File: remove-network-accessing-examples.patch

package info (click to toggle)
networkx 3.4.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 11,680 kB
  • sloc: python: 105,308; xml: 544; makefile: 131; javascript: 120; sh: 34
file content (370 lines) | stat: -rw-r--r-- 14,115 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
Description: remove doc examples that are doing network access
Author: Thomas Goirand <zigo@debian.org>
Forwarded: no
Last-Update: 2024-04-29

--- a/examples/graph/plot_football.py	2023-10-28 10:35:40.000000000 +0200
+++ /dev/null	2024-04-29 07:51:47.908104658 +0200
@@ -1,44 +0,0 @@
-"""
-========
-Football
-========
-
-Load football network in GML format and compute some network statistics.
-
-Shows how to download GML graph in a zipped file, unpack it, and load
-into a NetworkX graph.
-
-Requires Internet connection to download the URL
-http://www-personal.umich.edu/~mejn/netdata/football.zip
-"""
-
-import urllib.request
-import io
-import zipfile
-
-import matplotlib.pyplot as plt
-import networkx as nx
-
-url = "http://www-personal.umich.edu/~mejn/netdata/football.zip"
-
-sock = urllib.request.urlopen(url)  # open URL
-s = io.BytesIO(sock.read())  # read into BytesIO "file"
-sock.close()
-
-zf = zipfile.ZipFile(s)  # zipfile object
-txt = zf.read("football.txt").decode()  # read info file
-gml = zf.read("football.gml").decode()  # read gml data
-# throw away bogus first line with # from mejn files
-gml = gml.split("\n")[1:]
-G = nx.parse_gml(gml)  # parse gml data
-
-print(txt)
-# print degree for each team - number of games
-for n, d in G.degree():
-    print(f"{n:20} {d:2}")
-
-options = {"node_color": "black", "node_size": 50, "linewidths": 0, "width": 0.1}
-
-pos = nx.spring_layout(G, seed=1969)  # Seed for reproducible layout
-nx.draw(G, pos, **options)
-plt.show()
--- a/examples/geospatial/plot_lines.py	2023-10-28 10:35:40.000000000 +0200
+++ /dev/null	2024-04-29 07:51:47.908104658 +0200
@@ -1,115 +0,0 @@
-"""
-==========================
-Graphs from a set of lines
-==========================
-
-This example shows how to build a graph from a set of geographic lines
-(sometimes called "linestrings") using GeoPandas, momepy and alternatively
-PySAL. We'll plot some rivers and streets, as well as their graphs formed
-from the segments.
-
-There are generally two ways of creating graph object from line geometry.
-Let's use an example of street network to illustrate both:
-
-The first way is a so-called primal approach, where each intersection is
-a node and each linestring segment connecting two intersections is an edge.
-
-The second way is so-called dual approach, where each line is a node and
-intersection topology is turned into edges. One of the options how this is
-used for street network analysis is an angular analysis, where your routing
-is weighted via angles between street segments on intersections.
-
-We will use GeoPandas to read spatial data and momepy to generate first
-primal graph and then dual graph. Furthermore, we will use PySAL to
-illustrate an alternative way of creating raw dual graph.
-"""
-
-import geopandas
-import matplotlib.pyplot as plt
-import momepy
-import networkx as nx
-from contextily import add_basemap
-from libpysal import weights
-
-# %%
-# Read in example river geometry from GeoJSON. Source of example data:
-# https://doi.org/10.3390/data5010008 (Nicolas Cadieux)
-rivers = geopandas.read_file("rivers.geojson")
-
-# %%
-# Construct the primal graph. momepy automatically preserves all attributes
-# from GeoDataFrame and stores then as edge attributes.
-G = momepy.gdf_to_nx(rivers, approach="primal")
-
-# %%
-# Each node is encoded by its coordinates, which allows us to use them
-# in plotting.
-positions = {n: [n[0], n[1]] for n in list(G.nodes)}
-
-# Plot
-f, ax = plt.subplots(1, 2, figsize=(12, 6), sharex=True, sharey=True)
-rivers.plot(color="k", ax=ax[0])
-for i, facet in enumerate(ax):
-    facet.set_title(("Rivers", "Graph")[i])
-    facet.axis("off")
-nx.draw(G, positions, ax=ax[1], node_size=5)
-
-# %%
-# Once we finish graph-based analysis, we can convert graph back
-# to GeoDataFrames. momepy can return nodes as point geometry,
-# edges as original line geometry and W object, which is PySAL
-# spatial weights matrix encoding original graph so we can use
-# it with node GeoDataFrame.
-nodes, edges, W = momepy.nx_to_gdf(G, spatial_weights=True)
-
-
-# Read in example street network from GeoPackage
-streets = geopandas.read_file(momepy.datasets.get_path("bubenec"), layer="streets")
-
-# Construct the primal graph
-G_primal = momepy.gdf_to_nx(streets, approach="primal")
-
-# Plot
-f, ax = plt.subplots(1, 2, figsize=(12, 6), sharex=True, sharey=True)
-streets.plot(color="k", ax=ax[0])
-for i, facet in enumerate(ax):
-    facet.set_title(("Streets", "Graph")[i])
-    facet.axis("off")
-    try:  # For issues with downloading/parsing in CI
-        add_basemap(facet)
-    except:
-        pass
-nx.draw(
-    G_primal, {n: [n[0], n[1]] for n in list(G_primal.nodes)}, ax=ax[1], node_size=50
-)
-
-# %%
-# Construct the dual graph. momepy will store row attributes as node attributes and
-# automatically measures angle between lines.
