1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
|
.. _hoc_neuron_rxd:
Basic Reaction-Diffusion
========================
Overview
--------
NEURON provides the ``rxd`` submodule to simplify and standardize the specification of
models incorporating reaction-diffusion dynamics, including ion accumulation.
The interface is implemented using Python, however as long as Python is available to
NEURON, reaction-diffusion dynamics may be specified using HOC.
We can access the ``rxd`` module in HOC via:
.. code::
hoc
objref pyobj, h, rxd
{
// load reaction-diffusion support and get convenient handles
nrnpython("from neuron import h, rxd")
pyobj = new PythonObject()
rxd = pyobj.rxd
h = pyobj.h
}
The above additionally provides access to an object called ``h`` which is traditionally
how Python accesses core NEURON functionality (e.g. in Python one would use h. :class:`Vector`
instead of :hoc:class:`Vector`). You might not need to use h since when working in HOC,
but it does provide certain convenient functions like :func:`h.allsec`, which returns
an iterable of all sections usable with ``rxd`` without having to explicitly construct
a :hoc:class:`SectionList`.
The main gotchas of using rxd in HOC is that (1) ``rxd`` in Python uses operator overloading to
specify reactants and products; in HOC, one must use ``__add__``, etc instead.
(2) rxd in Python is usually used with keyword arguments; in HOC, everything must be
specified using positional notation.
Here's a full working example that simulates a calcium buffering reaction:
``Ca + Buf <> CaBuf``:
.. code::
hoc
objref pyobj, h, rxd, cyt, ca, buf, cabuf, buffering, g
{
// load reaction-diffusion support and get convenient handles
nrnpython("from neuron import h, rxd")
pyobj = new PythonObject()
rxd = pyobj.rxd
h = pyobj.h
}
{
// define the domain and the dynamics
create soma
cyt = rxd.Region(h.allsec(), "i")
ca = rxd.Species(cyt, 0, "ca", 2, 1)
buf = rxd.Species(cyt, 0, "buf", 0, 1)
cabuf = rxd.Species(cyt, 0, "cabuf", 0, 0)
buffering = rxd.Reaction(ca.__add__(buf), cabuf, 1, 0.1)
}
{
// if launched with nrniv, we need this to get graph to update automatically
// and to use run()
load_file("stdrun.hoc")
}
{
// define the graph
g = new Graph()
g.addvar("ca", &soma.cai(0.5), 1, 1)
g.addvar("cabuf", &soma.cabufi(0.5), 2, 1)
g.size(0, 10, 0, 1)
graphList[0].append(g)
}
{
// run the simulation
tstop = 20
run()
}
In particular, note that instead of ``ca + buf`` one must write
``ca.__add__(buf)``.
In general, a reaction-diffusion model specification involves answering three conceptual questions:
1. :ref:`Where <hoc_rxd_where>` the dynamics are occurring (specified using an :hoc:class:`rxd.Region` or :hoc:class:`rxd.Extracellular`)
2. :ref:`Who <hoc_rxd_who>` is involved (specified using an :hoc:class:`rxd.Species` or :hoc:class:`rxd.State`)
3. :ref:`What <hoc_rxd_what>` the reactions are (specified using :hoc:class:`rxd.Reaction`, :hoc:class:`rxd.Rate`, or :hoc:class:`rxd.MultiCompartmentReaction`)
Another key class is :hoc:class:`rxd.Parameter` for defining spatially varying parameters.
Integration options may be specified using :hoc:func:`rxd.set_solve_type`.
.. _hoc_rxd_where:
Specifying the domain
---------------------
NEURON provides two main classes for defining the domain where a given set of reaction-diffusion rules
applies: :hoc:class:`rxd.Region` and :hoc:class:`rxd.Extracellular` for intra- and extracellular domains,
respectively. Once defined, they are generally interchangeable in the specification of the species involved,
the reactions, etc. The exact shape of intracellular regions may be specified using any of a number of
geometries, but the default is to include the entire intracellular space.
