1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
# Sum of all i_membrane_ should equal sum of all ElectrodeCurrent
# For a demanding test, use a tree with many IClamp and ExpSyn point processes
# sprinkled on zero and non-zero area nodes.
from neuron.tests.utils.strtobool import strtobool
import os
from neuron import h
h.load_file("stdrun.hoc") # for h.cvode_active
class Cell:
def __init__(self, id, nsec):
r = h.Random()
r.Random123(id, 0, 0)
nsec += int(r.discunif(0, 4)) # for nontrivial cell_permute=1
self.id = id
self.secs = [h.Section(name="d" + str(i), cell=self) for i in range(nsec)]
# somewhat random tree, d[0] plays role of soma with connections to
# d[0](0.5) and all others to 1.0
for i in range(1, nsec):
iparent = int(r.discunif(0, i - 1))
x = 0.5 if iparent == 0 else 1.0
self.secs[i].connect(self.secs[iparent](x))
# uniform L and diam but somewhat random passive g and e
for i, sec in enumerate(self.secs):
sec.L = 10 if i > 0 else 5
sec.diam = 1 if i > 0 else 5
sec.insert("pas")
sec.g_pas = 0.0001 * r.uniform(1.0, 1.1)
sec.e_pas = -65 * r.uniform(1.0, 1.1)
# IClamp and ExpSyn at every location (even duplicates) with random
# parameters (would rather use a Shunt, but ...)
self.ics = []
self.syns = []
self.netcons = []
self.netstim = h.NetStim()
self.netstim.number = 1
self.netstim.start = 0.0
for sec in self.secs:
for seg in sec.allseg():
ic = h.IClamp(seg)
ic.delay = 0.1
ic.dur = 1.0
ic.amp = 0.001 * r.uniform(1.0, 1.1)
self.ics.append(ic)
syn = h.ExpSyn(seg)
syn.e = -65 * r.uniform(1.0, 1.1)
syn.tau = r.uniform(0.1, 1.0)
self.syns.append(syn)
nc = h.NetCon(self.netstim, syn)
nc.delay = 0.2
nc.weight[0] = 0.001 * r.uniform(1.0, 1.1)
self.netcons.append(nc)
def __str__(self):
return "Cell" + str(self.id)
def total_imem():
imem = 0.0
for sec in h.allsec():
for seg in sec.allseg():
if seg.x == 0.0 and sec.parentseg() is not None:
assert seg.i_membrane_ == sec.parentseg().i_membrane_
continue # don't count twice
imem += seg.i_membrane_
# print("total_imem ", imem)
return imem
def total_iclamp(ics):
icur = 0.0
for ic in ics:
icur += ic.i
# print("total_iclamp ", icur)
return icur
# verified that events arrived at syn to change g.
def total_syn_g(syns):
g = 0
for syn in syns:
g += syn.g
# print("total syn g ", g)
return g
# Remark:
# The iteration over all segments (including 0 area nodes) without
# counting 0 area nodes twice is
"""
for sec in h.allsec():
for seg in sec.allseg():
if seg.x == sec.orientation() and sec.parentseg() is not None:
continue
# rest of the "for seg..." body
"""
# Note that sec.parentseg() is needed to count the root and use of
# sec.trueparentseg() would miss the root node. Also, although an
# extremely rare edge case, sec.orientation() is needed to match
# which segment is closest to root.
def test_allseg_unique_iter():
a = h.Section("a")
b = h.Section("b")
c = h.Section("c")
d = h.Section("d")
e = h.Section("e")
f = h.Section("f")
g = h.Section("g")
g1 = h.Section("g1")
g2 = h.Section("g2")
g3 = h.Section("g3")
g4 = h.Section("g4")
b.connect(a(0), 0)
c.connect(a(0), 0)
d.connect(a(0), 1)
e.connect(a(0), 1)
f.connect(b(1), 0)
g.connect(b(1), 1)
g1.connect(g(0), 0)
g2.connect(g(0), 1)
g3.connect(g(1), 0)
g4.connect(g(1), 1)
# h.topology()
unique_segs = []
for sec in h.allsec():
for seg in sec.allseg():
if seg.x == sec.orientation() and sec.parentseg() is not None:
continue
# print ("%s(%g)" % (sec.name(), seg.x))
unique_segs.append(seg)
nseg = sum(sec.nseg for sec in h.allsec())
nsec = sum(1 for _ in h.allsec())
ncell = 1
assert len(unique_segs) == nseg + nsec + ncell
# nothing left out and nothing done twice
for sec in h.allsec():
sec.v = 100.0
for seg in unique_segs:
assert seg.v == 100.0 # nothing done twice
seg.v = 0.0
for sec in h.allsec():
for seg in sec.allseg():
assert seg.v == 0.0 # nothing left out
# verified that there is i_membrane_ != 0.0 in zero area nodes.
def print_imem():
print("t=%g" % h.t)
for sec in h.allsec():
for seg in sec.allseg():
if seg.x == 0.0 and sec.parentseg() is not None:
continue # don't count twice
print("%s(%g).i_membrane_ = %g" % (sec.name(), seg.x, seg.i_membrane_))
def balanced(ics, tolerance):
# print_imem() # helped to verify the test is substantive
bal = abs(total_imem() - total_iclamp(ics))
if bal > tolerance:
print(
"t=%g bal=%g total_imem=%g total_iclamp=%g"
% (h.t, bal, total_imem(), total_iclamp(ics))
)
assert bal <= tolerance
def run(tstop, ics, tolerance):