-G_dual = momepy.gdf_to_nx(streets, approach="dual")
-
-# Plot
-f, ax = plt.subplots(1, 2, figsize=(12, 6), sharex=True, sharey=True)
-streets.plot(color="k", ax=ax[0])
-for i, facet in enumerate(ax):
-    facet.set_title(("Streets", "Graph")[i])
-    facet.axis("off")
-    try:  # For issues with downloading/parsing in CI
-        add_basemap(facet)
-    except:
-        pass
-nx.draw(G_dual, {n: [n[0], n[1]] for n in list(G_dual.nodes)}, ax=ax[1], node_size=50)
-plt.show()
-
-# Convert dual graph back to GeoDataFrame. Returns only original line geometry.
-lines = momepy.nx_to_gdf(G_dual)
-
-# %%
-# We can also construct the dual graph using PySAL. Note that it only encodes
-# relationship between geometries and do not any store attributes. However, it is
-# significantly faster than momepy.gdf_to_nx().
-# Create PySAL weights (graph).
-W = weights.Queen.from_dataframe(streets)
-
-# Convert the graph to networkx
-G_dual = W.to_networkx()
--- a/examples/geospatial/plot_points.py	2023-10-28 10:35:40.000000000 +0200
+++ /dev/null	2024-04-29 07:51:47.908104658 +0200
@@ -1,62 +0,0 @@
-"""
-=============================
-Graphs from geographic points
-=============================
-
-This example shows how to build a graph from a set of points
-using PySAL and geopandas. In this example, we'll use the famous
-set of cholera cases at the Broad Street Pump, recorded by John Snow in 1853.
-The methods shown here can also work directly with polygonal data using their
-centroids as representative points.
-"""
-
-from libpysal import weights, examples
-from contextily import add_basemap
-import matplotlib.pyplot as plt
-import networkx as nx
-import numpy as np
-import geopandas
-
-# read in example data from a geopackage file. Geopackages
-# are a format for storing geographic data that is backed
-# by sqlite. geopandas reads data relying on the fiona package,
-# providing a high-level pandas-style interface to geographic data.
-cases = geopandas.read_file("cholera_cases.gpkg")
-
-# construct the array of coordinates for the centroid
-coordinates = np.column_stack((cases.geometry.x, cases.geometry.y))
-
-# construct two different kinds of graphs:
-
-## 3-nearest neighbor graph, meaning that points are connected
-## to the three closest other points. This means every point
-## will have exactly three neighbors.
-knn3 = weights.KNN.from_dataframe(cases, k=3)
-
-## The 50-meter distance band graph will connect all pairs of points
-## that are within 50 meters from one another. This means that points
-## may have different numbers of neighbors.
-dist = weights.DistanceBand.from_array(coordinates, threshold=50)
-
-# Then, we can convert the graph to networkx object using the
-# .to_networkx() method.
-knn_graph = knn3.to_networkx()
-dist_graph = dist.to_networkx()
-
-# To plot with networkx, we need to merge the nodes back to
-# their positions in order to plot in networkx
-positions = dict(zip(knn_graph.nodes, coordinates))
-
-# plot with a nice basemap
-f, ax = plt.subplots(1, 2, figsize=(8, 4))
-for i, facet in enumerate(ax):
-    cases.plot(marker=".", color="orangered", ax=facet)
-    try:  # For issues with downloading/parsing basemaps in CI
-        add_basemap(facet)
-    except:
-        pass
-    facet.set_title(("KNN-3", "50-meter Distance Band")[i])
-    facet.axis("off")
-nx.draw(knn_graph, positions, ax=ax[0], node_size=5, node_color="b")
-nx.draw(dist_graph, positions, ax=ax[1], node_size=5, node_color="b")
-plt.show()
--- a/examples/geospatial/plot_delaunay.py	2023-10-28 10:35:40.000000000 +0200
+++ /dev/null	2024-04-29 07:51:47.908104658 +0200
@@ -1,76 +0,0 @@
-"""
-======================================
-Delaunay graphs from geographic points
-======================================
-
-This example shows how to build a delaunay graph (plus its dual,
-the set of Voronoi polygons) from a set of points.
-For this, we will use the set of cholera cases at the Broad Street Pump,
-recorded by John Snow in 1853. The methods shown here can also work
-directly with polygonal data using their centroids as representative points.
-"""
-
-from libpysal import weights, examples
-from libpysal.cg import voronoi_frames
-from contextily import add_basemap
-import matplotlib.pyplot as plt
-import networkx as nx
-import numpy as np
-import geopandas
-
-# read in example data from a geopackage file. Geopackages
-# are a format for storing geographic data that is backed
-# by sqlite. geopandas reads data relying on the fiona package,
-# providing a high-level pandas-style interface to geographic data.
