File: ecc-25519.c

package info (click to toggle)
nettle 3.5.1+really3.4.1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 8,012 kB
  • sloc: ansic: 51,527; asm: 12,157; sh: 3,632; makefile: 846; cpp: 71; awk: 7
file content (353 lines) | stat: -rw-r--r-- 9,255 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/* ecc-25519.c

   Arithmetic and tables for curve25519,

   Copyright (C) 2014 Niels Möller

   This file is part of GNU Nettle.

   GNU Nettle is free software: you can redistribute it and/or
   modify it under the terms of either:

     * the GNU Lesser General Public License as published by the Free
       Software Foundation; either version 3 of the License, or (at your
       option) any later version.

   or

     * the GNU General Public License as published by the Free
       Software Foundation; either version 2 of the License, or (at your
       option) any later version.

   or both in parallel, as here.

   GNU Nettle is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received copies of the GNU General Public License and
   the GNU Lesser General Public License along with this program.  If
   not, see http://www.gnu.org/licenses/.
*/

#if HAVE_CONFIG_H
# include "config.h"
#endif

#include <assert.h>

#include "ecc.h"
#include "ecc-internal.h"

#define USE_REDC 0

#include "ecc-25519.h"

#define PHIGH_BITS (GMP_NUMB_BITS * ECC_LIMB_SIZE - 255)

#if HAVE_NATIVE_ecc_25519_modp

#define ecc_25519_modp nettle_ecc_25519_modp
void
ecc_25519_modp (const struct ecc_modulo *m, mp_limb_t *rp);
#else

#if PHIGH_BITS == 0
#error Unsupported limb size */
#endif

static void
ecc_25519_modp(const struct ecc_modulo *m UNUSED, mp_limb_t *rp)
{
  mp_limb_t hi, cy;

  cy = mpn_addmul_1 (rp, rp + ECC_LIMB_SIZE, ECC_LIMB_SIZE,
		     (mp_limb_t) 19 << PHIGH_BITS);
  hi = rp[ECC_LIMB_SIZE-1];
  cy = (cy << PHIGH_BITS) + (hi >> (GMP_NUMB_BITS - PHIGH_BITS));
  rp[ECC_LIMB_SIZE-1] = (hi & (GMP_NUMB_MASK >> PHIGH_BITS))
    + sec_add_1 (rp, rp, ECC_LIMB_SIZE - 1, 19 * cy);
}
#endif /* HAVE_NATIVE_ecc_25519_modp */

#define QHIGH_BITS (GMP_NUMB_BITS * ECC_LIMB_SIZE - 252)

#if QHIGH_BITS == 0
#error Unsupported limb size */
#endif

static void
ecc_25519_modq (const struct ecc_modulo *q, mp_limb_t *rp)
{
  mp_size_t n;
  mp_limb_t cy;

  /* n is the offset where we add in the next term */
  for (n = ECC_LIMB_SIZE; n-- > 0;)
    {
      cy = mpn_submul_1 (rp + n,
			 q->B_shifted, ECC_LIMB_SIZE,
			 rp[n + ECC_LIMB_SIZE]);
      /* Top limb of mBmodq_shifted is zero, so we get cy == 0 or 1 */
      assert (cy < 2);
      cnd_add_n (cy, rp+n, q->m, ECC_LIMB_SIZE);
    }

  cy = mpn_submul_1 (rp, q->m, ECC_LIMB_SIZE,
		     rp[ECC_LIMB_SIZE-1] >> (GMP_NUMB_BITS - QHIGH_BITS));
  assert (cy < 2);
  cnd_add_n (cy, rp, q->m, ECC_LIMB_SIZE);
}

/* Needs 2*ecc->size limbs at rp, and 2*ecc->size additional limbs of
   scratch space. No overlap allowed. */
static void
ecc_mod_pow_2kp1 (const struct ecc_modulo *m,
		  mp_limb_t *rp, const mp_limb_t *xp,
		  unsigned k, mp_limb_t *tp)
{
  if (k & 1)
    {
      ecc_mod_sqr (m, tp, xp);
      k--;
    }
  else
    {
      ecc_mod_sqr (m, rp, xp);
      ecc_mod_sqr (m, tp, rp);
      k -= 2;
    }
  while (k > 0)
    {
      ecc_mod_sqr (m, rp, tp);
      ecc_mod_sqr (m, tp, rp);
      k -= 2;
    }
  ecc_mod_mul (m, rp, tp, xp);
}

/* Computes a^{(p-5)/8} = a^{2^{252-3}} mod m. Needs 5 * n scratch
   space. */
static void
ecc_mod_pow_252m3 (const struct ecc_modulo *m,
		   mp_limb_t *rp, const mp_limb_t *ap, mp_limb_t *scratch)
{
#define a7 scratch
#define t0 (scratch + ECC_LIMB_SIZE)
#define t1 (scratch + 3*ECC_LIMB_SIZE)

