1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
|
# HOC Interpreter
- [HOC Interpreter](#hoc-interpreter)
- [**Background**](#background)
- [**Source Code**](#source-code)
- [**HOC Grammar**](#hoc-grammar)
- [**HOC Initialization**](#hoc-initialization)
- [****HOC Interpreter - executing the machine****](#hoc-interpreter-executing-the-machine)
- [****HOC Interpreter example - printf****](#hoc-interpreter-example-printf)
---
## **Background**
Quote from Wikipedia
> **"HOC**, an acronym for **High Order Calculator**, is an [interpreted](https://en.wikipedia.org/wiki/Interpreter_(computing) "Interpreter (computing)") [programming language](https://en.wikipedia.org/wiki/Programming_language "Programming language") that was used in the 1984 book [The Unix Programming Environment](https://en.wikipedia.org/wiki/The_Unix_Programming_Environment "The Unix Programming Environment") to demonstrate how to build interpreters using [Yacc](https://en.wikipedia.org/wiki/Yacc "Yacc")."
Source: [https://en.wikipedia.org/wiki/Hoc\_(programming\_language)](https://en.wikipedia.org/wiki/Hoc_(programming_language))
This books stands as ground base for the implementation of HOC Interpreter in NEURON. Points of interest are:
* chapter 8 → details about HOC design and development, done in 6 stages. It goes incrementally from a simple calculator to base HOC language.
* appendix 2 → HOC manual
* appendix 3 → code listing of the last stage (hoc6)
## **Source Code**
We can distinguish several folders under **'src':**
* **'src/oc' →** Source code for the base HOC interpreter
* **'src/ivoc' →** GUI-related code but also general purpose data structures like Vector, List or File (developed in C++)
* **'src/nrnoc' →** NEURON-related HOC code
* **'src/nrniv' →** modern NEURON, as it is used today; contains several C++ neuron-related additions.
**Entry point**
Main entry point called **'ivocmain'** is found in **'ivocmain.cpp'** located under **'src/ivoc'**.

This will call '**ivocmain\_session()**' with parameter **'start\_session'** set to 1 that will effectively be dropping into the HOC Interpreter via **'hoc\_main1()'**:
```cpp
int ivocmain (int argc, const char** argv, const char** env) {
return ivocmain_session(argc, argv, env, 1);
}
int ivocmain_session (int argc, const char** argv, const char** env, int start_session) {
.........
hoc_main1(our_argc, our_argv, env);
.........
}
```
## **HOC Grammar**
With respect to the HOC grammar we have:
* **'src/oc/parse.ypp' →** HOC language is defined thanks to **bison/yacc;** this file holds actual HOC grammar
The grammar consists of token definitions, left-right precedence setup, grammar rules (i.e. expressions like assignments) and actions; these actions represent code blocks triggered when rules have been recognised.
HOC also provides functions and procedures. Grammar wise, the difference is that functions are treated as expressions whereas procedures are statements. Technically, a function will return a value and a procedure will not.
Given different depth of rules, parsing makes use of a stack where we normally push operands and operators. These are basically symbols(**Symbol**) or machine instructions tied to grammar actions(**Inst**).
HOC uses an interpreter data stack, an instruction machine and a separate function/procedure (nested) call stack (combined together as a stack machine).
Therefore grammar parsing type is defined as:
%union { /* stack type */
Symbol *sym; /* symbol table pointer */
Inst *inst; /* machine instruction */
int narg; /* number of arguments */
void* ptr;
}
which will generate
typedef union YYSTYPE
Parsing relies on a lexer function that performs input tokenisation, called **'yylex()'** (implemented in **'src/oc/hoc.c'**)**.**