-# Many different kinds of geographic data formats can be read by geopandas.
-cases = geopandas.read_file("cholera_cases.gpkg")
-
-# In order for networkx to plot the nodes of our graph correctly, we
-# need to construct the array of coordinates for each point in our dataset.
-# To get this as a numpy array, we extract the x and y coordinates from the
-# geometry column.
-coordinates = np.column_stack((cases.geometry.x, cases.geometry.y))
-
-# While we could simply present the Delaunay graph directly, it is useful to
-# visualize the Delaunay graph alongside the Voronoi diagram. This is because
-# the two are intrinsically linked: the adjacency graph of the Voronoi diagram
-# is the Delaunay graph for the set of generator points! Put simply, this means
-# we can build the Voronoi diagram (relying on scipy.spatial for the underlying
-# computations), and then convert these polygons quickly into the Delaunay graph.
-# Be careful, though; our algorithm, by default, will clip the voronoi diagram to
-# the bounding box of the point pattern. This is controlled by the "clip" argument.
-cells, generators = voronoi_frames(coordinates, clip="convex hull")
-
-# With the voronoi polygons, we can construct the adjacency graph between them using
-# "Rook" contiguity. This represents voronoi cells as being adjacent if they share
-# an edge/face. This is an analogue to the "von Neuman" neighborhood, or the 4 cardinal
-# neighbors in a regular grid. The name comes from the directions a Rook piece can move
-# on a chessboard.
-delaunay = weights.Rook.from_dataframe(cells)
-
-# Once the graph is built, we can convert the graphs to networkx objects using the
-# relevant method.
-delaunay_graph = delaunay.to_networkx()
-
-# To plot with networkx, we need to merge the nodes back to
-# their positions in order to plot in networkx
-positions = dict(zip(delaunay_graph.nodes, coordinates))
-
-# Now, we can plot with a nice basemap.
-ax = cells.plot(facecolor="lightblue", alpha=0.50, edgecolor="cornsilk", linewidth=2)
-try:  # Try-except for issues with timeout/parsing failures in CI
-    add_basemap(ax)
-except:
-    pass
-
-ax.axis("off")
-nx.draw(
-    delaunay_graph,
-    positions,
-    ax=ax,
-    node_size=2,
-    node_color="k",
-    edge_color="k",
-    alpha=0.8,
-)
-plt.show()
--- a/examples/geospatial/plot_osmnx.py	2023-10-28 10:35:40.000000000 +0200
+++ /dev/null	2024-04-29 07:51:47.908104658 +0200
@@ -1,53 +0,0 @@
-"""
-========================
-OpenStreetMap with OSMnx
-========================
-
-This example shows how to use OSMnx to download and model a street network
-from OpenStreetMap, visualize centrality, then save the graph as a GeoPackage,
-or GraphML file.
-
-OSMnx is a Python package to download, model, analyze, and visualize street
-networks and other geospatial features from OpenStreetMap. You can download
-and model walking, driving, or biking networks with a single line of code then
-easily analyze and visualize them. You can just as easily work with urban
-amenities/points of interest, building footprints, transit stops, elevation
-data, street orientations, speed/travel time, and routing.
-
-See https://osmnx.readthedocs.io for the OSMnx documentation.
-See https://github.com/gboeing/osmnx-examples for the OSMnx Examples gallery.
-"""
-
-import networkx as nx
-import osmnx as ox
-
-ox.settings.use_cache = True
-
-# download street network data from OSM and construct a MultiDiGraph model
-G = ox.graph.graph_from_point((37.79, -122.41), dist=750, network_type="drive")
-
-# impute edge (driving) speeds and calculate edge travel times
-G = ox.speed.add_edge_speeds(G)
-G = ox.speed.add_edge_travel_times(G)
-
-# you can convert MultiDiGraph to/from GeoPandas GeoDataFrames
-gdf_nodes, gdf_edges = ox.utils_graph.graph_to_gdfs(G)
-G = ox.utils_graph.graph_from_gdfs(gdf_nodes, gdf_edges, graph_attrs=G.graph)
-
-# convert MultiDiGraph to DiGraph to use nx.betweenness_centrality function
-# choose between parallel edges by minimizing travel_time attribute value
-D = ox.utils_graph.get_digraph(G, weight="travel_time")
-
-# calculate node betweenness centrality, weighted by travel time
-bc = nx.betweenness_centrality(D, weight="travel_time", normalized=True)
-nx.set_node_attributes(G, values=bc, name="bc")
-
-# plot the graph, coloring nodes by betweenness centrality
-nc = ox.plot.get_node_colors_by_attr(G, "bc", cmap="plasma")
-fig, ax = ox.plot.plot_graph(
-    G, bgcolor="k", node_color=nc, node_size=50, edge_linewidth=2, edge_color="#333333"
-)
-
-# save graph as a geopackage or graphml file
-ox.io.save_graph_geopackage(G, filepath="./graph.gpkg")
-ox.io.save_graphml(G, filepath="./graph.graphml")