1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
/* serpent-decrypt.c
The serpent block cipher.
For more details on this algorithm, see the Serpent website at
http://www.cl.cam.ac.uk/~rja14/serpent.html
Copyright (C) 2011 Niels Möller
Copyright (C) 2010, 2011 Simon Josefsson
Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
This file is part of GNU Nettle.
GNU Nettle is free software: you can redistribute it and/or
modify it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version.
or both in parallel, as here.
GNU Nettle is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received copies of the GNU General Public License and
the GNU Lesser General Public License along with this program. If
not, see http://www.gnu.org/licenses/.
*/
/* This file is derived from cipher/serpent.c in Libgcrypt v1.4.6.
The adaption to Nettle was made by Simon Josefsson on 2010-12-07
with final touches on 2011-05-30. Changes include replacing
libgcrypt with nettle in the license template, renaming
serpent_context to serpent_ctx, renaming u32 to uint32_t, removing
libgcrypt stubs and selftests, modifying entry function prototypes,
using FOR_BLOCKS to iterate through data in encrypt/decrypt, using
LE_READ_UINT32 and LE_WRITE_UINT32 to access data in
encrypt/decrypt, and running indent on the code. */
#if HAVE_CONFIG_H
#include "config.h"
#endif
#include <assert.h>
#include <limits.h>
#include "serpent.h"
#include "macros.h"
#include "serpent-internal.h"
/* These are the S-Boxes of Serpent. They are copied from Serpents
reference implementation (the optimized one, contained in
`floppy2') and are therefore:
Copyright (C) 1998 Ross Anderson, Eli Biham, Lars Knudsen.
To quote the Serpent homepage
(http://www.cl.cam.ac.uk/~rja14/serpent.html):
"Serpent is now completely in the public domain, and we impose no
restrictions on its use. This was announced on the 21st August at
the First AES Candidate Conference. The optimised implementations
in the submission package are now under the GNU PUBLIC LICENSE
(GPL), although some comments in the code still say otherwise. You
are welcome to use Serpent for any application." */
/* S0 inverse: 13 3 11 0 10 6 5 12 1 14 4 7 15 9 8 2 */
/* Original single-assignment form:
t01 = x2 ^ x3;
t02 = x0 | x1;
t03 = x1 | x2;
t04 = x2 & t01;
t05 = t02 ^ t01;
t06 = x0 | t04;
y2 = ~ t05;