It "communicates" with the parser (**yyparse()**) via a variable of the same type as the stack: **'YYSTYPE yylval'**.
As mentioned earlier, tokens are defined in the grammar. Each of them have a type that corresponds to what we have in **YYSTYPE**, for example:
%token <sym> LOCALOBJ AUTOOBJ
%token <narg> ARG NUMZERO ARGREF
%token <ptr> INTERNALSECTIONNAME PYSEC PYSECNAME PYSECOBJ
%type <inst> expr stmt asgn prlist delsym stmtlist strnasgn
means _**LOCALOBJ**_ is of type \`_**Symbol** **\*sym; /\* symbol table pointer \*/\`.**_ Grammar rules can also be mapped to a type, for example **_strnasgn_** is of type \`**_Inst \*inst; /\* machine instruction \*/\`._**
* **'src/oc/hoc.h' →** includes two headers
* **'redef.h' →** some HOC redefinitions
* **'hocdec.h' →** here we find global data structures.
HOC is context aware, so to that end we have a symbol table where we put new variables but also keywords, builtins and other constructs (see _**HOC Initialisation**_). We find the **_Symbol_** struct here:
```cpp
typedef struct Symbol { /* symbol table entry */
char *name;
short type;
short subtype; /* Flag for user integers */
short public; /* flag set public variable */
short defined_on_the_fly;/* moved here because otherwize gcc and borland do not align the same way */
union {
int oboff; /* offset into object data pointer space */
double *pval; /* User defined doubles - also for alias to scalar */
HocStruct Object* object_; /* alias to an object */
char *cstr; /* constant string */
double *pnum; /* Numbers */
int *pvalint; /* User defined integers */
float *pvalfloat; /* User defined floats */
int u_auto; /* stack offset # for AUTO variable */
double (*ptr)(); /* if BLTIN */
Proc *u_proc;
struct {
short type; /* Membrane type to find Prop */
int index; /* prop->param[index] */
}rng;
HocStruct Symbol **ppsym; /* Pointer to symbol pointer array */
HocStruct Template *template;
HocStruct Symbol* sym; /* for external */
} u;
unsigned s_varn; /* dependent variable number - 0 means indep */
Arrayinfo *arayinfo; /* ARRAY information if null then scalar */
HocSymExtension* extra; /* additions to symbol allow compatibility
with old nmodl dll's */
HocStruct Symbol *next; /* to link to another */
} Symbol;
```
Union _**u**_ is used to hold actual value of the symbol given its type.
We also have _**Inst,**_ which represents the data type of a machine instruction and is tied to function pointers of different types that correspond to different functions or grammar actions:
```cpp
typedef int (*Pfri)(void);
typedef void (*Pfrv)(void);
typedef double (*Pfrd)(void);
typedef struct Object** (*Pfro)(void);
typedef const char** (*Pfrs)(void);
typedef int (*Pfri_vp)(void*);
typedef void (*Pfrv_vp)(void*);
typedef double (*Pfrd_vp)(void*);
typedef struct Object** (*Pfro_vp)(void*);
typedef const char** (*Pfrs_vp)(void*);
typedef union Inst { /* machine instruction list type */
Pfrv pf;
Pfrd pfd;
Pfro pfo;
Pfrs pfs;
Pfrv_vp pfv_vp;
Pfrd_vp pfd_vp;
Pfro_vp pfo_vp;
Pfrs_vp pfs_vp;
HocUnion Inst *in;
HocStruct Symbol *sym;
void* ptr;
int i;
} Inst;
```
The interpreter data stack has the following type **_Datum_**:
```cpp
typedef union Datum { /* interpreter stack type */
double val;
Symbol *sym;
int i;
double *pval; /* first used with Eion in NEURON */
HocStruct Object **pobj;
HocStruct Object *obj; /* sections keep this to construct a name */
char **pstr;
HocStruct hoc_Item* itm;
hoc_List* lst;
void* _pvoid; /* not used on stack, see nrnoc/point.c */
} Datum;
```
* **'src/oc/code.c' →** here we find the stack machine definitions and routines that manipulate it, and as well as functions tied to different functionalities or grammar actions (HOC routines), like for example _**call()**_ that will perform a function call.
```cpp
#define NSTACK 1000 /* default size */
#define nstack hoc_nstack
static Datum *stack; /* the stack */
static Datum *stackp; /* next free spot on stack */
static Datum *stacklast; /* last stack element */
#define NPROG 50000
Inst *prog; /* the machine */
Inst *progp; /* next free spot for code generation */
Inst *pc; /* program counter during execution */
Inst *progbase; /* start of current subprogram */
Inst *prog_parse_recover; /* start after parse error */
int hoc_returning; /* 1 if return stmt seen, 2 if break, 3 if continue */
/* 4 if stop */
typedef struct Frame { /* proc/func call stack frame */
Symbol *sp; /* symbol table entry */
Inst *retpc; /* where to resume after return */
Datum *argn; /* n-th argument on stack */
int nargs; /* number of arguments */
Inst *iter_stmt_begin; /* Iterator statement starts here */
Object *iter_stmt_ob; /* context of Iterator statement */
Object *ob; /* for stack frame debug message */
} Frame;
#define NFRAME 512 /* default size */
#define nframe hoc_nframe
static Frame *frame, *fp, *framelast; /* first, frame pointer, last */
```
The important thing to note here is the _**Frame**_ structure, used for functions and procedures. They are installed in a symbol table and have a make us of a machine instruction **_retpc_** used to know where to return after execution.
Arguments come in variably like **$1, $2** and so on, and the way we incorporate them is by pointing to the last one on the stack (_**Datum \*argn**_) and passing **_int nargs._**
* **'src/oc/symbol.c' →** defines several symbol tables and utility functions to install and lookup symbols (see _**HOC Initialisation**_)
```cpp
typedef struct Symlist {
HocStruct Symbol *first;
HocStruct Symbol *last;
}Symlist;
Symlist *hoc_built_in_symlist = (Symlist *)0; /* keywords, built-in functions, all name linked into hoc. Look in this list last */
Symlist *hoc_top_level_symlist = (Symlist *)0; /* all user names seen at top-level (non-public names inside templates do not appear here) */
Symlist *symlist = (Symlist *)0; /* the current user symbol table: linked list */
Symlist *p_symlist = (Symlist *)0; /* current proc, func, or temp table */
/* containing constants, strings, and auto */
/* variables. Discarding these lists at */
/* appropriate times prevents storage leakage. */
```
* **'src/oc/hoc\_oop.c' →** holds HOC functions providing support for OOP
## **HOC Initialization**
* Argument parsing
Before HOC interpreter initialisation, **'ivocmain\_session()'** takes into account different options passed down from command line arguments and sets variables accordingly.
HOC-interpreter importance wise, we have:
* * **'NSTACK'→** HOC interpreter stack space
* **'NFRAME' →** number of frames available.
```
options:\n\
.......
-NSTACK integer size of stack (default 1000)\n\
-NFRAME integer depth of function call nesting (default 200)\n\
........
```
Default values are used if user does not supply them → in **'src/oc/code.c'.** We often need to specify a higher **NFRAME** (i.e. 1000 when we do morphology loading as that tends towards deeper function call nesting when parsing).
These values are checked systematically when we use the stack or frames for procedures and functions (everything is in **'src/oc/code.c',** check out _STACKCHK_ macro as well); the actual space allocation for HOC stack and frames is done in **'hoc\_init\_space()'.**
* Interpreter initialisation
**'hoc\_main1\_init()'** is in charge of the HOC interpreter initialisation. In the following image we can see **'hoc\_main1()'** is also a caller; this is the hoc interpreter part taking input line by line and executing it, discussed in next section.