Intracellular regions and regions in Frankenhauser-Hodgkin space
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. hoc:class:: rxd.Region
Declares a conceptual intracellular region of the neuron.
Syntax:
.. code::
hoc
r = rxd.Region(secs, nrn_region, geometry, dimension, dx, name)
In NEURON 7.4+, ``secs`` is optional at initial region declaration, but it
must be specified before the reaction-diffusion model is instantiated.
All arguments are optional, but all prior arguments must be specified.
To use the default values for the prior arguments, specify their values as
``pyobj.None``.
Here:
* ``secs`` is a :hoc:class:`SectionList` or any Python iterable of sections (e.g. ``h.allsec()``)
* ``nrn_region`` specifies the classic NEURON region associated with this object and must be either ``"i"`` for the region just inside the plasma membrane, ``"o"`` for the region just outside the plasma membrane or ``pyobj.None`` for none of the above.
* ``name`` is the name of the region (e.g. ``cyt`` or ``er``); this has no effect on the simulation results but it is helpful for debugging
* ``dx`` deprecated; when specifying ``name`` pass in ``pyobj.None`` here
* ``dimension`` deprecated; when specifying ``name`` pass in ``pyobj.None`` here
.. property:: rxd.Region.nrn_region
Get or set the classic NEURON region associated with this object.
There are three possible values:
* ``'i'`` -- just inside the plasma membrane
* ``'o'`` -- just outside the plasma membrane
* ``pyobj.None`` -- none of the above
*Setting requires NEURON 7.4+, and then only before the reaction-diffusion model is instantiated.*
.. property:: rxd.Region.secs
Get or set the sections associated with this region.
The sections may be expressed as a :hoc:class:`SectionList` or as any Python
iterable of sections.
Note: The return value is a copy of the internal section list; modifying
it will not change the Region.
*Setting requires NEURON 7.4+ and allowed only before the reaction-diffusion model is instantiated.*
.. property:: rxd.Region.geometry
Get or set the geometry associated with this region.
Setting the geometry to ``None`` will cause it to default to ``rxd.geometry.inside``.
*Added in NEURON 7.4. Setting allowed only before the reaction-diffusion model is instantiated.*
.. property:: rxd.Region.name
Get or set the Region's name.
*Added in NEURON 7.4.*
For specifying the geometry
###########################
NEURON provides several built-in geometries for intracellular simulation that may be specified
by passing a ``geometry`` argument to the :class:`rxd.Region` constructor. New region shapes may
be defined by deriving from ``neuron.rxd.geometry.RxDGeometry``.
See the Python programmer's reference for more on :attr:`rxd.inside`. :attr:`rxd.membrane`,
:class:`rxd.DistributedBoundary`, :class:`rxd.FractionalVolume`, :class:`rxd.Shell`,
:class:`rxd.FixedCrossSection`, :class:`rxd.FixedPerimeter`, and
:class:`rxd.ScalableBorder`.
Extracellular regions
---------------------
.. hoc:class:: rxd.Extracellular
Declare a extracellular region to be simulated in 3D;
unlike :hoc:class:`rxd.Region`, this *always* describes the extracellular region.
See the entry for :class:`rxd.Extracellular` in the Python programmer's reference
for more information.
.. _hoc_rxd_who:
Defining proteins, ions, etc
----------------------------
Values that are distributed spatially on an :hoc:class:`rxd.Region` or :hoc:class:`rxd.Extracellular` may be defined using
an :hoc:class:`rxd.Species` if they represent things that change and diffuse, an :hoc:class:`rxd.State` if they're in fixed locations but changeable
(e.g. gates in an IP3R), or an :hoc:class:`rxd.Parameter` if
they are just fixed values.
.. hoc:class:: rxd.Species
Declare an ion/protein/etc that can react and diffuse.
See the entry for :class:`rxd.Species` in the Python programmer's reference
for more information.
.. hoc:class:: rxd.State
Like an :hoc:class:`rxd.Species` but indicates the semantics
of something that is not intended to diffuse.
