File: plot_rcm.py

package info (click to toggle)
networkx 2.5%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 7,764 kB
  • sloc: python: 78,797; makefile: 141; javascript: 120
file content (35 lines) | stat: -rw-r--r-- 891 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
"""
===
Rcm
===

Cuthill-McKee ordering of matrices

The reverse Cuthill-McKee algorithm gives a sparse matrix ordering that
reduces the matrix bandwidth.
"""

import networkx as nx
from networkx.utils import reverse_cuthill_mckee_ordering
import numpy as np

# build low-bandwidth numpy matrix
G = nx.grid_2d_graph(3, 3)
rcm = list(reverse_cuthill_mckee_ordering(G))
print("ordering", rcm)

print("unordered Laplacian matrix")
A = nx.laplacian_matrix(G)
x, y = np.nonzero(A)
# print(f"lower bandwidth: {(y - x).max()}")
# print(f"upper bandwidth: {(x - y).max()}")
print(f"bandwidth: {(y - x).max() + (x - y).max() + 1}")
print(A)

B = nx.laplacian_matrix(G, nodelist=rcm)
print("low-bandwidth Laplacian matrix")
x, y = np.nonzero(B)
# print(f"lower bandwidth: {(y - x).max()}")
# print(f"upper bandwidth: {(x - y).max()}")
print(f"bandwidth: {(y - x).max() + (x - y).max() + 1}")
print(B)