t08 = x1 ^ x3;
t09 = t03 & t08;
t10 = x3 | y2;
y1 = t09 ^ t06;
t12 = x0 | t05;
t13 = y1 ^ t12;
t14 = t03 ^ t10;
t15 = x0 ^ x2;
y3 = t14 ^ t13;
t17 = t05 & t13;
t18 = t14 | t17;
y0 = t15 ^ t18;
*/
#define SBOX0_INVERSE(x0, x1, x2, x3, y0, y1, y2, y3) \
do { \
y0 = x0 ^ x2; \
y2 = x0 | x1; \
y1 = x2 ^ x3; \
y2 ^= y1; \
y1 &= x2; \
x2 |= x1; \
x1 ^= x3; \
y1 |= x0; \
x1 &= x2; \
y1 ^= x1; \
x0 |= y2; \
x0 ^= y1; \
x1 = y2 & x0; \
y2 = ~ y2; \
x3 |= y2; \
x3 ^= x2; \
y3 = x3 ^ x0; \
x1 |= x3; \
y0 ^= x1; \
} while (0)
/* S1 inverse: 5 8 2 14 15 6 12 3 11 4 7 9 1 13 10 0 */
/* Original single-assignment form:
t01 = x0 ^ x1;
t02 = x1 | x3;
t03 = x0 & x2;
t04 = x2 ^ t02;
t05 = x0 | t04;
t06 = t01 & t05;
t07 = x3 | t03;
t08 = x1 ^ t06;
t09 = t07 ^ t06;
t10 = t04 | t03;
t11 = x3 & t08;
y2 = ~ t09;
y1 = t10 ^ t11;
t14 = x0 | y2;
t15 = t06 ^ y1;
y3 = t01 ^ t04;
t17 = x2 ^ t15;
y0 = t14 ^ t17;
*/
#define SBOX1_INVERSE(x0, x1, x2, x3, y0, y1, y2, y3) \
do { \
y1 = x1 | x3; \
y1 ^= x2; \
y3 = x0 ^ x1; \
y0 = x0 | y1; \
y0 &= y3; \
x1 ^= y0; \
y3 ^= y1; \
x1 &= x3; \
y2 = x0 & x2; \
y1 |= y2; \
y2 |= x3; \
y2 ^= y0; \
y2 = ~ y2; \
y1 ^= x1; \
y0 ^= y1; \
y0 ^= x2; \
x0 |= y2; \
y0 ^= x0; \
} while (0)
/* S2 inverse: 12 9 15 4 11 14 1 2 0 3 6 13 5 8 10 7 */
/* Original single-assignment form:
t01 = x0 ^ x3;
t02 = x2 ^ x3;
t03 = x0 & x2;
t04 = x1 | t02;
y0 = t01 ^ t04;
t06 = x0 | x2;
t07 = x3 | y0;
t08 = ~ x3;
t09 = x1 & t06;
t10 = t08 | t03;
t11 = x1 & t07;
t12 = t06 & t02;
y3 = t09 ^ t10;
y1 = t12 ^ t11;
t15 = x2 & y3;
t16 = y0 ^ y1;
t17 = t10 ^ t15;
y2 = t16 ^ t17;
*/
#define SBOX2_INVERSE(x0, x1, x2, x3, y0, y1, y2, y3) \
do { \
y0 = x0 ^ x3; \
y2 = x2 ^ x3; \
y1 = x1 | y2; \
y0 ^= y1; \
y1 = x3 | y0; \
y1 &= x1; \
x3 = ~ x3; \
y3 = x0 | x2; \
y2 &= y3; \
y1 ^= y2; \
y3 &= x1; \
x0 &= x2; \
x0 |= x3; \
y3 ^= x0; \
x2 &= y3; \
x2 ^= x0; \
y2 = y0 ^ y1; \
y2 ^= x2; \
} while (0)
/* S3 inverse: 0 9 10 7 11 14 6 13 3 5 12 2 4 8 15 1 */
/* Original single-assignment form:
t01 = x2 | x3;
t02 = x0 | x3;
t03 = x2 ^ t02;
t04 = x1 ^ t02;
t05 = x0 ^ x3;
t06 = t04 & t03;
t07 = x1 & t01;
y2 = t05 ^ t06;
t09 = x0 ^ t03;
y0 = t07 ^ t03;
t11 = y0 | t05;
t12 = t09 & t11;
t13 = x0 & y2;
t14 = t01 ^ t05;
y1 = x1 ^ t12;
t16 = x1 | t13;
y3 = t14 ^ t16;
*/
#define SBOX3_INVERSE(x0, x1, x2, x3, y0, y1, y2, y3) \
do { \
y3 = x2 | x3; \