See the entry for :class:`rxd.State` in the Python programmer's reference
for more information.
.. hoc:class:: rxd.Parameter
Declares a parameter, that can be used in place of a :hoc:class:`rxd.Species`, but unlike :hoc:class:`rxd.Species` a parameter will not change.
See the entry for :class:`rxd.Parameter` in the Python programmer's reference
for more information.
.. _hoc_rxd_what:
Defining reactions
------------------
NEURON provides three classes for specifying reaction dynamics: :hoc:class:`rxd.Reaction` for single-compartment (local)
reactions; :hoc:class:`rxd.MultiCompartmentReaction` for reactions spanning multiple compartments (e.g. a pump that
moves calcium from the cytosol into the ER changes concentration in two regions), and :hoc:class:`rxd.Rate` for
specifying changes to a state variable directly by an expression to be added to a differential equation.
Developers may introduce new forms of reaction specification by subclassing
``neuron.rxd.generalizedReaction.GeneralizedReaction``, but this is not necessary for typical modeling usage.
It is sometimes necessary to build rate expressions including mathematical functions. To do so, use the
functions defined in ``neuron.rxd.rxdmath`` as listed :ref:`below <hoc_rxdmath_prog_ref>`.
.. hoc:class:: rxd.Reaction
Reaction at a point. May be mass-action or defined via custom dynamics.
Syntax:
.. code::
hoc
r1 = rxd.Reaction(reactant_sum, product_sum, forward_rate,
backward_rate, regions, custom_dynamics)
``backward_rate``, ``regions``, and ``custom_dynamics`` are optional, but
when used from HOC, all previous parameters must be specified. To specify
that the dynamics should be custom (i.e. fully defined by the rates) without
a ``backward_rate`` or restricting to specific regions, pass ``0`` for
``backward_rate`` and ``pyobj.None`` for ``regions``.
Example:
.. code::
hoc
// here: ca + buf <> cabuf, kf = 1, kb = 0.1
buffering = rxd.Reaction(ca.__add__(buf), cabuf, 1, 0.1)
Note the need to use ``__add__`` instead of ``+``. To avoid this cumbersome
notation, consider defining the rate expression in Python via :hoc:func:`nrnpython`.
That is, we could write
.. code::
hoc
// here: ca + buf <> cabuf, kf = 1, kb = 0.1
nrnpython("from neuron import h")
nrnpython("ca_plus_buf = h.ca + h.buf")
buffering = rxd.Reaction(pyobj.ca_plus_buf, cabuf, 1, 0.1)
This is admittedly longer than the previous example, but it allows the creation
of relatively complicated expressions for rate constants:
.. code::
hoc
nrnpython("from neuron import h")
nrnpython("kf = h.ca ** 2 / (h.ca ** 2 + (1e-3) ** 2)")
// and then work with pyobj.kf
For more, see the :class:`rxd.Reaction` entry in the Python Programmer's reference.
.. hoc:class:: rxd.Rate
Declare a contribution to the rate of change of a species or other state variable.
Syntax:
.. code::
hoc
r = rxd.Rate(species, rate, regions, membrane_flux)
``regions`` and ``membrane_flux`` are optional, but if ``membrane_flux``
is specified, then ``regions`` (the set of regions where the rate occurs)
must also be specified. The default behavior is that the rate applies on
all regions where all involved species are present; this region rule applies
when ``regions`` is ommitted or ``pyobj.None``.
Example:
.. code::
hoc
constant_production = rxd.Rate(protein, k)
If this was the only contribution to protein dynamics and there was no
diffusion, the above would be equivalent to:
.. code::
dprotein/dt = k
If there are multiple :hoc:class:`rxd.Rate` objects (or an
:hoc:class:`rxd.Reaction`, etc) acting on
the same species, then their effects are summed.
.. hoc:class:: rxd.MultiCompartmentReaction
Specify a reaction spanning multiple regions to be added to the system.