Most of the initialisation is actually handled through **'hoc\_init()'**


**'hoc\_init()'** will perform the following
1. call **'hoc\_init\_space()'** to allocate space for HOC interpreter stack and frames
2. install symbols with the help of **'hoc\_install'** (alias of **'install()'** function implemented in **'src/oc/symbol.c'**):
1. keywords like : **if, else, proc, localobj** and so on
2. constants like: **PI, GAMMA, FARADAY** and so on
3. builtin HOC functions like: **sin(), cos(), sqrt(), xopen(), sscanf(), execute(), load\_file(), nrnversion()** and so forth


3. install some variable symbols using **'hoc\_install\_var()'** defined in **'src/oc/symbol.c'**
4. call **'hoc\_spinit()'** implemented in **'src/oc/hocusr.c',** which will
1. **hoc\_install()** user variables ( like **float/double/integer, scalars, arrays, vectors**)
2. **hoc\_install()** user functions (like **pt3dadd(), finitialize(), psection()** and so on)
3. call **'hoc\_last\_init()'** to finalise setup, including:
1. create **NrnThreads**
2. **hoc\_install()** neuron related variables ( **t, dt, v, i\_membrane\_)** and user properties ( **nseg, L, rallbranch, Ra)**
3. finish memory allocations for different neuron variables
4. call **modl\_reg()** and **mswin\_load\_dll()** to load external mechanisms from **mech** library
5. call **'hoc\_class\_registration()'** implemented in **'src/ivoc/classreg.cpp'** which will register classes found in different parts of the source tree, like:
1. **List, Vector, Matrix** and so on, classes from **'src/ivoc/'**
2. **Shape, BBSaveState** and so on, classes from **'src/nrniv'**
****
## ****HOC Interpreter - executing the machine****
As pointed out in previous section, ****'hoc\_main1()'**** launches the interpreter and executes different hoc commands either line by line from input file or from prompt.
This is handled by the next routine:
**HOC interpreter main routine**
```cpp
while (moreinput())
hoc_run1();
return 0;
```
Whereas **'hoc\_run1()'** will perform parsing (ultimately via bison generated **'yyparse()'**), which will then point to the start machine instruction **Inst** that is passed on to execution via _**execute (hoc\_execute()** redef)_:
```cpp
for (initcode(); hoc_yyparse(); initcode())
{
execute(progbase)
}
```

## ****HOC Interpreter example - printf****
When a function (or even a procedure) is called we have:
* arguments parsed (and eventually computed) pushed to the interpreter data stack
* the interpreter machine will have
* _**call**_ opcode → this is linked to the _**call()**_ function implemented in _**'src/oc/code.c'**_
* _**sym**_ holding the symbol table pointer for the function
* _**nargs**_ holding the number of arguments passed to the function
* a new Frame is pushed onto the frame stack, containing
* **_argn_ →** pointer to interpreter stack of the last argument
* **_nargs_ →** number of arguments
* **_retpc_ →** where to return after the function call
* **_sp_ →** symbol table pointer of the printf