y0 = x1 & y3; \
y2 = x0 | x3; \
y1 = x2 ^ y2; \
y0 ^= y1; \
x3 ^= x0; \
y3 ^= x3; \
y2 ^= x1; \
y2 &= y1; \
y2 ^= x3; \
y1 ^= x0; \
x3 |= y0; \
y1 &= x3; \
y1 ^= x1; \
x0 &= y2; \
x0 |= x1; \
y3 ^= x0; \
} while (0)
/* S4 inverse: 5 0 8 3 10 9 7 14 2 12 11 6 4 15 13 1 */
/* Original single-assignment form:
t01 = x1 | x3;
t02 = x2 | x3;
t03 = x0 & t01;
t04 = x1 ^ t02;
t05 = x2 ^ x3;
t06 = ~ t03;
t07 = x0 & t04;
y1 = t05 ^ t07;
t09 = y1 | t06;
t10 = x0 ^ t07;
t11 = t01 ^ t09;
t12 = x3 ^ t04;
t13 = x2 | t10;
y3 = t03 ^ t12;
t15 = x0 ^ t04;
y2 = t11 ^ t13;
y0 = t15 ^ t09;
*/
#define SBOX4_INVERSE(x0, x1, x2, x3, y0, y1, y2, y3) \
do { \
y1 = x2 ^ x3; \
y2 = x2 | x3; \
y2 ^= x1; \
x1 |= x3; \
y0 = x0 ^ y2; \
x3 ^= y2; \
y2 &= x0; \
y1 ^= y2; \
y2 ^= x0; \
y2 |= x2; \
x0 &= x1; \
y3 = x0 ^ x3; \
x0 = ~ x0; \
x0 |= y1; \
y0 ^= x0; \
x0 ^= x1; \
y2 ^= x0; \
} while (0)
/* S5 inverse: 8 15 2 9 4 1 13 14 11 6 5 3 7 12 10 0 */
/* Original single-assignment form:
t01 = x0 & x3;
t02 = x2 ^ t01;
t03 = x0 ^ x3;
t04 = x1 & t02;
t05 = x0 & x2;
y0 = t03 ^ t04;
t07 = x0 & y0;
t08 = t01 ^ y0;
t09 = x1 | t05;
t10 = ~ x1;
y1 = t08 ^ t09;
t12 = t10 | t07;
t13 = y0 | y1;
y3 = t02 ^ t12;
t15 = t02 ^ t13;
t16 = x1 ^ x3;
y2 = t16 ^ t15;
*/
#define SBOX5_INVERSE(x0, x1, x2, x3, y0, y1, y2, y3) \
do { \
y1 = x0 & x3; \
y3 = x2 ^ y1; \
y0 = x1 & y3; \
y2 = x0 ^ x3; \
x3 ^= x1; \
y0 ^= y2; \
x2 &= x0; \
x0 &= y0; \
x2 |= x1; \
y1 ^= y0; \
y1 ^= x2; \
y2 = y0 | y1; \
y2 ^= y3; \
y2 ^= x3; \
x1 = ~ x1; \
x1 |= x0; \
y3 ^= x1; \
} while (0)
/* S6 inverse: 15 10 1 13 5 3 6 0 4 9 14 7 2 12 8 11 */
/* Original single-assignment form:
t01 = x0 ^ x2;
t02 = ~ x2;
t03 = x1 & t01;
t04 = x1 | t02;
t05 = x3 | t03;
t06 = x1 ^ x3;
t07 = x0 & t04;
t08 = x0 | t02;
t09 = t07 ^ t05;
y1 = t06 ^ t08;
y0 = ~ t09;
t12 = x1 & y0;
t13 = t01 & t05;
t14 = t01 ^ t12;
t15 = t07 ^ t13;
t16 = x3 | t02;
t17 = x0 ^ y1;
y3 = t17 ^ t15;
y2 = t16 ^ t14;
*/
#define SBOX6_INVERSE(x0, x1, x2, x3, y0, y1, y2, y3) \
do { \
y2 = x0 ^ x2; \
x2 = ~ x2; \
y0 = x1 ^ x3; \
y1 = x0 | x2; \
y1 ^= y0; \
y3 = x1 & y2; \
y3 |= x3; \
x3 |= x2; \
x2 |= x1; \
x2 &= x0; \
y0 = x2 ^ y3; \
y0 = ~ y0; \
y3 &= y2; \
y3 ^= x2; \
x0 ^= y1; \
y3 ^= x0; \
x1 &= y0; \
y2 ^= x1; \
y2 ^= x3; \
} while (0)
/* S7 inverse: 3 0 6 13 9 14 15 8 5 12 11 7 10 1 4 2 */
/* Original single-assignment form:
t01 = x0 & x1;
t02 = x0 | x1;
t03 = x2 | t01;
t04 = x3 & t02;
y3 = t03 ^ t04;
t06 = x1 ^ t04;
t07 = x3 ^ y3;
t08 = ~ t07;
t09 = t06 | t08;
t10 = x1 ^ x3;
t11 = x0 | x3;
y1 = x0 ^ t09;
t13 = x2 ^ t06;
t14 = x2 & t11;
t15 = x3 | y1;
t16 = t01 | t10;
y0 = t13 ^ t15;
y2 = t14 ^ t16;
*/
#define SBOX7_INVERSE(x0, x1, x2, x3, y0, y1, y2, y3) \
do { \
y3 = x0 & x1; \
y2 = x1 ^ x3; \
y2 |= y3; \
y1 = x0 | x3; \
y1 &= x2; \
y2 ^= y1; \
y3 |= x2; \
y0 = x0 | x1; \
y0 &= x3; \
y3 ^= y0; \
y0 ^= x1; \
y1 = x3 ^ y3; \
y1 = ~ y1; \
y1 |= y0; \
y0 ^= x2; \
y1 ^= x0; \
x3 |= y1; \
y0 ^= x3; \
} while (0)
/* In-place inverse linear transformation. */
#define LINEAR_TRANSFORMATION_INVERSE(x0,x1,x2,x3) \
do { \
x2 = ROTL32 (10, x2); \
x0 = ROTL32 (27, x0); \
x2 = x2 ^ x3 ^ (x1 << 7); \
x0 = x0 ^ x1 ^ x3; \
x3 = ROTL32 (25, x3); \
x1 = ROTL32 (31, x1); \
x3 = x3 ^ x2 ^ (x0 << 3); \
x1 = x1 ^ x0 ^ x2; \
x2 = ROTL32 (29, x2); \
x0 = ROTL32 (19, x0); \
} while (0)
/* Round inputs are x0,x1,x2,x3 (destroyed), and round outputs are
y0,y1,y2,y3. */
#define ROUND_INVERSE(which, subkey, x0,x1,x2,x3, y0,y1,y2,y3) \
do { \
LINEAR_TRANSFORMATION_INVERSE (x0,x1,x2,x3); \
SBOX##which##_INVERSE(x0,x1,x2,x3, y0,y1,y2,y3); \
KEYXOR(y0,y1,y2,y3, subkey); \
} while (0)
#if HAVE_NATIVE_64_BIT
/* In-place inverse linear transformation. */
#define LINEAR_TRANSFORMATION64_INVERSE(x0,x1,x2,x3) \
do { \
x2 = DROTL32 (10, x2); \
x0 = DROTL32 (27, x0); \
x2 = x2 ^ x3 ^ DRSHIFT32(7, x1); \
x0 = x0 ^ x1 ^ x3; \
x3 = DROTL32 (25, x3); \
x1 = DROTL32 (31, x1); \
x3 = x3 ^ x2 ^ DRSHIFT32(3, x0); \
x1 = x1 ^ x0 ^ x2; \
x2 = DROTL32 (29, x2); \
x0 = DROTL32 (19, x0); \
} while (0)
#define ROUND64_INVERSE(which, subkey, x0,x1,x2,x3, y0,y1,y2,y3) \
do { \
LINEAR_TRANSFORMATION64_INVERSE (x0,x1,x2,x3); \
SBOX##which##_INVERSE(x0,x1,x2,x3, y0,y1,y2,y3); \
KEYXOR64(y0,y1,y2,y3, subkey); \
} while (0)
#endif /* HAVE_NATIVE_64_BIT */
void
serpent_decrypt (const struct serpent_ctx *ctx,
size_t length, uint8_t * dst, const uint8_t * src)
{
assert( !(length % SERPENT_BLOCK_SIZE));
#if HAVE_NATIVE_64_BIT
if (length & SERPENT_BLOCK_SIZE)
#else
while (length >= SERPENT_BLOCK_SIZE)
#endif
{
uint32_t x0,x1,x2,x3, y0,y1,y2,y3;
unsigned k;
x0 = LE_READ_UINT32 (src);
x1 = LE_READ_UINT32 (src + 4);
x2 = LE_READ_UINT32 (src + 8);
x3 = LE_READ_UINT32 (src + 12);
/* Inverse of special round */