  /* a^{2^252 - 3} = a^{(p-5)/8}, using the addition chain
     2^252 - 3
     = 1 + (2^252-4)
     = 1 + 4 (2^250-1)
     = 1 + 4 (2^125+1)(2^125-1)
     = 1 + 4 (2^125+1)(1+2(2^124-1))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^62-1))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(2^31-1))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^28-1)))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^14+1)(2^14-1)))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^14+1)(2^7+1)(2^7-1)))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^14+1)(2^7+1)(1+2(2^6-1))))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^14+1)(2^7+1)(1+2(2^3+1)*7)))
  */ 
     
  ecc_mod_pow_2kp1 (m, t0, ap, 1, t1);	/* a^3 */
  ecc_mod_sqr (m, rp, t0);		/* a^6 */
  ecc_mod_mul (m, a7, rp, ap);		/* a^7 */
  ecc_mod_pow_2kp1 (m, rp, a7, 3, t0);	/* a^63 = a^{2^6-1} */
  ecc_mod_sqr (m, t0, rp);		/* a^{2^7-2} */
  ecc_mod_mul (m, rp, t0, ap);		/* a^{2^7-1} */
  ecc_mod_pow_2kp1 (m, t0, rp, 7, t1);	/* a^{2^14-1}*/
  ecc_mod_pow_2kp1 (m, rp, t0, 14, t1);	/* a^{2^28-1} */
  ecc_mod_sqr (m, t0, rp);		/* a^{2^29-2} */
  ecc_mod_sqr (m, t1, t0);		/* a^{2^30-4} */
  ecc_mod_sqr (m, t0, t1);		/* a^{2^31-8} */
  ecc_mod_mul (m, rp, t0, a7);		/* a^{2^31-1} */
  ecc_mod_pow_2kp1 (m, t0, rp, 31, t1);	/* a^{2^62-1} */  
  ecc_mod_pow_2kp1 (m, rp, t0, 62, t1);	/* a^{2^124-1}*/
  ecc_mod_sqr (m, t0, rp);		/* a^{2^125-2} */
  ecc_mod_mul (m, rp, t0, ap);		/* a^{2^125-1} */
  ecc_mod_pow_2kp1 (m, t0, rp, 125, t1);/* a^{2^250-1} */
  ecc_mod_sqr (m, rp, t0);		/* a^{2^251-2} */
  ecc_mod_sqr (m, t0, rp);		/* a^{2^252-4} */
  ecc_mod_mul (m, rp, t0, ap);	    	/* a^{2^252-3} */
#undef t0
#undef t1
#undef a7
}

/* Needs 5*ECC_LIMB_SIZE scratch space. */
#define ECC_25519_INV_ITCH (5*ECC_LIMB_SIZE)

static void ecc_25519_inv (const struct ecc_modulo *p,
			   mp_limb_t *rp, const mp_limb_t *ap,
			   mp_limb_t *scratch)
{
#define t0 scratch

  /* Addition chain

       p - 2 = 2^{255} - 21
             = 1 + 2 (1 + 4 (2^{252}-3))
  */
  ecc_mod_pow_252m3 (p, rp, ap, t0);
  ecc_mod_sqr (p, t0, rp);
  ecc_mod_sqr (p, rp, t0);
  ecc_mod_mul (p, t0, ap, rp);
  ecc_mod_sqr (p, rp, t0);
  ecc_mod_mul (p, t0, ap, rp);
  mpn_copyi (rp, t0, ECC_LIMB_SIZE); /* FIXME: Eliminate copy? */
#undef t0
}

/* First, do a canonical reduction, then check if zero */
static int
ecc_25519_zero_p (const struct ecc_modulo *p, mp_limb_t *xp)
{
  mp_limb_t cy;
  mp_limb_t w;
  mp_size_t i;
#if PHIGH_BITS > 0
  mp_limb_t hi = xp[ECC_LIMB_SIZE-1];
  xp[ECC_LIMB_SIZE-1] = (hi & (GMP_NUMB_MASK >> PHIGH_BITS))
    + sec_add_1 (xp, xp, ECC_LIMB_SIZE - 1, 19 * (hi >> (GMP_NUMB_BITS - PHIGH_BITS)));
#endif
  cy = mpn_sub_n (xp, xp, p->m, ECC_LIMB_SIZE);
  cnd_add_n (cy, xp, p->m, ECC_LIMB_SIZE);

  for (i = 0, w = 0; i < ECC_LIMB_SIZE; i++)
    w |= xp[i];
  return w == 0;
}

/* Compute x such that x^2 = u/v (mod p). Returns one on success, zero
   on failure. We use the e = 2 special case of the Shanks-Tonelli
   algorithm (see http://www.math.vt.edu/people/brown/doc/sqrts.pdf,
   or Henri Cohen, Computational Algebraic Number Theory, 1.5.1).