Use this for, for example, pumps and channels, or interactions between
species living in a volume (e.g. the cytosol) and species on a
membrane (e.g. the plasma membrane).
For each species/state/parameter, you must specify what region you are
referring to, as it could be present in multiple regions. You must
also specify a `membrane` or a `border` (these are treated as synonyms)
that separates the regions involved in your reaction. This is necessary
because the default behavior is to scale the reaction rate by the
border area, as would be expected if one of the species involved is a
pump that is binding to a species in the volume. If this is not the
desired behavior, pass the argument ``0`` for the ``scale_by_area`` field.
Pass the argument ``1`` for ``membrane_flux`` if the reaction produces a current across
the plasma membrane that should affect the membrane potential.
Unlike :hoc:class:`rxd.Reaction` objects, the base units for the rates are in terms of
molecules per square micron per ms.
Mathematical functions for rate expressions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NEURON's ``neuron.rxd.rxdmath`` module provides a number of mathematical functions that
can be used to define reaction rates. These generally mirror the functions available
through Python's ``math`` module but support :hoc:class:`rxd.Species` objects.
To use any of these, first do:
.. code::
hoc
objref pyobj, rxdmath
{
// load rxdmath
nrnpython("from neuron.rxd import rxdmath")
pyobj = new PythonObject()
rxdmath = pyobj.rxdmath
}
For a full runnable example, see `this Python tutorial <../../../rxd-tutorials/thresholds.html>`_
which as here uses the hyperbolic tangent as an approximate on/off switch for the reaction.
Full documentation on this submodule (under the Python programmer's reference, but the HOC interface is identical) is available :ref:`here <rxdmath_prog_ref>` or you may go
directly to the documentation for any of its specific functions:
:func:`rxdmath.acos`, :func:`rxdmath.acosh`, :func:`rxdmath.asin`,
:func:`rxdmath.asinh`, :func:`rxdmath.atan`, :func:`rxdmath.atan2`,
:func:`rxdmath.ceil`, :func:`rxdmath.copysign`,
:func:`rxdmath.cos`, :func:`rxdmath.cosh`,
:func:`rxdmath.degrees`, :func:`rxdmath.erf`,
:func:`rxdmath.erfc`, :func:`rxdmath.exp`,
:func:`rxdmath.expm1`, :func:`rxdmath.fabs`,
:func:`rxdmath.factorial`, :func:`rxdmath.floor`,
:func:`rxdmath.fmod`, :func:`rxdmath.gamma`,
:func:`rxdmath.lgamma`, :func:`rxdmath.log`,
:func:`rxdmath.log10`, :func:`rxdmath.log1p`,
:func:`rxdmath.pow`, :func:`rxdmath.pow`,
:func:`rxdmath.sin`, :func:`rxdmath.sinh`,
:func:`rxdmath.sqrt`, :func:`rxdmath.tan`,
:func:`rxdmath.tanh`, :func:`rxdmath.trunc`,
:func:`rxdmath.vtrap`
Manipulating nodes
------------------
A :hoc:class:`rxd.node.Node` represents a particular state value or :class:`rxd.Parameter` in a particular location. Individual :hoc:class:`rxd.node.Node` objects are typically obtained either from being passed to an initialization function or by filtering or selecting from an :hoc:class:`rxd.nodelist.NodeList` returned by :attr:`rxd.Species.nodes`. Node objects are often used for recording concentration using :attr:`rxd.node.Node._ref_concentration`.
.. hoc:class:: rxd.nodelist.NodeList
An :hoc:class:`rxd.nodelist.NodeList` is a subclass of a Python `list <https://docs.python.org/3/tutorial/datastructures.html#more-on-lists>`_
containing :hoc:class:`rxd.node.Node` objects. It is not intended to be created directly in a model, but rather is returned by
:hoc:attr:`rxd.Species.nodes`.