KEYXOR (x0,x1,x2,x3, ctx->keys[32]);
SBOX7_INVERSE (x0,x1,x2,x3, y0,y1,y2,y3);
KEYXOR (y0,y1,y2,y3, ctx->keys[31]);
k = 24;
goto start32;
while (k > 0)
{
k -= 8;
ROUND_INVERSE (7, ctx->keys[k+7], x0,x1,x2,x3, y0,y1,y2,y3);
start32:
ROUND_INVERSE (6, ctx->keys[k+6], y0,y1,y2,y3, x0,x1,x2,x3);
ROUND_INVERSE (5, ctx->keys[k+5], x0,x1,x2,x3, y0,y1,y2,y3);
ROUND_INVERSE (4, ctx->keys[k+4], y0,y1,y2,y3, x0,x1,x2,x3);
ROUND_INVERSE (3, ctx->keys[k+3], x0,x1,x2,x3, y0,y1,y2,y3);
ROUND_INVERSE (2, ctx->keys[k+2], y0,y1,y2,y3, x0,x1,x2,x3);
ROUND_INVERSE (1, ctx->keys[k+1], x0,x1,x2,x3, y0,y1,y2,y3);
ROUND_INVERSE (0, ctx->keys[k], y0,y1,y2,y3, x0,x1,x2,x3);
}
LE_WRITE_UINT32 (dst, x0);
LE_WRITE_UINT32 (dst + 4, x1);
LE_WRITE_UINT32 (dst + 8, x2);
LE_WRITE_UINT32 (dst + 12, x3);
src += SERPENT_BLOCK_SIZE;
dst += SERPENT_BLOCK_SIZE;
length -= SERPENT_BLOCK_SIZE;
}
#if HAVE_NATIVE_64_BIT
FOR_BLOCKS(length, dst, src, 2*SERPENT_BLOCK_SIZE)
{
uint64_t x0,x1,x2,x3, y0,y1,y2,y3;
unsigned k;
x0 = LE_READ_UINT32 (src);
x1 = LE_READ_UINT32 (src + 4);
x2 = LE_READ_UINT32 (src + 8);
x3 = LE_READ_UINT32 (src + 12);
x0 <<= 32; x0 |= LE_READ_UINT32 (src + 16);
x1 <<= 32; x1 |= LE_READ_UINT32 (src + 20);
x2 <<= 32; x2 |= LE_READ_UINT32 (src + 24);
x3 <<= 32; x3 |= LE_READ_UINT32 (src + 28);
/* Inverse of special round */
KEYXOR64 (x0,x1,x2,x3, ctx->keys[32]);
SBOX7_INVERSE (x0,x1,x2,x3, y0,y1,y2,y3);
KEYXOR64 (y0,y1,y2,y3, ctx->keys[31]);
k = 24;
goto start64;
while (k > 0)
{
k -= 8;
ROUND64_INVERSE (7, ctx->keys[k+7], x0,x1,x2,x3, y0,y1,y2,y3);
start64:
ROUND64_INVERSE (6, ctx->keys[k+6], y0,y1,y2,y3, x0,x1,x2,x3);
ROUND64_INVERSE (5, ctx->keys[k+5], x0,x1,x2,x3, y0,y1,y2,y3);
ROUND64_INVERSE (4, ctx->keys[k+4], y0,y1,y2,y3, x0,x1,x2,x3);
ROUND64_INVERSE (3, ctx->keys[k+3], x0,x1,x2,x3, y0,y1,y2,y3);
ROUND64_INVERSE (2, ctx->keys[k+2], y0,y1,y2,y3, x0,x1,x2,x3);
ROUND64_INVERSE (1, ctx->keys[k+1], x0,x1,x2,x3, y0,y1,y2,y3);
ROUND64_INVERSE (0, ctx->keys[k], y0,y1,y2,y3, x0,x1,x2,x3);
}
LE_WRITE_UINT32 (dst + 16, x0);
LE_WRITE_UINT32 (dst + 20, x1);
LE_WRITE_UINT32 (dst + 24, x2);
LE_WRITE_UINT32 (dst + 28, x3);
x0 >>= 32; LE_WRITE_UINT32 (dst, x0);
x1 >>= 32; LE_WRITE_UINT32 (dst + 4, x1);
x2 >>= 32; LE_WRITE_UINT32 (dst + 8, x2);
x3 >>= 32; LE_WRITE_UINT32 (dst + 12, x3);
}
#endif /* HAVE_NATIVE_64_BIT */
}
|