File: rsa-sign.c

package info (click to toggle)
nettle 3.5.1+really3.4.1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 8,012 kB
  • sloc: ansic: 51,527; asm: 12,157; sh: 3,632; makefile: 846; cpp: 71; awk: 7
file content (186 lines) | stat: -rw-r--r-- 4,538 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/* rsa-sign.c

   Creating RSA signatures.

   Copyright (C) 2001, 2003 Niels Möller

   This file is part of GNU Nettle.

   GNU Nettle is free software: you can redistribute it and/or
   modify it under the terms of either:

     * the GNU Lesser General Public License as published by the Free
       Software Foundation; either version 3 of the License, or (at your
       option) any later version.

   or

     * the GNU General Public License as published by the Free
       Software Foundation; either version 2 of the License, or (at your
       option) any later version.

   or both in parallel, as here.

   GNU Nettle is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received copies of the GNU General Public License and
   the GNU Lesser General Public License along with this program.  If
   not, see http://www.gnu.org/licenses/.
*/

#if HAVE_CONFIG_H
# include "config.h"
#endif

#include <assert.h>

#include "rsa.h"
#include "rsa-internal.h"
#include "gmp-glue.h"

void
rsa_private_key_init(struct rsa_private_key *key)
{
  mpz_init(key->d);
  mpz_init(key->p);
  mpz_init(key->q);
  mpz_init(key->a);
  mpz_init(key->b);
  mpz_init(key->c);

  /* Not really necessary, but it seems cleaner to initialize all the
   * storage. */
  key->size = 0;
}

void
rsa_private_key_clear(struct rsa_private_key *key)
{
  mpz_clear(key->d);
  mpz_clear(key->p);
  mpz_clear(key->q);
  mpz_clear(key->a);
  mpz_clear(key->b);
  mpz_clear(key->c);
}

int
rsa_private_key_prepare(struct rsa_private_key *key)
{
  mpz_t n;

  /* A key is invalid if the sizes of q and c are smaller than
   * the size of n, we rely on that property in calculations so
   * fail early if that happens. */
  if (mpz_size (key->q) + mpz_size (key->c) < mpz_size(key->p))
    return 0;

  /* The size of the product is the sum of the sizes of the factors,
   * or sometimes one less. It's possible but tricky to compute the
   * size without computing the full product. */

  mpz_init(n);
  mpz_mul(n, key->p, key->q);

  key->size = _rsa_check_size(n);

  mpz_clear(n);

  return (key->size > 0);
}

#if NETTLE_USE_MINI_GMP

/* Computing an rsa root. */
void
rsa_compute_root(const struct rsa_private_key *key,
		 mpz_t x, const mpz_t m)
{
  mpz_t xp; /* modulo p */
  mpz_t xq; /* modulo q */

  mpz_init(xp); mpz_init(xq);    

  /* Compute xq = m^d % q = (m%q)^b % q */
  mpz_fdiv_r(xq, m, key->q);
  mpz_powm_sec(xq, xq, key->b, key->q);

  /* Compute xp = m^d % p = (m%p)^a % p */
  mpz_fdiv_r(xp, m, key->p);
  mpz_powm_sec(xp, xp, key->a, key->p);

  /* Set xp' = (xp - xq) c % p. */
  mpz_sub(xp, xp, xq);
  mpz_mul(xp, xp, key->c);
  mpz_fdiv_r(xp, xp, key->p);

  /* Finally, compute x = xq + q xp'
   *
   * To prove that this works, note that
   *
   *   xp  = x + i p,
   *   xq  = x + j q,
   *   c q = 1 + k p
   *
   * for some integers i, j and k. Now, for some integer l,
   *
   *   xp' = (xp - xq) c + l p
   *       = (x + i p - (x + j q)) c + l p
   *       = (i p - j q) c + l p
   *       = (i c + l) p - j (c q)
   *       = (i c + l) p - j (1 + kp)
   *       = (i c + l - j k) p - j
   *
   * which shows that xp' = -j (mod p). We get
   *
   *   xq + q xp' = x + j q + (i c + l - j k) p q - j q
   *              = x + (i c + l - j k) p q
   *
   * so that
   *
   *   xq + q xp' = x (mod pq)
   *
   * We also get 0 <= xq + q xp' < p q, because
   *
   *   0 <= xq < q and 0 <= xp' < p.
   */
  mpz_mul(x, key->q, xp);
  mpz_add(x, x, xq);

  mpz_clear(xp); mpz_clear(xq);
}

#else /* !NETTLE_USE_MINI_GMP */

/* Computing an rsa root. */
void
rsa_compute_root(const struct rsa_private_key *key,
		 mpz_t x, const mpz_t m)
{
  TMP_GMP_DECL (scratch, mp_limb_t);
  TMP_GMP_DECL (ml, mp_limb_t);
  mp_limb_t *xl;
  size_t key_size;

  key_size = NETTLE_OCTET_SIZE_TO_LIMB_SIZE(key->size);
  assert(mpz_size (m) <= key_size);

  /* we need a copy because m can be shorter than key_size,
   * but _rsa_sec_compute_root expect all inputs to be
   * normalized to a key_size long buffer length */
  TMP_GMP_ALLOC (ml, key_size);
  mpz_limbs_copy(ml, m, key_size);

  TMP_GMP_ALLOC (scratch, _rsa_sec_compute_root_itch(key));

  xl = mpz_limbs_write (x, key_size);
  _rsa_sec_compute_root (key, xl, ml, scratch);
  mpz_limbs_finish (x, key_size);

  TMP_GMP_FREE (ml);
  TMP_GMP_FREE (scratch);
}
#endif /* !NETTLE_USE_MINI_GMP */