(start_time)) + 1) ]

    rrdtool.create(basename + ".rrd",
                   '--step', '1',
                   '--start', str(int(start_time)),
                   data_sources,
                   rra )

def update_heartbeat(basename,heartbeat):
    print "Updating heartbeat with %d" % heartbeat
    rrdtool.tune(basename + ".rrd",
                 '--heartbeat', 'units:%d' % heartbeat)

def update_rrd(basename,value,timestamp):
#    print "update_rrd"
    rrdtool.update(basename + '.rrd',
                   '%.3f:%f' % (timestamp, value))

def add_to_ksink(basename,start_time,end_time,ksink):
    ((first, last, step),name,results) = rrdtool.fetch(basename + ".rrd",
                                                       'AVERAGE',
                                                       '--start', str(int(start_time)),
                                                       '--end', str(int(end_time)))
#    print "First %d last %d step %d results %d" % (first, last, step, len(results))
    for key,result in enumerate(results,first):
        if result[0] and key in ksink:
            ksink[key] += float(result[0])
        else:
            if result[0]:
                # well, then add the blame thing to the sink
                ksink[key] = float(result[0])

unit_conversion = {
    'Bytes/s' : 8.0,
    'KBytes/s' : 8.0 * 1024.0,
    'MBytes/s' : 8.0 * 1024.0 * 1024.0,
    'GBytes/s' : 8.0 * 1024.0 * 1024.0 * 1024.0,
    'Trans/s' : 1.0,
    '10^0bits/s' : 1.0,
    '10^3bits/s' : 1000.0,
    '10^6bits/s' : 1000000.0,
    '10^9bits/s' : 1000000000.0,
}

def convert_units(raw_result,raw_units):
    if raw_units == 'Bytes/s' : return raw_result * 8.0
    if raw_units == 'KBytes/s' : return raw_result * 8.0 * 1024.0
    if raw_units == 'MBytes/s' : return raw_result * 8.0 * 1024.0 * 1024.0
    if raw_units == 'GBytes/s' : return raw_result * 8.0 * 1024.0 * 1024.0 * 1024.0
    if raw_units == 'Trans/s' : return 1.0 / raw_result
    if raw_units == '10^0bits/s' : return raw_result * 1.0
    if raw_units == '10^3bits/s' : return raw_result * 1000.0
    if raw_units == '10^6bits/s' : return raw_result * 1000000.0
    if raw_units == '10^9bits/s' : return raw_result * 1000000000.0
    return raw_units

def process_result(basename, raw_results, end_time, ksink):
    first_result = True
    have_result = False
    interim_result=0.0
    interim_units="Trans/s"
    interim_interval=1.0
    interim_end=0.0
    max_interval=1



    for raw_result in raw_results:
#        print "raw_result is %s" % raw_result
        if "Interim result:" in raw_result:
            # human format
            fields = raw_result.split()
            interim_result=float(fields[2])
            interim_units=fields[3]
            interim_interval=float(fields[5])
            interim_end=float(fields[9])
            have_result=True
        elif "NETPERF_INTERIM_RESULT" in raw_result:
            # keyval first line
            interim_result=float(raw_result.split('=')[1])
            have_result=False
        elif "NETPERF_UNITS" in raw_result:
            # keyval second line
            interim_units=raw_result.split('=')[1]
            have_result=False
        elif "NETPERF_INTERVAL" in raw_result:
            # keyval keyval third line
            interim_interval=float(raw_result.split('=')[1])
            have_result=False
        elif "NETPERF_ENDING" in raw_result:
            # keyval keyval fourth line
            interim_end=float(raw_result.split('=')[1])
            have_result=True
        else:
            # csv, but we are interested only in those lines with four
            # fields, three commas.  if someone happens to ask for
            # four values from the omni-output selector this may not
            # work so well but we can deal with that when it is known
            # to be a problem.
            fields = raw_result.split(',')
            if len(fields) == 4:
                interim_result = float(fields[0])
                interim_units = fields[1]
                interim_interval = float(fields[2])
                interim_end = float(fields[3])
                have_result = True
            else:
                have_result = False
                