How does this map to _**parse.ypp**_ grammar? Corresponding part is :
expr:
.......
| function begin '(' arglist ')'
{ $$ = $2; code(call); codesym($1); codei($4); PN;}
Here we notice _**call**_ opcode that was pushed to the interpreter machine, together with the _**sym**_ of called function and the number of args via _**codei**_ call.
So given the following HOC call:
oc>printf("%s equals %d", "one plus two", 1+2)
the parsing will parse the arguments and the interpreter will perform **_call()_.** At this point, program counter _**pc**_ points to the **_printf_** symbol table entry and just after we have the number of arguments _**nargs.**_ We now push and setup a new _**Frame**_:
```cpp
void call(void) /* call a function */
{
int i, isec;
Symbol *sp = pc[0].sym; /* symbol table entry for printf*/
/* stack a new frame */
if (++fp >= framelast) {
--fp;
execerror(sp->name, "call nested too deeply, increase with -NFRAME framesize option");
}
fp->sp = sp;
fp->nargs = pc[1].i;
fp->retpc = pc + 2; /* This is where we return to after the printf call */
...
fp->argn = stackp - 2; /* pointer to the last argument */
```
By inspecting the frame we notice:
```cpp
(lldb) p *fp
(Frame) $2 = {
sp = 0x0000000100d07dc0
retpc = 0x0000000100b6c060
argn = 0x0000000101008c20
nargs = 3
iter_stmt_begin = 0x0000000000000000
iter_stmt_ob = 0x0000000000000000
ob = 0x0000000000000000
}
(lldb) p *fp->sp
(Symbol) $3 = {
name = 0x0000000100d07e00 "printf"
type = 280 // this is the type of the symbol, which corresponds to a builtin function: FUN_BLTIN = 280
subtype = 0
public = 0
defined_on_the_fly = 0
u = {
oboff = 13663760
pval = 0x0000000100d07e10
object_ = 0x0000000100d07e10
cstr = 0x0000000100d07e10 "??'"
pnum = 0x0000000100d07e10
pvalint = 0x0000000100d07e10
pvalfloat = 0x0000000100d07e10
u_auto = 13663760
ptr = 0x0000000100d07e10 (0x0000000100d07e10)
u_proc = 0x0000000100d07e10
rng = (type = 32272, index = 1)
ppsym = 0x0000000100d07e10
template = 0x0000000100d07e10
sym = 0x0000000100d07e10
}
s_varn = 0
arayinfo = 0x0000000000000000
extra = 0x0000000000000000
next = 0x0000000100d07e30
}
(lldb) p *fp->argn
(Datum) $4 = {
val = 3 // value of the last argument (1+2) has already been computed
sym = 0x4008000000000000
i = 0
pval = 0x4008000000000000
pobj = 0x4008000000000000
obj = 0x4008000000000000
pstr = 0x4008000000000000
itm = 0x4008000000000000
lst = 0x4008000000000000
_pvoid = 0x4008000000000000
}
```
_**call()**_ will continue on to check the symbol, which tells us we are calling a builtin function (_**FUN\_BLTIN = 280**_, see _**fp**_ above), and call its function pointer mapped to **_hoc\_PRintf_**:
```cpp
if (sp->type == FUN_BLTIN || sp->type == OBJECTFUNC || sp->type == STRINGFUNC) {
stackp += sp->u.u_proc->nauto * 2; /* Offset stack for auto space */
STACKCHK
(*(sp->u.u_proc->defn.pf))(); /* this is where we call the printf function */
if (hoc_errno_check()) {
hoc_warning("errno set during call of", sp->name);
}
} else
```


_**hoc\_sprint1()**_ will be in charge of formatting the output using the parsed arguments. Once printing is done via _**plprint()**_, a call to _**ret()**_ will perform Frame clean-up, pop arguments from interpreter data stack and set program counter _**pc**_ to returning point _**retpc**_:
```cpp
void hoc_ret(void) { /* common return from func, proc, or iterator */
int i;
/* unref all the auto object pointers */
for (i = fp->sp->u.u_proc->nobjauto; i > 0; --i) {
hoc_obj_unref(stackp[-2*i].obj);
}
stackp -= fp->sp->u.u_proc->nauto * 2; /* Pop off the autos */
frameobj_clean(fp);
for (i = 0; i < fp->nargs; i++)
nopopm(); /* pop arguments */
pc = (Inst *)fp->retpc;
--fp;
hoc_returning = 1;
}
```
Length of outputted string (21 here) is pushed onto the interpreter data stack. Notice **_hoc\_returning_** that is set to 1 to let the stack machine know execution is done; this is how we can signal nested calls if needed (out of scope for this example).
At the end of **hoc\_execute()** we get:
one plus two equals 3 21
|