Standard Python list methods are supported, including ``.append(node)``, ``.extend(node_list)``,
``.insert(i, node)``, ``.index(node)``. To access the item in the ith position (0-indexed) of a NodeList
``nl`` in HOC, use ``nl.__get__item(i)``. (In Python, one could say ``nl[i]``, but
this notation is not supported by HOC.)
A key added functionality is the ability to filter the
nodes by rxd property (returning a new
:hoc:class:`rxd.nodelist.NodeList`). Any filter object supported
by the ``.satifies`` method of the node types present in the
:hoc:class:`rxd.nodelist.NodeList` may be passed in parentheses;
e.g.
To filter a ``new_node_list`` to only contain nodes
present in the :hoc:class:`rxd.Region` ``er``:
.. code::
hoc
just_er = new_node_list(er)
See the entry for :class:`rxd.nodelist.NodeList` in the Python programmer's
reference for more information.
Membrane potential
------------------
.. property:: rxd.v
A special object representing the local membrane potential in a reaction-rate
expression. This can be used with :hoc:class:`rxd.Rate` and
:hoc:class:`rxd.MultiCompartmentReaction` to build ion channel models as an alternative
to using NMODL, NeuroML (and converting to NMODL via `jneuroml <https://github.com/NeuroML/jNeuroML>`_), the ChannelBuilder,
or :hoc:class:`KSChan`.
(If you want a numeric value for the current membrane potential at a
segment ``sec(x)`` use ``sec.v(x)`` instead; this syntax is slightly different
from the Python convention for accessing membrane potential.)
Synchronization with segments
-----------------------------
Changes to :hoc:class:`rxd.Species` node concentrations are propagated to segment-level concentrations automatically no later
than the next time step. This is generally the right direction for information to flow, however NEURON also provides
a :hoc:func:`rxd.re_init` function to transfer data from segments to :hoc:class:`rxd.Species`.
.. hoc:function:: rxd.re_init
Reinitialize all :hoc:class:`rxd.Species`, :hoc:class:`rxd.State`, and :hoc:class:`rxd.Parameter` from changes made
to NEURON segment-level concentrations. This calls the corresponding :hoc:meth:`rxd.Species.re_init` methods.
Note that reaction-diffusion models may contain concentration data at a finer-resolution than that of a
segment (e.g. for models being simulated in 3D).
Syntax:
.. code::
hoc
rxd.re_init()
Numerical options
-----------------
.. hoc:function:: rxd.nthread
Specify a number of threads to use for extracellular and 3D intracellular simulation. Currently has
no effect on 1D reaction-diffusion models.
Syntax:
.. code::
hoc
rxd.nthread(num_threads)
Example:
To simulate using 4 threads:
.. code::
hoc
rxd.nthread(4)
Thread scaling performance is discussed in the NEURON
`extracellular <https://doi.org/10.3389/fninf.2018.00041>`_ and
`3D intracellular <https://doi.org/10.1101/2022.01.01.474683>`_ methods papers.
.. hoc:function:: rxd.set_solve_type
Specify numerical discretization and solver options. Currently the main use is to indicate
Sections where reaction-diffusion should be simulated in 3D.
Syntax:
.. code::
hoc
rxd.set_solve_type(domain, dimension)
where:
- ``domain`` -- a :hoc:class:`SectionList` or other iterable of sections. Pass ``pyobj.None`` to apply the specification to the entire model.
- ``dimension`` -- 1 or 3
This function may be called multiple times; the last setting for dimension for a given section will apply.
Different sections may be simulated in different dimensions (a so-called hybrid model).
Error handling
--------------
Most errors in the usage of the ``rxd`` module should
raise a :hoc:class:`rxd.RxDException`.
.. hoc:class:: rxd.RxDException
An exception originating from the ``rxd`` module
due to invalid usage. This allows distinguishing such
exceptions from other errors.
HOC's support for Error Handling is limited, so it is generally difficult
to get access to these objects inside HOC, but they might be passed to HOC
via a function called in Python.
The text message of an :hoc:class:`rxd.RxDException` ``e`` may be read in HOC as ``e.__str__()``.
|