        if first_result and have_result:
            # we could use the overal start time, but using the first
            # timestamp for this instance may save us some space in
            # the rrdfile.  we do though want to subtract the
            # interim_interval from that timestamp to give us some
            # wriggle-room - particularly if the interval happens to
            # end precisely on a step boundary...
 #           print basename, interim_end, interim_interval, end_time, max_interval
            open_rrd(basename,
                     interim_end-interim_interval,
                     end_time,
                     max_interval)
            first_timestamp = interim_end
            first_result = False
#            print "First entry for %s is %f at time %f" % (basename, interim_result,interim_end)
            
        # perhaps one of these days, once we know that the rrdtool
        # bits can handle it, we will build a big list of results and
        # feed them en mass. until then we will dribble them one at a
        # time
        if have_result:
            if int(math.ceil(interim_interval)) > max_interval:
                max_interval = int(math.ceil(interim_interval))
                update_heartbeat(basename,max_interval)
        
            update_rrd(basename,convert_units(interim_result,interim_units),interim_end)
            have_result = False

    last_timestamp = interim_end
#    print "First timestamp for this instance %f last %f" % (first_timestamp,last_timestamp)
    return first_timestamp, last_timestamp

def process_result_files(prefix,start_time,end_time,ksink):
    print "Prefix is %s" % prefix
    min_timestamp = 9999999999.9
    results_list = glob.glob(prefix+"*.out")

    for result_file in results_list:
        print "Processing file %s" % result_file
        basename = result_file.replace(".out","")
        raw_results = open(result_file,"r")
        first_timestamp, last_timestamp = process_result(basename,
                                                         raw_results,
                                                         end_time,
                                                         ksink)
        # we have to check each time because we may not be processing
        # the individual results files in order
        min_timestamp = min(min_timestamp,first_timestamp)
        # OK, now we get the massaged results
        add_to_ksink(basename,first_timestamp,last_timestamp,ksink)

#    print "For %s min_timestamp is %s" % (prefix, min_timestamp)

    return min_timestamp

def generate_overall(prefix,start_time,end_time,ksink):
    overall = prefix + "overall"
    open_rrd(overall,start_time-1,end_time,1)

#    print "Starting time %s ending time %s" % (start_time,end_time)
    # one cannot rely on the enumeration of a dictionary being in key
    # order and I do not know how to sort one, so we will simply walk
    # the possible keys based on the start_time and end_time and if we
    # find that key in the kitchen sink, we will use the value to
    # update the overall rrd.
    prevkey = -1
    for key in xrange(int(start_time),int(end_time)+1):
        if key in ksink:
            try:
                update_rrd(overall,ksink[key],key)
                prevkey = key
            except Exception as e:
                print "Update to %s failed for %d, previous %d %s" % (overall, key, prevkey, e)

def graph_overall(prefix, start_time, end_time, direction, units):

    length = int(end_time) - int(start_time)

    rrdtool.graph(prefix + "overall.svg", '--imgformat', 'SVG',
                  '--start', str(int(start_time)),
                  '--end', str(int(end_time)),
                  '-w','%d' % max(800,length),'-h','400',
                  '--right-axis', '1:0',
                  '--font', 'DEFAULT:0:Helvetica',
                  '-t', 'Overall %s' % prefix,
                  '-v', '%s %s' % (direction,units),
                  'DEF:foo=%soverall.rrd:units:AVERAGE' % prefix,
                  'LINE2:foo#00FF0080:%s' % units)