   To avoid a separate inversion, we also use a trick of djb's, to
   compute the candidate root as

     x = (u/v)^{(p+3)/8} = u v^3 (u v^7)^{(p-5)/8}.
*/
#if ECC_SQRT_E != 2
#error Broken curve25519 parameters
#endif

/* Needs 4*n space + scratch for ecc_mod_pow_252m3. */
#define ECC_25519_SQRT_ITCH (9*ECC_LIMB_SIZE)

static int
ecc_25519_sqrt(const struct ecc_modulo *p, mp_limb_t *rp,
	       const mp_limb_t *up, const mp_limb_t *vp,
	       mp_limb_t *scratch)
{
  int pos, neg;

#define uv3 scratch
#define uv7 (scratch + ECC_LIMB_SIZE)
#define uv7p (scratch + 2*ECC_LIMB_SIZE)
#define v2 (scratch + 2*ECC_LIMB_SIZE)
#define uv (scratch + 3*ECC_LIMB_SIZE)
#define v4 (scratch + 3*ECC_LIMB_SIZE)

#define scratch_out (scratch + 4 * ECC_LIMB_SIZE)

#define x2 scratch
#define vx2 (scratch + ECC_LIMB_SIZE)
#define t0 (scratch + 2*ECC_LIMB_SIZE)

					/* Live values */
  ecc_mod_sqr (p, v2, vp);		/* v2 */
  ecc_mod_mul (p, uv, up, vp);		/* uv, v2 */
  ecc_mod_mul (p, uv3, uv, v2);		/* uv3, v2 */
  ecc_mod_sqr (p, v4, v2);		/* uv3, v4 */
  ecc_mod_mul (p, uv7, uv3, v4);	/* uv3, uv7 */
  ecc_mod_pow_252m3 (p, uv7p, uv7, scratch_out); /* uv3, uv7p */
  ecc_mod_mul (p, rp, uv7p, uv3);	/* none */

  /* Check sign. If square root exists, have v x^2 = ±u */
  ecc_mod_sqr (p, x2, rp);
  ecc_mod_mul (p, vx2, x2, vp);
  ecc_mod_add (p, t0, vx2, up);
  neg = ecc_25519_zero_p (p, t0);
  ecc_mod_sub (p, t0, up, vx2);
  pos = ecc_25519_zero_p (p, t0);

  ecc_mod_mul (p, t0, rp, ecc_sqrt_z);
  cnd_copy (neg, rp, t0, ECC_LIMB_SIZE);
  return pos | neg;

#undef uv3
#undef uv7
#undef uv7p
#undef v2
#undef v4
#undef scratch_out
#undef x2
#undef vx2
#undef t0
}

const struct ecc_curve _nettle_curve25519 =
{
  {
    255,
    ECC_LIMB_SIZE,
    ECC_BMODP_SIZE,
    0,
    ECC_25519_INV_ITCH,
    ECC_25519_SQRT_ITCH,

    ecc_p,
    ecc_Bmodp,
    ecc_Bmodp_shifted,
    NULL,
    ecc_pp1h,

    ecc_25519_modp,
    ecc_25519_modp,
    ecc_25519_inv,
    ecc_25519_sqrt,
  },
  {
    253,
    ECC_LIMB_SIZE,
    ECC_BMODQ_SIZE,
    0,
    ECC_MOD_INV_ITCH (ECC_LIMB_SIZE),
    0,

    ecc_q,
    ecc_Bmodq,  
    ecc_mBmodq_shifted, /* Use q - 2^{252} instead. */
    NULL,
    ecc_qp1h,

    ecc_25519_modq,
    ecc_25519_modq,
    ecc_mod_inv,
    NULL,
  },

  0, /* No redc */
  ECC_PIPPENGER_K,
  ECC_PIPPENGER_C,

  ECC_ADD_EHH_ITCH (ECC_LIMB_SIZE),
  ECC_MUL_A_EH_ITCH (ECC_LIMB_SIZE),
  ECC_MUL_G_EH_ITCH (ECC_LIMB_SIZE),
  ECC_EH_TO_A_ITCH (ECC_LIMB_SIZE, ECC_25519_INV_ITCH),

  ecc_add_ehh,
  ecc_mul_a_eh,
  ecc_mul_g_eh,
  ecc_eh_to_a,

  ecc_d, /* Use the Edwards curve constant. */
  ecc_g,
  ecc_edwards,
  ecc_unit,
  ecc_table
};