# to get nontrivial initialized i_membrane_, initialize to random voltage.
r = h.Random()
r.Random123(0, 1, 0)
for sec in h.allsec():
for seg in sec.allseg():
# don't care if some segments counted twice
seg.v = -65.0 + r.uniform(0, 5)
h.finitialize()
balanced(ics, tolerance)
while h.t < 1.0:
h.fadvance()
balanced(ics, tolerance)
def test_fastimem():
cells = [Cell(id, 10) for id in range(2)]
# h.topology()
cvode = h.CVode()
ics = h.List("IClamp")
syns = h.List("ExpSyn")
cvode.use_fast_imem(1)
h.finitialize(-65)
run(1.0, ics, 1e-13)
total_syn_g(syns)
h.cvode_active(1)
run(1.0, ics, 1e-12)
cvode.use_fast_imem(0)
h.cvode_active(0)
def coreneuron_available():
if "NRN_ENABLE_CORENEURON=ON" not in h.nrnversion(6):
# Not ideal. Maybe someday it will be default ON and then
# will not appear in h.nrnversion(6)
return False
# But can it be loaded?
cvode = h.CVode()
cvode.cache_efficient(1)
pc = h.ParallelContext()
h.finitialize()
result = 0
import sys
from io import StringIO
original_stderr = sys.stderr
sys.stderr = StringIO()
try:
pc.nrncore_run("--tstop 1 --verbose 0")
result = 1
except Exception as e:
pass
sys.stderr = original_stderr
cvode.cache_efficient(0)
return result
def print_fast_imem():
ix = h.Vector()
imem = h.Vector()
for sec in h.allsec():
for seg in sec.allseg():
if seg.x == 0.0 and sec.parentseg() is not None:
continue # don't count twice
ix.append(seg.node_index())
imem.append(seg.i_membrane_)
si = ix.sortindex()
ix.index(ix.c(), si)
imem.index(imem.c(), si)
f = open("fastimem.nrn", "w")
f.write("%d\n" % int(ix.size()))
for i, x in enumerate(imem):
assert i == int(ix[i])
f.write("%d %.20g\n" % (i, x))
f.close()
def test_fastimem_corenrn():
if not coreneuron_available():
return
print("test_fastimem_corenrn")
pc = h.ParallelContext()
ncell = 5
cvode = h.CVode()
cvode.cache_efficient(0)
cells = [Cell(id, 10) for id in range(ncell)]
cvode.use_fast_imem(1)
imem = [h.Vector().record(cell.secs[3](0.5)._ref_i_membrane_) for cell in cells]
tstop = 1.0
def init_v():
# to get nontrivial initialized i_membrane_, initialize to random voltage.
r = h.Random()
r.Random123(0, 1, 0)
for sec in h.allsec():
for seg in sec.allseg():
# don't care if some segments counted twice
seg.v = -65.0 + r.uniform(0, 5)
h.finitialize()
def run(tstop):
pc.set_maxstep(10)
init_v()
pc.psolve(tstop)
# standard
run(tstop)
imem_std = [vec.c() for vec in imem]
def compare():
for i in range(ncell):
if not imem_std[i].eq(imem[i]):
print("imem for cell ", i)
for j, x in enumerate(imem_std[i]):
print(j, x, imem[i][j], x - imem[i][j])
assert imem_std[i].eq(imem[i])
imem[i].resize(0)
compare() # just starting iwth imem cleared
print("cache efficient NEURON")
cvode.cache_efficient(1)
run(tstop)
compare()
print("direct mode (online) coreneuron")
from neuron import coreneuron
coreneuron.enable = True
coreneuron.verbose = 0
coreneuron.gpu = strtobool(os.environ.get("CORENRN_ENABLE_GPU", "false"))
run(tstop)
compare()
coreneuron.enable = False
print("Are the i_membrane_ trajectories correct when ...")
tvec = h.Vector().record(h._ref_t)
init_v()
while h.t < tstop - h.dt / 2:
dt_above = 1.1 * h.dt # comfortably above dt to avoid 0 step advance
coreneuron.enable = True
told = h.t
pc.psolve(h.t + dt_above)
assert h.t > told
coreneuron.enable = False
pc.psolve(h.t + dt_above)
compare()
print("For file mode (offline) coreneuron comparison of i_membrane_ initialization")
init_v()
print_fast_imem()
# The cells must have gids.
for i, cell in enumerate(cells):
pc.set_gid2node(i, pc.id())
sec = cell.secs[0]
pc.cell(i, h.NetCon(sec(0.5)._ref_v, None, sec=sec))
# Write the data files
init_v()
pc.nrncore_write("./corenrn_data")
# args needed for offline run of coreneuron
coreneuron.enable = True
coreneuron.file_mode = True
arg = coreneuron.nrncore_arg(tstop)
coreneuron.enable = False
pc.gid_clear()
print(arg)
cvode.use_fast_imem(0)
if __name__ == "__main__":
test_allseg_unique_iter()
test_fastimem()
test_fastimem_corenrn()
h.quit()
|