# one of these days I should go more generic
def process_rr(start_time, end_time):
    print "Processing rr from %d to %d" % (start_time,end_time)
    ksink=dict()
    process_result_files("netperf_rr_", start_time, end_time, ksink)
    generate_overall("netperf_rr_", start_time, end_time, ksink)
    graph_overall("netperf_rr_", start_time, end_time, "trans", "trans")
    return min_max_avg_from_rrd("netperf_rr_overall.rrd",
                                start_time,
                                end_time)

def process_streams(start_time, end_time):
    print "Processing streams from %d to %d" % (start_time,end_time)
    ksink=dict()
    process_result_files("netperf_stream_", start_time, end_time, ksink)
    generate_overall("netperf_stream_", start_time, end_time, ksink)
    graph_overall("netperf_stream_", start_time, end_time, "streams", "bits")
    return min_max_avg_from_rrd("netperf_stream_overall.rrd",
                                start_time,
                                end_time)

def process_maerts(start_time,end_time):
    print "Processing maerts from %d to %d" % (start_time,end_time)
    ksink=dict()
    process_result_files("netperf_maerts_", start_time, end_time, ksink)
    generate_overall("netperf_maerts_", start_time, end_time, ksink)
    graph_overall("netperf_maerts_", start_time, end_time, "maerts", "bits")
    return min_max_avg_from_rrd("netperf_maerts_overall.rrd",
                                start_time,
                                end_time)

def min_max_avg_from_rrd(rrdfile, start_time, end_time) :

    result = rrdtool.graph('/dev/null',
                           '--start', str(int(start_time)),
                           '--end', str(int(end_time)),
                           'DEF:foo=%s:units:AVERAGE' % rrdfile,
                           'VDEF:avg=foo,AVERAGE',
                           'VDEF:min=foo,MINIMUM',
                           'VDEF:max=foo,MAXIMUM',
                           'PRINT:avg:"%6.20lf"',
                           'PRINT:min:"%6.20lf"',
                           'PRINT:max:"%6.20lf"')[2]

    iavg = float(result[0].strip('"'))
    imin = float(result[1].strip('"'))
    imax = float(result[2].strip('"'))

    return  imin, iavg, imax

# the meat of the script itself

parser = argparse.ArgumentParser(description="Attempt to measure how much bufferbloat exists between this system and another.")

parser.add_argument("destination", help="Destination of the test.")
parser.add_argument("-a","--annotation",default=None,
                    help="Annotation to add to chart titles")
parser.add_argument("-c","--concurrency", type=int,
                    help="Number of concurrent bulk transfer streams.")
parser.add_argument("-l","--length", type=int, help="Desired overall runtime.")
parser.add_argument("-d","--direction",
                    help="Which in which direction(s) should the bulk transfers run.")
parser.add_argument("--stream-protocol",default="TCP",
                    help="Which protocol to use, TCP or UDP (default TCP)")
parser.add_argument("--rr-protocol",default="TCP",
                    help="Which protocol to use, TCP or UDP (default TCP)")
parser.add_argument("-r","--rr-arguments",default="-r 1",
                    help="Test-specific arguments to use for RR tests")
parser.add_argument("-s","--stream-arguments",
                    default="-s 1M -S 1M -m 64K,64K -M 64K,64K",
                    help="Test-specific arguments to use for STREAM tests")
parser.add_argument("-m","--maerts-arguments",
                    default="-s 1M -S 1M -m 64K,64K -M 64K,64K",
                    help="Test-specific arguments to use for MAERTS tests")

args = parser.parse_args()

print "Destination is " + args.destination
if not args.concurrency:
    args.concurrency = 1
if args.concurrency < 0:
    args.concurrency = 1
if not args.length:
    args.length = 240
if not args.direction:
    args.direction = "outbound"

(chunks, do_streams, do_maerts) = parse_direction(args.direction)

print "There are %d chunks, do_stream is %s and do_maerts is %s" % (chunks, do_streams,do_maerts)

chunk_time = args.length / chunks
#if chunk_time < 30:
#    chunk_time = 30
print "Each time chunk will be %d seconds long" % chunk_time

times=dict()

# launch the rr test here
times['rr_start']=int(time.time())
netperf_rr = launch_rr(destination=args.destination,length=3600)
time.sleep(chunk_time)

if do_streams:
    times['streams_start']=int(time.time())
    netperf_streams = launch_streams(args.concurrency,destination=args.destination,length=3600)
    print "Sleeping for %d" % chunk_time
    time.sleep(chunk_time)
else:
    netperf_streams = []

if do_maerts:
    times['maerts_start']=int(time.time())
    netperf_maerts = launch_maerts(args.concurrency,destination=args.destination,length=3600)
    print "Sleeping for %d" % chunk_time
    time.sleep(chunk_time)
else:
    netperf_maerts = []

if netperf_streams:
    terminate_netperfs(netperf_streams)
    times['streams_stop']=int(time.time())
    if do_maerts:
        print "Sleeping for %d" % chunk_time
        time.sleep(chunk_time)
        
if netperf_maerts:
    terminate_netperfs(netperf_maerts)
    times['maerts_stop']=int(time.time())

print "Sleeping for %d" % chunk_time
time.sleep(chunk_time)

# terminate the rr test here
terminate_netperfs(netperf_rr)
times['rr_stop']=int(time.time())

# ok, now we have to post-process things

(rr_min, rr_max, rr_avg) = process_rr(times['rr_start'],times['rr_stop'])

print "rr", rr_min, rr_max, rr_avg
rr_specs = [ 'DEF:rr=netperf_rr_overall.rrd:units:AVERAGE',
             'LINE2:rr#00FF0080:TCP_RR Round-Trip Latency' ]

max_tput = 0.0
stream_specs = []
right_axis = []
if do_streams:
    (streams_min, streams_max, streams_avg) = process_streams(times['streams_start'],times['streams_stop'])
    if (streams_max > max_tput) :
        max_tput = streams_max
        # why 2 *? because we want the latency to have twice the vertical
        # space as throughput

        print "rrs", rr_min, rr_max
        scale = (2 * max_tput) / rr_max
        print "scale",scale
        right_axis = [ '--right-axis', '%.20f:0' % scale,
                       '--right-axis-label', 'Bits per Second' ]

    print "streams", streams_min, streams_max, streams_avg

maerts_specs = []
if do_maerts:
    (maerts_min, maerts_max, maerts_avg) = process_maerts(times['maerts_start'],times['maerts_stop'])
    if (maerts_max > max_tput) :
        max_tput = maerts_max
        # why 2 *? because we want the latency to have twice the vertical
        # space as throughput
        scale = (2 * max_tput) / rr_max
        print "scale",scale
        right_axis = [ '--right-axis', '%.20f:0' % scale,
                       '--right-axis-label', 'Bits per Second' ]

    print "maerts", maerts_min, maerts_max, maerts_avg

# why not above? because we need the scale value - rrdtool doesn't
# have "real" two-axis support... 

if do_streams:
    stream_specs = [ 'DEF:streams=netperf_stream_overall.rrd:units:AVERAGE',
                     'CDEF:sstreams=streams,%.20f,/' % scale,
                     'LINE2:sstreams#0000FFF0:Throughput to %s' % args.destination ]
if do_maerts:
    maerts_specs = [ 'DEF:maerts=netperf_maerts_overall.rrd:units:AVERAGE',
                     'CDEF:smaerts=maerts,%.20f,/' % scale,
                     'LINE2:smaerts#FF0000F0:Throughput from %s' % args.destination ]


length = int(times['rr_stop'] - times['rr_start'])

print "rr times",length, int(times['rr_start']),int(times['rr_stop'])

if args.annotation :
    title = 'Effect of bulk transfer on round-trip latency to %s : %s' % (args.destination, args.annotation)
else:
    print "don't have annotation"
    title = 'Effect of bulk transfer on latency to %s' % args.destination


rrdtool.graph('bloat2.svg', '--imgformat', 'SVG',
              '--start', str(int(times['rr_start'])),
              '--end', str(int(times['rr_stop'])),
              '--lower-limit', '0',
              '-t', title,
              '-v', 'Seconds',
              '-w', '%d' % max(800,length),
              '-h', '400',
              '--x-grid', 'SECOND:10:SECOND:60:SECOND:60:0:%X',
              rr_specs,
              stream_specs,
              maerts_specs,
              right_axis)